
On Bit Error Rate Performance of Polar Codes in
Finite Regime
A. Eslami and H. Pishro-Nik

Abstract— Polar codes have been recently proposed as the
first low complexity class of codes that can provably achieve
the capacity of symmetric binary-input memoryless channels.
Here, we study the bit error rate performance of finite-length
polar codes under Belief Propagation (BP) decoding. We analyze
the stopping sets of polar codes and the size of the minimal
stopping set, called ”stopping distance”. Stopping sets, as they
contribute to the decoding failure, play an important role in bit
error rate and error floor performance of the code. We show
that the stopping distance for binary polar codes, if carefully
designed, grows as O(

√
N) where N is the code-length. We

provide bit error rate (BER) simulations for polar codes over
binary erasure and gaussian channels, showing no sign of error
floor down to the BERs of 10−11. Our simulations asserts that
while finite-length polar codes do not perform as good as LDPC
codes in terms of bit error rate, they show superior error floor
performance. Motivated by good error floor performance, we
introduce a modified version of BP decoding employing a guessing
algorithm to improve the BER performance of polar codes.
Our simulations for this guessing algorithm show two orders of
magnitude improvement over simple BP decoding for the binary
erasure channel (BEC), and up to 0.3 dB improvement for the
gaussian channel at BERs of 10−6.

Index Terms— Polar Codes, Belief Propagation, Error Floor,
Binary Erasure Channel.

I. INTRODUCTION

Polar codes, recently proposed by Arikan are the first
provably capacity achieving class of codes for symmetric
binary-input discrete memoryless channels (BDMC) with low
encoding and decoding complexity [1]. Since Arikan’s pa-
per, there have been many papers studying the performance
characteristics of polar codes as well as various potential
applications of these codes [2]–[17]. However, polar codes
show some drawbacks when compared against well-known
modern coding techniques such as LDPC codes. For instance,
polar codes hold an encoding and decoding complexity of
O(N log N) compared to linear complexity of LDPC codes.
Furthermore, polar codes show worse BER performance than
LDPC codes for finite lengths [3], [4]. Thus, an interesting
problem is to find better approaches to encoding and decoding.
In this direction, [3] and [4] showed that the BER can
be improved by using Belief Propagation (BP), instead of
Successive Cancelation (SC), to decode polar codes. Along the
same line, another interesting issue is to study the structure
and minimum size of the stopping sets as one of the most
common causes in the failure of BP decoding. Due to the

This work was supported by the National Science Foundation under grants
CCF-0830614 and ECCS-0636569.

The authors are with the Electrical and Computer Engineering Depart-
ment, University of Massachusetts, Amherst, MA, USA (email:eslami,
pishro@ecs.umass.edu).

significant contribution of stopping sets to the bit error rate
and error floor, such an analysis can reveal many advantages
or disadvantages of polar codes over other coding schemes. In
this paper, we find the structure of minimal stopping set and
show that its size can grow as large as O(

√
N) which can be

considered as an advantage over the LDPC codes. The effect
of such a large stopping distance on the error floor behavior
of polar codes is depicted in our simulation results where no
sign of error floor can be seen down to the BERs of 10−11

for the binary erasure and gaussian channels.
In addition to the above, since BP is rather well-studied

in the context of LDPC codes, there are many approaches
to modify BP in order to obtain better BER performance;
examining such schemes in the context of polar codes is
another interesting issue. Therefore, we consider a modified
version of BP employing a guessing algorithm in the second
part of the paper. The algorithm was studied in [18] and
[19] and was shown to be considerably helpful in the case
of LDPC codes with good error floor performance. Here we
show that by applying this algorithm to the polar codes we
can achieve significant improvements in BER. The rest of the
paper is organized as follows. We first explain the notations
and provide a short background on the belief propagation.
In Section III, we study the error floor performance of polar
codes, where we first provide some analysis on the minimal
stopping set of the code. We will then study the improvement
made in BER by employing a modified version of BP using
guessing techniques.

