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Abstract—The popularity of mobile devices and location-based
services (LBS) has created great concerns regarding the location
privacy of users of such devices and services. Anonymization
is a common technique that is often being used to protect the
location privacy of LBS users. In this paper, we provide a general
information theoretic definition for location privacy. In particular,
we define perfect location privacy. We show that under certain
conditions, perfect privacy is achieved if the pseudonyms of
users are changed before O(N

2
r−1 ) observations by the adversary,

where N is the number of users and r is the number of sub-
regions or locations.

I. INTRODUCTION
Mobile devices capable of communicating over the Inter-

net with high-precision localization capability have become
pervasive in the past several years. These communicating
mobile devices provide a wide range of services based on the
geographic location of the user. We refer to such services that
use the geographic location of their users as location-based
services (LBS).

While LBSes provide so many services to their users, thanks
to their unrestricted access to the location information of the
users, they also impose significant privacy threats to them.
Some mechanisms have been proposed in order to protect
location privacy of LBS users, [1]–[7], generally referred to
as location privacy protection mechanisms (LPPM).

Today’s LPPMs can be classified into two main categories:
identity perturbation LPPMs [5]–[7] modify the identity of
mobile users in order to protect their location privacy (e.g.,
through anonymization techniques). In other words, they aim
at improving location privacy by concealing the mapping be-
tween users and location observations. Location perturbation
LPPMs are the second category [1]–[4], [7], which add noise
to mobile users’ location coordinates. This can potentially
improve location privacy by returning inaccurate location
information to the LBS applications. Some LPPMs combine
both mechanisms to address this problem, but this may degrade
the performance of an LBS system. Unfortunately, despite
previous studies on location privacy, the design of LPPM
systems relies on ad-hoc algorithmic heuristics such as adding
noise and shuffling identities.

In this paper, we propose a fundamental, analytical study
of location privacy for location-based services. We assume the

strongest model for the adversary, i.e., an adversary who has
complete statistical knowledge of the users’ movements. Then,
we define location privacy based on the mutual information
between the adversary’s observation and actual location data.
This allows us to define perfect location privacy wherein
users have provably private locations. Then, we show that for
r possible i.i.d. locations, if the adversary obtains less than
O(N

2
r−1 ) observations per user, then all users have perfect

location privacy at all time. We show that perfect location
privacy is indeed achievable if the LPPMs are designed
appropriately.

II. RELATED WORK

Existing work on the design of LPPM mechanisms can be
classified into two main categories of identity perturbation
LPPMs [5]–[7] and location perturbation LPPMs [1]–[4], [7].
Location perturbation LPPMs add noise to users’ location
coordinates while identity perturbation LPPMs modify the
identities of mobile users.

A common approach used by identity perturbation LPPMs
is to obfuscate user identities within a group of users, an
approach known as k-anonymity [2], [8]. A second com-
mon approach to identity perturbation LPPMs is to exchange
users’ pseudonyms within specific areas called mix-zones [9],
[10]. Freudiger et al. show that combining techniques from
cryptography with mix-zones can result in higher levels of
location privacy [5]. Also, Manshaei et al. use game theoretic
approaches to improve the location privacy protection provided
by mix-zones [11]. Location cryptography is another direction
taken towards protecting location information [12].

Many proposed location perturbation LPPMs work by re-
placing each user’s location information with a larger region,
a technique known as cloaking [2], [3], [13], [14]. Another
direction to location perturbation is including dummy locations
in the set of possible locations of users [15], [16].

Several works [4], [17]–[20] use differential privacy to
protect location privacy in location information datasets. This
ensures that the presence of no single user could significantly
change the outcome of the aggregated location information.
For instance, Ho et al. [21] proposed a differentially private
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location pattern mining algorithm using quadtree spatial de-
composition.

Dewri [22] combined k-anonymity and differential pri-
vacy to improve location privacy. Some location perturbation
LPPMs are based on ideas from differential privacy [4], [23]–
[26]. For instance, Andres et al. hide the exact location of
each user in a region by adding Laplacian distributed noise to
achieve a desired level of geo-indistinguishability [26].