II. BELIEF PROPAGATION DECODING FOR POLAR CODES

In this section, we explain some notations and preliminary
concepts we will be using in our analysis. The construction of
polar codes is based on the following observation: Let F =
[1 0
1 1]. Apply the transform F⊗n (where ⊗n denotes the nth

Kronecker power) to a block of N = 2n bits and transmit the
output through independent copies of a symmetric BDMC, call
it W . As n grows large, the channels seen by individual bits
(suitably defined in [1]) start polarizing: they approach either
a noiseless channel or a pure-noise channel, where the fraction
of channels becoming noiseless is close to the capacity I(W).
The channel polarization phenomenon suggests to use the
noiseless channels for transmitting information while fixing
the symbols transmitted through the noisy ones to a value
known both to the sender as well as the receiver. For symmetric
channels we can assume without loss of generality that the
fixed positions are set to 0. Since the fraction of channels
becoming noiseless tends to I(W), this scheme achieves the
capacity of the channel. In the following, let ū denote the

2

u1

u7

u3

u5

u2

u8

u4

u6

x1

x4

x3

x2

x5

x8

x7

x6

Fig. 1. Normal realization of the encoding graph for N = 8. An example
of the stopping set is shown with white variable and check nodes.

vector (u1, ..., uN) of input bits and x̄ denote the vector
(x1, ..., xN) of coded bits. We also represent the channel
output vector by ȳ = (y1, ..., yN).

The code is defined through its generator matrix as follows.
Compute the Kronecker product F⊗n. This gives a 2n × 2n

matrix. The generator matrix of polar codes is a sub-matrix of
F⊗n in which only a fraction of rows of F⊗n are present. An
equivalent way of expressing this is to say that the codewords
are of the form x̄ = ūF⊗n, where the components ui of
ū corresponding to the ”frozen bits” are fixed to 0 and the
remaining components contain the ”information”. Information
bits, according to [1], are chosen to be the ones corresponding
to the best (least noisy) polarized channels.

A Successive Cancelation (SC) decoding scheme is em-
ployed in [1] to prove the capacity-achieving property of
the code. However, [3] and [4] later proposed using belief
propagation decoding to obtain better BER performance while
keeping the decoding complexity at O(N log N). Belief propa-
gation can be run on the normal representation of the encoding
graph [3]. Such a representation is easily obtained by adding
check nodes to the encoding graph of polar codes, as it is
shown in Fig. 1 for a code of length 8. We sometimes refer
to this graph as the ”tanner graph” of the code. Note that the
graph is formed of columns of variable nodes and check nodes.
In the tanner graph, each variable node v has a set of check
nodes as its neighbors, denoted by Cv . The check nodes in Cv

also have a set of variable nodes Vv as their neighbors from
which we exclude v. We refer to Vv as ”depth-2 neighborhood”
of v and we call the members of Vv ”depth-2 neighbors” of
v.

In this paper, we are particularly interested in the analysis
of ”stopping sets” in the tanner graph of the polar code, as
an important cause of the decoding failure and error floor
[20]. A stopping set is a set of variable nodes such that every
neighboring check node of the set is connected to at least
two variable nodes in the set. Fig. 1 shows an example of
the stopping set in the polar codes’graph. It is easy to see

that if all the variable nodes in a stopping set are erased,
then non of them can be decoded in belief propagation. On
the other hand, if any of the variable nodes in a stopping
set is decoded then all of them can be decoded [20]. As a
result, the probability of decoding error is closely related to the
probability of having a stopping set with erased variable nodes.
Since the stopping set with the minimum number of variable
nodes, called ”minimal stopping set”, is more probable to
be erased than larger stopping sets, it plays the dominant
role in the error probability. Therefore, in code design, codes
with large minimal stopping sets are desired. Here, we study
the minimal stopping set of polar codes and its size, called
”stopping distance”.

III. STOPPING SET ANALYSIS OF POLAR CODES

We first consider the problem of minimal stopping set given
the set of information bits. The results of this analysis may
also help finding the optimal rule of choosing information bits
(rows of the generator matrix) to minimize the BER in belief
propagation. One of the eminent stopping sets are the trees
rooted at the information bits (on the left side of graph) with
leaves at the code bits (on the right side of graph). An example
of such stopping sets is shown in Fig. 1 with black variable and
check nodes. We refer to such a tree as the ”stopping tree” of
an information bit. A stopping tree with the minimum number
of variable nodes on it is called a minimal stopping tree. We
refer to the set of leaf nodes of a stopping tree as the ”leaf
set” of the tree. We now find the relation between the minimal
stopping tree and the minimal stopping set. First we state the
following lemma.