Several works aimed at quantifying location privacy protec-
tion. Shokri et al. [7], [27] define the expected estimation error
of the adversary as a metric to evaluate LPPM mechanisms.
On the other hand, Ma et al. [6] uses uncertainty about
users’ location information to quantify user location privacy
in vehicular networks.

III. FRAMEWORK

A. Defining Location Privacy

To investigate the location privacy problem, we first need to
provide a generic mathematical definition for location privacy.
Consider a network consisting of N users, and suppose that
an LPPM is used to protect the privacy of the users. Let A
be an adversary who is interested in knowing the locations
of the users as they move. To ensure privacy, we assume the
strongest adversary in the sense that we assume the adversary
has complete statistical knowledge of the users’ movements.
That is, through previous observations or other sources, the
adversary has a complete model that describes the movement
of users as a random process on the corresponding geographic
area.

Now, starting at time zero, the users move through the area.
In particular, let Xi (t) be the location of user i at time t.
Adversary A is interested in knowing Xi (t) for i = 1, 2, ..., N .
However, she can only observe the anonymized and obfuscated
versions of Xi (t)’s produced by the LPPM. In particular, let
Y be a collection of observations available to the adversary.
We define perfect location privacy as follows:

Definition 1. User i has perfect location privacy at time t with
respect to adversary A, if and only if

lim
N→∞

I (Xi (t); Y) = 0,

where I (.) shows the mutual information.

The above definition requires that the observations of the
adversary does not give her any useful information about the
location of user i. It also assumes a large number of users
(N → ∞). This assumption is valid for almost all applications
that we consider.

In this paper, to achieve location privacy, we use only
anonymization techniques. That is, we perform a random
permutation Π(N ) on the set of N users, and then assign the
pseudonym Π(N ) (i) to user i.

Π
(N ) : {1, 2, · · · , N } → {1, 2, · · · , N }

Throughout the paper, we assume the permutation Π(N ) is
chosen uniformly at random among all N! possible permu-

tations. For simplicity of notations we sometimes drop the
superscripts, e.g., Π(N ) = Π.

For i = 1, 2, · · · , N let X(M )
i = (Xi (1), Xi (2), · · · , Xi (M))T

be a vector which shows the ith user’s locations at times
1, 2, · · · , M . The adversary observes a permutation of users
location vectors, X(M )

i ’s, using the permutation function Π(N ) .
In other words, the adversary observes

Y(M ) = Perm(X(M )
1 ,X(M )

2 , · · · ,X(M )
N ;Π(N ))

= (X(M )
Π−1 (1)

,X(M )
Π−1 (2)

, · · · ,X(M )
Π−1 (N )

)

= (Y(M )
1 ,Y(M )

2 , · · · ,Y(M )
N )

where,

Y(M )
Π(N ) (i)

= X(M )
i = (Xi (1), Xi (2), · · · , Xi (M))T

We introduce two lemmas here that will be used to prove
the main result through the paper.

Lemma 1. For k = 1, 2, ..., let Z(k ) = (Z (k )
1 , Z (k )

2 , · · · , Z (k )
n(k ))

be a sequence of independent random vectors with size
n(k) ≤ k, such that n(k) = akb where a > 0 and
0 < b < 1 are constants. Assume Z (k )

1 , Z (k )
2 , · · · , Z (k )

n are
independent discrete random variables with identical range,
i.e., P(Z (k )

i = x) > 0 if and only if P(Z (k )
j = x) > 0. Further,

suppose that their distributions F
Z (k )
i

converge to the standard
normal distribution. In particular, for each γ > 0, there exists
k0 ∈ N such that if k > k0, then

sup
{
|F

Z (k )
i

(x) − Φ(x) | : x ∈ R, i ∈ {1, 2, ..., n(k)}
}
≤ γ

Let Y(k ) be a permuted version of the Z(k ) under the random
permutation Π(n):

Y(k ) = Perm(Z (k )
1 , Z (k )

2 , · · · , Z (k )
n ;Π(n)),

For λ > 0 we define a set A(k )
λ as follows:

A(k )
λ =

{
y(k ) : ���1 − nP(Π(k ) (1) = j |Y(k ) = y(k ))��� < λ

}
,

Then, for any λ > 0, we have

lim
k→∞

P(Y(k ) ∈ A(k )
λ ) = 1

Proof. (Sketch) Here, the goal is to study the conditional
probability P(Π(n) (1) = j |Y(k ) = y(k )). In particular, we want
to study the power of an adversary in finding the permutated
value of 1, i.e., Π(k ) (1), based on the observed data Y(k ) .

To get the idea behind this lemma, let’s assume that Zi’s
have exactly normal distribution (instead of considering Zi’s
distributions converging to N (0, 1)). So, all Zi’s are i.i.d.
random variables.

Z (k )
i ∼ N (0, 1)

If we observe Y(k )

Y(k ) = Perm(Z (k )
1 , Z (k )

2 , · · · , Z (k )
n ;Π(n)),
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then, by considering that Z (k )
i ’s are i.i.d. and using symmetry,

probability of finding the right permutation function based on
this observation is

P(Π(n) (1) = j |Y(k ) = y(k )) =
1
n
.

In the lemma, as Zi’s distributions converge to N (0, 1), we
are not able to say this probability is exactly 1

n , but it is close
to it. This can be shown using the continuity of the probability
distribution functions. In particular, we can show

1 − λ
n

< P(Π(1)(n) = j |Y(n) = y(n)) <
1 + λ

n
with high probability. Thus, with high probability

���1 − nP(Π(1)(n) = j |Y(k ) = y(k ))��� < λ

for any λ > 0, and that proves the lemma.
�

Lemma 2. Let Yi (k) = Y M
i (k) be the adversary’s observations

as defined above. Let us define Y as,

Y i =
1
M

M∑
k=1

Yi (k).

Then, given Y 1,Y 2, · · · ,Y N , we have that Π(N ) and YN are
independent.

Proof. This is the immediate result of the fact that

(Y 1,Y 2, · · · ,Y N ) = Y
(N )

is a sufficient statistic for pi’s. In particular,

f (Y(N ) |Y
(N )
,Π) = f (Y(N ) |Y

(N )
)

which means that Y(N ) and Π are independent given the
average values Y

(N )
. �

B. Location Privacy for a Simple Two-State Model

To get a better insight about the location privacy problem,
here we consider a simple scenario. Consider a scenario
where there are two locations, locations 0 and 1. At any
time k ∈ {0, 1, 2, · · · }, user i has probability pi ∈ (0, 1)
to be at location 1, independently from previous locations
and independently from other users’ locations. Therefore,
Xi (k) ∼ Bernoulli(pi ).

To keep things general, we assume that pi’s are drawn
independently from some continuous density fP (p) on the
(0, 1) interval. Specifically, fP (p) = 0 for all p < (0, 1) and
there are δ2 > δ1 > 0 such that δ1 < fP (p) < δ2 for all
p ∈ (0, 1). The values of pi’s are known to the adversary.

Theorem 1. For two locations with above definition and
observation vector Y(M ) if all the following holds,

1) M = cN2−α , which c, α > 0 and are constant
2) p1 ∈ (0, 1)
3) (p2, p3, · · · , pN ) ∼ f p , 0 < δ1 < f p < δ2
4) P = (p1, p2, · · · , pN ) be known to the adversary

then, we have

∀k ∈ N, lim
N→∞

I (X1(k); Y(M )) = 0

Before providing a formal proof for Theorem 1, let us
provide the intuition behind it. Let us look from the adversary’s
perspective. The adversary would like to obtain X1(k). The
adversary, knows the value of p1. To obtain X1(k), it suffices
that the adversary obtains Π(1). Since Xi (k) ∼ Bernoulli(pi ),
to do so, the adversary can look at the averages

YΠ(i) =
YΠ(i) (1) + YΠ(i) (2) + ... + YΠ(i) (M)

M
.

In fact, we show in Lemma 2 that YΠ(i)’s provide a sufficient
statistics for this problem. Now, intuitively, the adversary is
successful in recovering Π(1) if two conditions hold:

1) YΠ(1) ≈ p1.
2) For all i , 1, YΠ(i) is not too close to p1.
Now, note that by the Central Limit Theorem (CLT),

YΠ(i) − pi√
pi (1−pi )

M

→ N (0, 1) .