Lemma 1: Any stopping set in the tanner graph of a po-
lar code includes variable nodes and check nodes from all
columns of the graph. In particular, any stoping set includes
at least one information bit and one code bit.

Proof: First, note that we only have degree 2 and 3 check
nodes in the graph. Also note that the graph is formed of Z-
shaped parts, as it can be seen in Fig. 1. In every Z-shaped
part there are two check nodes, one at the top and one at the
bottom. The top check node is always of degree 3 and the
bottom one is always of degree 2. We show that if a stopping
set includes either of these check nodes in a column of the
graph, then it must include check nodes and variable nodes
from both right side and left side columns of that specific
column. Therefore, any stopping set includes variable nodes
and check nodes from all the columns of the graph including
both ends.

We consider two cases. If the bottom check node is in the
stopping set, then both of its neighboring variable nodes must
be in the set since each check node in the set is connected to at
least two variable nodes. Since all the check nodes connected
to a variable node in the stopping set are also in the set,
this means that some of the check nodes in the left and right
columns of the considered Z-shaped part are in the set as well.
In the second case, if the upper check node (of degree 3) is
in the stopping set, then its neighbors in the stopping set are
either a variable node at its right and one at its left, or two
variable nodes at its left, one at the top and one at the bottom

3

of the Z. In the former case, the set clearly includes nodes
from the left and right columns. In the later case, the bottom
variable node has the bottom check node as its neighbor in
the set, leading to the same situation as we discussed above.

A key observation in the tanner graph of a polar code of
length 2m+1 is that it is formed of two tanner graphs for
N = 2m as its upper and lower halves, connected together
via an additional column of check and variable nodes in the
left. The following lemma employs this observation to find the
structure of the stopping sets.

Lemma 2: Any stopping set in the tanner graph of a polar
code of length 2m+1 is formed of at least one stopping set
in the upper or lower half subgraphs of N = 2m, and some
variable and check nodes in the leftmost column.

Proof: Lemma 1 implies that any stopping set for
N = 2m+1 includes at least one information bit. Assume
such a stopping set and remove the information bits and
their neighboring check nodes from the graph. This leaves us
with two disconnected sets of nodes in the upper and lower
subgraphs, each of them corresponding to a code of length
N = 2m. We denote these two sets by Sup and Slow. However,
the removed information nodes in the left were connected to
the rest of the graph only through the set of check nodes in the
leftmost column, which are now removed. Thus, if the variable
nodes and check nodes in Sup and Slow were satisfying the
conditions of a stopping set before, they are still satisfying
those conditions. Therefore, for any stopping set in the graph
of N = 2m+1, the induced subsets in the upper and lower
halves are also stopping sets for the graph of N = 2m.

Theorem 1: The minimal stopping tree in the tanner graph
of a polar code is a minimal stopping set.

Proof: We provide a constructive proof in which we
inductively find the minimal stopping set for a code of length
2m+1 based on the minimal stoping set of a code of length
2m. First consider the tanner graph for N = 2. The minimal
stopping set for this code is clearly a stopping tree. The
minimal stopping set for N = 4 can also be obtained easily
as a stopping tree.

Now we use the induction. Assuming that given the infor-
mation bits the minimal stopping set for N = 2m is a stopping
tree, we show that the same argument is true for N = 2m+1.
Based on Lemma 1, we know that the minimal stopping
set includes at least one information bit. In our graph, we
will probably have information bits in both halves. Note that
information bits in the upper and lower halves are connected to
one and two check nodes, respectively. Since each check node
has only one variable node in its right neighborhood, every
information bit in the upper and lower halves has, respectively,
one or two variable nodes in its neighborhood of depth 2.
Therefore, for every information bit in the upper half we can
find a stopping tree formed of the information bit itself, its
neighboring check node, and the stopping tree for its depth-2
neighboring variable node. Among all such stopping trees, we
denote the one with minimum number of variable nodes by
Tup