That is, loosely speaking, we can write

YΠ(i) → N
(
pi,

pi (1 − pi )
M

)
.

Consider and interval I ∈ (0, 1) such that p1 ∈ I and the
length of I, length(I), is equal to LN =

c
N where c > 0 is

an arbitrary constant. Note that for any i ∈ 1, 2, · · · , N the
probability that pi ∈ I is larger than δLN =

cδ
N . In other

words, by choosing c large enough, we can guarantee that a
large number of pi’s be in I. On the other hand, note that we
have √

Var(YΠ(i))

length(I)
=

√
pi (1−pi )

M

c
N

=
N√

o(N2)
→ ∞.

Note that here, we will have a large number of normal
random variables YΠ(i) whose expected values are in interval
I with high probability and their standard deviation is much
larger than the interval length. Thus, distinguishing between
them will become impossible for the adversary. In other
words, the probability that the adversary will correctly
identify Π(l) goes to zero as N goes to infinity. That is,
the adversary will most likely choose an incorrect value j
for Π(l). In this case, since the locations of different users
are independent, the adversary will not obtain any useful
information by looking at X j (k).

Proof of Theorem 1. We define X i

X i =
1
M

M∑
k=1

Xi (k).
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Since Xi (k) ∼ Bernoulli(pi )

EX i = pi, Var(X i ) =
pi (1 − pi )

M
.

As M → ∞, by applying Central Limit Theorem,

X i − pi√
pi (1−pi )

M

=
√

M
X i − pi√
pi (1 − pi )

d
−→ N (0, 1)

and since YΠ(N ) (i) = X i , then we can conclude that

√
M

YΠ(i) − pi√
pi (1 − pi )

d
−→ N (0, 1).

Next, we define a random set J (N ) as a set which includes
indices i as follows

J (N ) = {i : p1 − ε < pi < p1 + ε }

where

ε =
1

N1− α
3

Remember that α is given by M = cN2−α . Also note that
1 ∈ J (N ) .

Let us first find the distribution of |J (N ) | which is the
number of elements in J (N ) . Note that for N large enough,

Pr
(
p1 − ε < pi < p1 + ε

)
=

∫ p1+ε

p1−ε
fP (p)dp.

Since δ1 < fP (p) < δ2, we conclude that

2εδ1 < Pr
(
p1 − ε < pi < p1 + ε

)
< 2εδ2,

so we can write

Pr
(
p1 − ε < pi < p1 + ε

)
= 2εδ,

for some δ > 0. We conclude that |J (N ) | ∼ Bin(N, 2εδ) when
N is large enough. In particular, for the expected value and
variance of |J (N ) | we get

E[|J (N ) |] = 2εδN = 2 ×
1

N1− α
3
δN = 2δN

α
3

V ar ( |J (N ) |) = 2Nεδ(1 − 2εδ)

and as N → ∞, V ar ( |J (N ) |) ∼ 2δN
α
3 .

Using Chebyshev’s inequality,

P
{���|J

(N ) | − E[|J (N ) |]��� > δN
α
3

}
<

V ar ( |J (N ) |)

δ2N2 α
3

V ar (|J (N ) |)

δ2N2 α
3
=

2δN
α
3

δ2N2 α
3
→ 0, as N → ∞

Thus, |J (N ) | > δN
α
3 with high probability. In particular,

|J (N ) | → ∞, as N → ∞

Lemma 3. For all i ∈ |J (N ) |, the distribution of normalized
random variable X i converges to normal distribution,

√
M

X i − p1√
p1(1 − p1)

d
−→ N (0, 1)

and since we have YΠ(N ) (i) = X i ,

√
M

YΠ(i) − p1√
p1(1 − p1)

d
−→ N (0, 1).

Proof. Note that, |pi − p1 | < ε = 1
N

1− α
3

and

pi → p1, as N → ∞.

By knowing that
√

pi (1−pi )
√

p1 (1−p1)
→ 1,

√
M

X i − p1√
p1(1 − p1)

=
√

M
X i − pi + pi − p1√

pi (1 − pi )

√
pi (1 − pi )√
p1(1 − p1)

=
√

M
X i − pi√
pi (1 − pi )

+
√

M
pi − p1√
pi (1 − pi )

which we already know that X i−pi√
pi (1−pi )

d
−→ N (0, 1), so we can

write
������

√
M

pi − p1√
pi (1 − pi )

������
≤

√
M × ε√

p1(1 − p1)

and as N → ∞
√

M × ε√
p1(1 − p1)

=

√
N1− α

2√
p1(1 − p1)

×
1

N1− α
3
→ 0.

Same thing holds for Y i since YΠ(N ) (i) = X i .
�

Next we consider the case where Π(N ) (J (N )), which is

Π
(N ) (J (N )) = {Π(N ) (i) : i ∈ J (N ) },

is known to the adversary (not the individual Π(i)’s, but the
whole set Π(N ) (J (N ))). In this case, for the adversary to find
Π(N ) (i), she needs to just look into the set J (N ) .
We show that even if the adversary knows the set Π(N ) (J (N )),
her mutual information goes to zero.

For simplicity, we assume that

J (N ) = {1, 2, · · · , n},

where n = |J (N ) | > δN
α
3 and let

Y(n) = (YΠ(1),YΠ(2), · · · ,YΠ(n)).

Now for the adversary to find Π(1), she can look into set J (N )

with size n rather than all the N users.
To finish the proof of Theorem 1, it suffices to show that

as N → ∞,

H (X1(k) |Y(N )) → H (X1(k)).

To continue, we first prove two lemmas.

Lemma 4. Let A(N )
λ be as defined in Lemma 1, in particular,

we have

lim
N→∞

P(Y(N ) ∈ A(N )
λ ) = 1.
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If for all y(N ) ∈ A(N )
λ , we have

H (X1(k) |Y(N ) = y(N )) → H (X1(k)) as N → ∞.

Then, we have

lim
N→∞

H (X1(k) |Y(N )) = H (X1(k)).

Proof. We have

H (X1(k) |Y(N )) =
∑
y(N )

H (X1(k) |Y(N ) = y(N ))P(Y(N ) = y(N ))

=
∑

y(N ) ∈A(N )
λ

H (X1(k) |Y(N ) = y(N ))P(Y(N ) = y(N ))

+
∑

y(N )<A(N )
λ

H (X1(k) |Y(N ) = y(N ))P(Y(N ) = y(N )).

Now note that the second sum converges to zero since
H (X1(k) |Y(N ) = y(N )) ≤ H (X1(k)) ≤ 1 and

lim
N→∞

P(Y(N ) < A(N )
λ ) = 0.

On the other hand, the first sum converges to H (X1(k)) by
the assumptions of the lemma.

�

Lemma 4 allows us to consider only the observations
Y(N ) = y(N ) for Y(N ) ∈ A(N )

λ .

Lemma 5. Assume P = (p1, p2, · · · , pN ) is observed. We
define qN as the probability that the first user is in state
(location) 1 at time k, i.e., X1(k) = 1, given the observation
vector Y(N ) and the set Π(J (N )).

qN = P(X1(k) = 1|Y(N ),Π(J (N )))

Since Y(N ) and Π(J (N )) are random, qN is a random variable.
We have

qN
d
−→ p1.

Proof. This lemma is the result of the previous lemma. We
have

qN = P(X1(k) = 1|Y(N ) = y(N ),Π(J (N ))).

First, note that given set Π(J (N )), we can ignore Y(N )
i for

i < Π(J (N )), so we simply replace N with n to show this. By
applying the Law of Total Probability we get

∑
j ∈Π(J (N ) )

P(X1(k) = 1|Π(1) = j,Y(n) = y(n),Π(J (N )))

×P(Π(1) = j |Y(n) = y(n),Π(J (N )))

=

n∑
j=1

1[y (n)
j (k )=1] × P(Π(1) = j |Y(n) = y(n)).

With the same reasoning as Lemma 4, it only suffices to
consider Y(n) = y(n) for y(n) ∈ A(N )

λ . Also, by Lemma 2
if we define Y as,

Y i =
1
M

M∑
k=1

Yi (k).

then given Y 1,Y 2, · · · ,Y n , we have Π(N ) and Yn are indepen-
dent. Thus,

P(Π(1) = j |Y(n) = y(n)) = P(Π(1) = j |Y
(n)
= y(n)).