min. For the lower half information bits, we can do the same
thing, this time by including both depth-2 neighboring variable
nodes and their stopping trees. Among all such stopping trees,

we denote the one with minimum number of variable nodes
by T low

min.
We find the smaller tree between Tup

min and T low
min and call

it Tmin. We show that Tmin is the minimal stopping set for
N = 2m+1. First note that the minimality of our choice for
the stopping trees of depth-2 variable nodes is justified by
Lemma 2 and the induction hypothesis. Now, assume that
Tmin is not minimal and there is another subgraph T ′min

smaller than Tmin. T ′min includes either one or more than
one information bits. In the former case, clearly T ′min cannot
have better variable nodes than Tmin in the second column;
here from better we mean variable nodes with smaller stopping
trees. In the case of having more than one information bits, for
T ′min to be smaller, it needs to have fewer variable nodes than
Tmin in the rest of the graph, i.e. from the second column
to the rightmost column. This cannot happen because T ′min

includes either less or more than two variable nodes in the
second column. In the former case, those variable nodes cannot
lead to smaller stopping sets in their half compared to our
choice in Tmin. In the later case, those variables nodes lead to
more than one stopping tree or non-tree stopping sets in their
half, which is not optimal based on the induction hypothesis.
Thus, Tmin is the minimal stopping set.

Now, we need to find the information bit with the minimal
corresponding tree. Below, we show that the size of the
stopping tree for any information bit can be obtained using
the corresponding row in the generator matrix. We denote the
number of variable nodes in the stopping tree of an information
bit u by Nvar(u). We also denote the row in the generator
matrix assigned to an information bit u by c̄u = [cu

1 cu
2 ... cu

N].
Note that we have log N +1 columns of variable nodes in any
stopping tree. Let us show the number of variable nodes in
column j of such a tree by vu

j . Then, based on the structure
of the tanner graph and its relation to the generator matrix, it
can be verified that

vu
j =

∑

{i=1,...,N |mod(i−1, N

2j)=0}
cu
i , (1)

where mod (i−1, N
2j) is the reminder of the division of i−1

by N
2j .

Theorem 2: The size of the minimal stopping set is

min
all information bits

Nvar(u) =

min
all information bits

n∑

j=0

∑

{i=1,...,N |mod(i−1, N

2j)=0}
cu
i .

(2)
Proof: Using (1), the number of variable nodes in the

corresponding tree of any information bit u can be obtained
from the corresponding row in the generator matrix as

Nvar(u) =
n∑

j=0

∑

i:mod(i−1, N

2j)=0

cu
i . (3)

The minimal stopping set is the tree corresponding to the
information bit with minimum Nvar(u) as in (3).

4

We now show the relation between the stopping distance
and the minimum distance of polar codes.

Theorem 3: The stopping distance of a polar code defined
on a normal realization graph such as the one in Fig. 1 is at
least equal to the minimum distance of the code, dmin.

Proof: The size of the leaf set for any stopping tree is
in fact equal to the weight of the corresponding row in the
generator matrix. According to [4], the minimum distance of
the code is equal to the minimum weight of the rows in the
generator matrix. Thus, the size of the minimal leaf set among
all the stopping trees is equal to dmin. This implies that the
size of leaf set in the minimal stopping tree is at least equal
to dmin. Since such a tree has some other variable nodes in
addition to the ones in its leaf set, the stopping distance will
be at least as large as the minimum distance of code. In fact,
since the number of variable nodes in each column of the tree
either remains the same or gets doubled in the next column,
the number of variable nodes in the minimal stopping tree is
at least dmin + dmin

2 + ... + dmin

2blog2
√

Nc = Ω(dmin).
Based on the Theorem 3, the number of erased code bits

in the minimal stopping set grows asymptotically as fast
as the minimum distance. Although the code graph here
includes N log N variable nodes instead of N variable nodes,
Theorem 3 can be interpreted as a positive result, particularly
compared to the capacity approaching LDPC codes for which
the stopping distance is fairly small in comparison to the block
length [21]–[23].

The above analysis was based on the assumption of knowing
the set of information bits. However, it is not always easy to
find the information set in polar codes especially with large
code lengths. Thus, we are interested in finding the stopping
distance regardless of a specific choice of the information set.
The following theorem asserts that with a slight modification
of a polar code in hand, we can obtain a new code with a
stopping distance larger than

√
N , regardless of the selection

of information set.
Theorem 4: In the tanner graph of a polar code of length

N , the number of input bits ui for which Nvar(ui) is less
than N ε, 0 < ε < 1

2 , is less than NH(ε). Thus, they make a
vanishing fraction of total input bits as N →∞.

Proof: In the matrix F⊗n, there are
(
n
i

)
rows with weight

2i [4]. This means that in the tanner graph of a polar code,
there are

(
n
i

)
stopping trees with a leaf set of size 2i. Thus

the corresponding tree of these input bits is at least of size 2i.
As a result, the number of input bits with less than 2εn = N ε

variable nodes in their tree is less than
∑εn

i=0

(
n
i

)
, which is

itself upper-bounded by 2H(ε)n = NH(ε) for 0 < ε < 1
2 .

Since 0 < ε < 1
2 , we have H(ε) < 1 and NH(ε)

N would be
vanishing as N →∞.
The above theorem implies that regardless of the choice of
information bits, we can always replace a vanishing fraction
of information bits with some fixed bits that have larger trees,
and obtain a code with a stopping distance larger than

√
N .

The next theorem asserts that such a replacement does not
effectively change the BER performance of polar codes under
BP.

Theorem 5: In the tanner graph of a polar code, if we
replace a vanishing number of information bits by some fixed

bits, the overall error probability under BP does not change
asymptotically.

Proof: First note that the tanner graph of polar codes is a
sparse graph where the maximum degree of a variable node is
3. Suppose that we replace a fraction α(N) of the information
bits with fixed bits, where α(N) is vanishing by N , i.e.
α(N) = o(N). We first find out how many of the remaining
information bits will be affected by this replacement. We
consider the expanded version of the polar code’s graph up
to a neighborhood of depth l, where l is actually the number
of iterations in BP and is finite. The number of information
bits in this neighborhood is at most 3lα(N) which is itself
vanishing with N . The overall BER is the average of BER
over the affected and unaffected information bits as follows

Pe =
∑

affected info bits Pe(ui) +
∑

unaffected info bits Pe(ui)
R×N

=
o(N)P a

e + [RN − o(N)]Pu
e

R×N
= o(1)P a

e + [1− o(1)]Pu
e → Pu

e ,

where P a
e and Pu

e are, respectively, the average BER of
affected and unaffected information bits.

The above theorem along with Theorem 4 implies that if
we replace the unwanted information bits in the information
set (which are of a vanishing number with N) by information
bits with larger trees, we can expect to still achieve about
the same BER performance. This is not generally true for SC
where replacing only a few bits can deteriorate the BER in
the finite lengths. Fig. 2 shows the effect of such replacement
in both SC and BP. The figure presents the simulation result
for a code of rate 1

2 and length 213, for which 29 information
bits are randomly selected and replaced by randomly selected
fixed bits. However, for a fair comparison, the same set
of information and fixed bits are chosen for both decoding
schemes. As it can be seen, BP is less sensitive to the exact
choice of the information bits which can be actually difficult
for polar codes in the case of BSC, gaussian, and many other
practical channels.

A. Simulation Results for Error Floor

Here, we show the simulation results obtained for error floor
performance of polar codes over binary erasure and gaussian
channels. Fig. 3(a) shows the simulation results for a code of
length 215 and rate 1/2 over BEC. As it can be seen, no error
floor emerges down to BERs of 10−11. This is consistent with
the relatively large stopping distance of polar codes which
we conjecture to grow as O(

√
N). Fig. 3(b) also shows the

simulation results for a rate 1
2 polar code of length 213. The

figure shows no sign of error floor down to the BERs of 10−9.

B. Girth of Polar Codes

Here, we discuss the girth of the tanner graph for polar
codes. The girth of a graph is the length of shortest cycle
contained in the graph. When decoded by belief propagation,
the external information at every variable node remains un-
correlated until the iteration reaches its girth. We are often
interested in constructing large girth codes that can achieve

5

0.29 0.3 0.31 0.32 0.33 0.34 0.35
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

P
B

BP, Original Code

SC, Original Code

BP, Deteriorated Code

SC, Deteriorated Code

Fig. 2. Performance comparison of BP and SC when 29 information bits
are replaced by fixed bits in a code of length 213 and rate 1

2
.