But by Lemma 3,
√

M
Y i − p1√
p1(1 − p1)

d
−→ N (0, 1).

This along with Lemma 1 tells us that with high probability
1 − λ

n
≤ P(Π(1) = j |Y(n) = y(n)) ≤

1 + λ
n

.

We obtain

qN →
∑
j

1[y (N )
j (k )=1] × P(Π(1) = j |Y(n) = y(n))

so we get
1 − λ

n

∑
j ∈A(n)

λ

1[y (N )
j (k )=1] ≤ q

≤
1 + λ

n

∑
j ∈A(n)

λ

1[y (N )
j (k )=1]

Now, note that Yj (K ) are Bernoulli(pΠ( j )) and since we are
summing over n, by Law of Large Numbers and pΠ( j ) → p1
then we have∑

j

1[Y (N )
j (k )=1] → p1, as N → ∞

and considering that we can write

(1 − λ1)p1 ≤ qN ≤ (1 + λ1)p1

where λ1 can be made arbitrarily small so that qN
d
−→ p1.

�

Thus,

(X1(k) = 1|Y(N ) = y(N ),Π(J (N ))) → Bernoulli(p1).

We already know that X1(k) ∼ Bernoulli(p1). It means
that knowing Y(N ) = y(N ),Π(J (N )) does not change the
distribution. In other words the entropy of (X1(k) |Y(N ) =

y(N ),Π(J (N ))) converges to H (X1(k)).

H ((X1(k) |Y(N ),Π(J (N )))) → H (X1(k))

and we know that conditioning does not increase entropy,

H ((X1(k) |Y(N ),Π(J (N )))) ≤ H (X1(k))

H ((X1(k) |Y(N ),Π(J (N )))) ≤ H ((X1(k) |Y(N ))

so,

H ((X1(k) |Y(N )) ≤ H (X1(k))

and since H ((X1(k) |Y(N ),Π(J (N )))) → H (X1(k))

H (X1(k) |Y(N )) → H (X1(k))

and finally we can write

I ((X1(k); Y(N )) → 0, as N → ∞

which completes the proof of Theorem 1.
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C. Extension to r States (locations)

Here we extend the results to a scenario in which we have
r ≥ 2 locations or regions, locations 0, 1, · · · , r − 1. At any
time k ∈ {0, 1, 2, · · · }, user i has probability p j

i ∈ (0, 1) to
be at location j, independently from previous locations and
independently from other users’ locations.

We assume that p j
i ’s (for j = 0, 1, · · · , r − 2) are drawn

independently from some r−1 dimensional continuous density
fP (p) on the (0, 1)r−1. Specifically, fP (p) = 0 for all p <
(0, 1)r−1 and there are δ2 > δ1 > 0 such that δ1 < fP (p) < δ2
for all p ∈ {(p0, p1, · · · , pr−2) ∈ (0, 1)r−1 : p0+p1+· · ·+pr−2 ≤

1}. The values of p j
i ’s are fixed and do not change as time goes

on. We then can state the following theorem.

Theorem 2. For r locations with above definition and obser-
vation vector Y(M ) if all the following holds,

1) M = cN
2

r−1−α , which c, α > 0 and are constant
2) pi ∈ (0, 1)
3) (p2, p3, · · · , pN ) ∼ f p , 0 < δ1 < f p < δ2
4) P = (p1, p2, · · · , pN ) be known to the adversary

then, we have

∀k ∈ N, lim
N→∞

I (X1(k); Y(M )) = 0

Theorem 2 can be proved using similar ideas introduced
in the proof of Theorem 1. We omit the proof due to space
limitation.

IV. CONCLUSION

In this paper, we defined perfect location privacy based on
the mutual information between the adversary’s observation
information and the actual user’s location data. Then we
simplified the problem into two-state locations with N number
of users and M number of adversary’s observations. We
derived the relation between M and N . We showed that
perfect location privacy is achievable if M ≤ cN2−α . We
then extended our model to r-state locations and obtained
M ≤ cN

2
r−1−α to have perfect location privacy.
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