0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

B
E

R

(a) BER for BP decoding over BEC. The code-length and code-rate are 215

and 1/2, respectively.

2 2.2 2.4 2.6 2.8 3 3.2 3.4
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

SNR (dB)

B
E

R

(b) BER for BP decoding over gaussian channel. The code-length and code-
rate are 213 and 1/2, respectively.

Fig. 3. BER performance of polar codes over the binary erasure and gaussian
channels.

u1

u7

u3

u5

u2

u8

u4

u6

x1

x4

x3

x2

x5

x8

x7

x6

Fig. 4. Different types of cycles in the tanner graph of polar codes for
N = 8. Thick solid and dashed lines show the first and second types of
cycles, respectively.

high performance under belief propagation decoding. As it
can be seen in the tanner graph shown in Figure 4, there exist
two types of cycles: first, the cycles including nodes only from
one of the top or bottom part of the graph (shown by thick
solid lines), and second, the cycles including nodes from both
top and bottom parts of our symmetric graph (shown by thick
dashed lines). The first type of cycles have the same shape in
both upper and lower halves of the graph. The interesting fact
about the cycles is that because the graph for a code of length
2m is contained in the graph of a code of length 2m+1, all
the cycles of the shorter code are also present in the graph of
the longer code. The shortest cycle appears in the graph of a
length-4 polar code, a cycle of size 12, including 6 variable
nodes and 6 check nodes as it is shown in Fig. 4. On the
other hand, it can be checked that the second type of cycles
mentioned above actually follows the same skeleton as the
code length, and so the size of graph, becomes larger. The
minimum size of this type of cycles is also 12 and is related
to the length-8 code (dotted lines in Fig. 4). Thus, based on
the above, the girth of a polar code is 12. This can be seen as
a natural advantage of polar codes over LDPC codes. In fact, a
girth of 12 or more is considered so desirable for LDPC codes
that many techniques have been proposed in the literature to
guarantee such girths (see for example [24] and references
therein).

IV. IMPROVED DECODING USING GUESSING ALGORITHM

Fig. 5 provides a comparison between the bit error rate
performance of BP and maximum likelihood (ML) decoding
for polar codes over a BEC. As it can be seen, ML decoding
lead to error rates as large as four orders of magnitude
better than the BP. This, along with relatively poor error rate
performance of finite-length polar codes compared to LDPC
codes, motivates us to find modifications to BP in order to
improve its performance. Since LDPC uses belief propaga-
tion decoding, there have been various methods proposed to

6

0.3 0.31 0.32 0.33 0.34 0.35
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

P
B

BP

MAP

Fig. 5. BER comparison of BP and MAP for a polar code of length 210

and rate 1/2 over the binary erasure channel.

improve the BER performance of belief propagation in LDPC
codes. Many of those ideas can be used for polar codes with a
slight modification. However, as we have seen in the previous
section, polar codes do not show error floor, benefiting from
a large stopping distance and a relatively large girth. One
of the schemes proved to be helpful for codes with such
characteristics is to use guessing algorithms alongside BP [18].
The key idea is the following observation. Consider a BEC
with an erasure probability ε and a polar code of finite length
N that has a small enough error probability. If the message-
passing decoder fails to decode a received word completely,
then there exists a few (usually less than or equal to 3 bits)
undecoded bits such that if their values are exposed to the
decoder, then the decoder can finish the decoding successfully.
Note that this is true only when the BER is small enough (for
example, less than 10−2). Simulations and intuitive arguments
strongly confirm the above statement.

In message passing algorithm basically, if the values of
all but one of the variable nodes connected to a check node
are known, the missing variable bit is set to the XOR of the
other variable nodes and the check node is labeled ”finished”.
Message passing continues this procedure until all check
nodes are labeled as finished or the decoding cannot continue
further. Let us call this ”algorithm A”. We now explain a
modified message passing algorithm which we call ”algorithm
B”. This algorithm continues the decoding when algorithm
A fails to decode the received codeword. It chooses one of
the unknown variable nodes, say w1, and guesses its value
(for example, by setting its value to zero). Intuitively, an
appropriate scheme is to choose wj that guessing its value
frees as many as unknown variable nodes. In polar codes,
since all variable nodes are degree 2 or 3, we choose variable
nodes of degree 3 to guess their values. Then the algorithm
continues to label the check nodes as in algorithm A with
one more option. If all the variable nodes connected to the
check node are known, then if the check node is satisfied it
labels that check node ”finished,” otherwise the check node
is labeled ”contradicted.” The procedure is done sequentially

and the algorithm continues to run until either all check nodes
are labeled or the decoding cannot continue further.

Once the above procedure is finished, if all of the check
nodes are labeled and none of them is labeled ”contradicted,”
the decoder outputs the resulting word as the decoded word.
If all of the check nodes are labeled but some of them are
labeled ”contradicted,” then it changes the value of w1, the
guessed variable node, and repeats the decoding from there.
This time the decoding finishes successfully because we have
found the actual value of w1. But if the decoding stops again
(i.e. some of the check nodes are not labeled) we have to
choose another unknown variable node w2 and guess its value
to continue the decoding. Again, if some check nodes are
labeled as ”contradicted,” we have to go back and try other
values for w1 and w2. Obviously, Algorithm B is efficient only
if the number of guesses is very small.

Algorithm B has a complexity that grows exponentially with
the number of guesses. An improved algorithm called algo-
rithm C was proposed in [18] to address this problem. Here
we explain the basic idea of this algorithm. Let w1, w2, ..., wg

be the variable nodes that we guess and x1, x2, ..., xg be their
values. In general, any variable node that is determined after
the first guess can be represented as a0⊕ a1x1⊕ a2x2⊕ ...⊕
agxg, where aj ∈ {0,+1}. Algorithm C uses this parametric
representation of the variable nodes to solve the set of equa-
tions obtained at the satisfied check nodes. This way, it finds
the values of x1, x2, ..., xg and hence, the unknown variable
nodes. It can be shown that this algorithm has complexity
O(g2

maxN) where gmax is the maximum number of guesses
[18]. We refer the reader to [18] for more details on this
algorithm. Algorithm B can also be modified slightly to be
used for the gaussian channel [19]. Since the basic idea is the
same as the erasure channel, we omit the detailed discussion
of this case here. We will show the simulation results for both
cases in the next section.

A. Simulation Results

Fig. 6(a) shows the simulation results for BER over BEC,
where Algorithm C is compared to algorithm A. Note that
Algorithms B and C show almost the same BERs. We have run
our simulations for a rate 1/2 polar code of length 213 while
we set gmax to 6. As it can be seen in the figure, Algorithm
C shows two orders of magnitude improvement in BER over
Algorithm A. We also observed that the average running time
of Algorithm C was about 1.04 times of Algorithm A. The
average number of guesses is 3.07 when ε = 0.32. Fig.
6(b) shows the simulation results for employing the guessing
algorithm in the gaussian channel. The code we are using is
of length 213 and has a rate of 1

2 . The maximum number of
guesses gmax is set to 6. As it can be seen, there is about 0.3
dB improvement in the BER of 2× 10−6.

V. CONCLUSION

We studied the BER performance of polar codes under
belief propagation decoding. We analyzed the stopping sets in
the tanner graph of polar codes as one of the main contributors
to the decoding failure and error floor. We obtained the

7

0.29 0.3 0.31 0.32 0.33 0.34 0.35
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

B
E

R
Algorithm A

Algorithm C

(a) BER performance of BP with guessing algorithm for decoding over BEC.
Code length is 213 and code rate is 1/2. gmax is set to 6.

1.6 1.8 2 2.2 2.4 2.6
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

SNR (dB)

B
E

R

BER without guessing

BER with guessing

(b) BER performance of BP with guessing algorithm for decoding over the
gaussian channel. Code length is 213 and code rate is 1/2. gmax is set to 6.

Fig. 6. BER performance of BP with guessing algorithm over the binary
erasure and gaussian channels.

minimal stopping set and its size. We then investigated the
error floor performance of polar codes through simulations
where no sign of error floor was observed down to BERs
of 10−11. Motivated by the good error floor performance, we
investigated the application of a guessing algorithm to improve
the performance of BP decoding. Our simulations showed that
using such a modified version of BP decoding can result in
up to 2 orders of magnitude improvement in BER.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions o Information Theory, vol. 55, pp. 3051–3073, July 2009.

[2] E. Arikan, “Source polarization,” in IEEE International Symposium on
Information Theory (ISIT), June 2010.

[3] E. Arikan, “A performance comparison of polar codes and reed-muller
codes,” IEEE Communications Letters, vol. 12, no. 6, pp. 447 – 449,
2008.

[4] N. Hussami, S. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in IEEE International Sympousiom on
Information Theory (ISIT), 2009.

[5] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in IEEE International
Sympousiom on Information Theory (ISIT), pp. 1496 – 1500, 2009.

[6] S. Hassani, S. Korada, and R. Urbanke, “The compound capacity of
polar codes,” in 47th Annual Allerton Conference on Communication,
Control, and Computing, pp. 16–21, 2009.

[7] S. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characterization of
exponent, bounds, and constructions,” in IEEE International Symposium
on Information Theory (ISIT), pp. 1483 – 1487, 2009.

[8] S. Korada and R. Urbanke, “Polar codes are optimal for lossy source
coding,” IEEE Transactions on Information Theory, vol. 56, no. 4,
pp. 1751 – 1768, 2010.

[9] E. Sasoglu, E. Telatar, and E. Arikan, “Polarization for arbitrary discrete
memoryless channels,” in IEEE Information Theory Workshop (ITW),
pp. 144 – 148, 2009.

[10] S. Hassani and R. Urbanke, “On the scaling of polar codes: The behavior
of polarized channels,” in IEEE International Symposium on Information
Theory (ISIT), June 2010.

[11] S. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An emprical
scaling law for polar codes,” in IEEE International Symposium on
Information Theory (ISIT), June 2010.

[12] T. Tanaka and R. Mori, “Refined rate of channel polarization,” in IEEE
International Symposium on Information Theory (ISIT), June 2010.

[13] R. Muri and T. Tanaka, “Channel polarization on q-ary discrete memo-
ryless channels by atbitrary kernels,” in IEEE International Symposium
on Information Theory (ISIT), June 2010.

[14] H. Cornie and S. Korada, “Lossless source coding with polar codes,”
in IEEE International Symposium on Information Theory (ISIT), June
2010.

[15] M. Karzand and E. Telatar, “Polar codes for q-ary source coding,” in
IEEE International Symposium on Information Theory (ISIT), June 2010.

[16] H. Mahdavifar and A. Vardy, “Achieving the secrecy capaity of wiretap
channels using polar codes,” in IEEE International Symposium on
Information Theory (ISIT), June 2010.

[17] M. Bakshi, S. Jaggi, and M. Effros, “Concatenated polar codes,” in IEEE
International Symposium on Information Theory (ISIT), June 2010.

[18] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check
codes on the binary erasure channel,” IEEE Trans. Inform. Theory,
vol. 50, pp. 439–454, 2004.

[19] H. Pishro-Nik and F. Fekri, “Results on punctured low-density parity-
check codes and improved iterative decoding techniques,” IEEE Trans.
on Inform. Theory, vol. 53, pp. 599–614, February 2007.

[20] C. Di, D. Proietti, I. E. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1570 –1579, 2002.

[21] C. Di, T. J. Richardson, and R. L. Urbanke, “Weight distribution of low-
density parity-check codes,” IEEE Transactions on Information Theory,
vol. 52, no. 11, pp. 4839 – 4855, 2006.

[22] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution
of ldpc code ensembles,” IEEE Transactions on Information Theory,
vol. 51, no. 3, pp. 929 – 953, 2005.

[23] A. Orlitsky, R. Urbanket, K.Viswanathan, and J. Zhang, “Stopping sets
and the girth of tanner graphs,” in IEEE International Symposium on
Information Theory (ISIT), June 2002.

[24] M. Esmaeili and M. Gholami, “Geometrically-structured maximum-girth
ldpc block and convolutional codes,” IEEE Journal on Selected Areas
in Communications, vol. 27, no. 6, pp. 831–845, 2009.

