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Recently, the IntelliDrive initiative has been proposed by the US Department of Transportation (USDOT) to enhance on-road
safety and efficiency. In this study, we provide a mathematical framework which predicts the effect of such technologies on the
efficiency of multilane highway systems prior to their real-life deployment. Our study shall encompass mixed traffic conditions in
which a variety of assisted, automated and unequipped vehicles coexist. We show that intervehicular communications improves
the flow of vehicles by reducing the perception-reaction (P-R) times of drivers and, in some cases, allowing for more efficient
lane-changing operations. As we shall see, unlike the latter, the former effect of IntelliDrive on driver P-R time is always there,
regardless of the specific traffic conditions.

1. Introduction

With the ever increasing production of vehicles and their
inevitable role in everyday life, transportation systems are
drawing the attention of industry and academia more than
any other time. Despite the undeniable beneficial aspects
of transportation systems, there are numerous factors by
which they impair our everyday life. Without any doubt,
many of us have experienced being trapped in heavy traffic,
wasting our time and energy resources. Traffic congestion
wastes 40 percent of travel time on average, unnecessarily
consumes about 2.3 billion gallons of fuel per year, and
adversely impact the environment [1]. More importantly,
traffic accidents are held responsible for a good portion
of death causes. Annually, more than 40,000 people are
killed and much more injured in highway traffic accidents
in the United States alone [2]. IntelliDrive [3]—formerly
known as Vehicle Infrastructure Integration (VII)—a major
initiative at the United States Department of Transportation
(USDOT), proposes to use Dedicated Short Range Commu-
nications (DSRCs) to establish vehicle-vehicle and vehicle-
roadside communications to deliver timely information to

save lives, reduce congestion, and improve quality of life. The
network of communicating vehicles forms a Vehicular Ad-
Hoc Network (VANET) on roads. VANET is an emerging
area, and due to the potentially dramatic improvements it
renders in terms of safety, highway efficiency, and driver
convenience, has attracted attention from both academia and
industry in the US, EU, and Japan. The most important
feature of VANETs is their ability to extend the horizon
of drivers and on-board devices and thus to improve road
traffic safety, efficiency, and comfort. VANET will enable a
wide range of novel applications such as accident avoidance
messaging, congestion sensing, ramp metering, and general
information services [4–6]. The allocation of 75 MHz in the
5.9 GHz band for DSRC may also enable future delivery of
rich media content to vehicles at short to medium ranges via
both intervehicle and roadside-vehicle communications.

In the near future, a traffic stream may consist of
mixed vehicles operated under different driving modes:
a vehicle may be operated without IntelliDrive assistance
“unequipped”, by a human driver with IntelliDrive assistance
“assisted” or by an IntelliDrive-enabled automated system
which is itself in charge of driving “automated”. The
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IntelliDrive Initiative envisions that each future vehicle will
be equipped with an On-Board Equipment (OBE) which
includes a DSRC transceiver, a Global Positioning System
(GPS) receiver, a processing unit, and possibly appropriate
sensing accessories. Also equipped with similar devices,
RoadSide Equipment (RSE) will be deployed at selected
roadside locations. Therefore, vehicles will be able to com-
municate with each other and with the roadside by means of
DSRC. As a result, assisted drivers will be able to respond to
their driving environment earlier, that is, shorter Perception-
Reaction (P-R) times than drivers without IntelliDrive
assistance. Here, relevant information of a vehicle such as
its location, speed, and acceleration are transmitted via its
DSRC radio to its surrounding vehicles. The payload size
of such a status packet is in the order of a (few) hundred
bytes for ordinary safety applications [5]. This packet is
sent with a frequency equivalent to the GPS update rate
(1–10 Hz). However, the packet throughput relies on the
total number of nodes and the physical characteristics of
the wireless channel. With this setting, a vehicle that has a
sufficient amount of information regarding its surroundings
is typically informed about a specific traffic condition much
sooner. Hence, it takes it less time to perceive its leader
vehicle’s sudden braking when that happens. Also, as the
attention of assisted drivers has already been drawn to the
condition before the driver is needed to react, the variance
in his or her perception time (and hence the variance of P-
R time) is much lower than drivers of unequipped vehicles.
The above observation is supported by [7] which notes that
the most important variable that affects driver P-R time is
driver expectation which can affect the P-R time by a factor of
2. There, the author concludes that an unexpected event can
increase both the perception and reaction time of the driver.
In addition, evidence in the psychology literature indicates
that P-R time strongly depends on the type and intensity of
stimulus [8]. Since IntelliDrive-enabled systems constitute a
new type of stimulus with high intensity that help increase
driver expectation, such systems are likely to shorten drivers’
P-R times. In addition to assisted vehicles, partially or fully
automated driving systems will be devised to further reduce
the P-R time and hence the variation in responses. Here, as a
control unit within the vehicle is in charge of the driving task,
the variance in P-R time is essentially zero. This is because
there is no human factor involved in this case. The mean
of P-R time, however, is at its worst equal to the interval
between the reception of two subsequent status packets from
neighboring vehicles. Hence, the mean is dependent on the
communications capacity within the network of vehicles and
relies on different factors such as the number of nodes but is
in general much less than the mean of the P-R time of assisted
vehicles in the vast majority of traffic scenarios. As we shall
see, lower P-R time would enable the assisted and automated
vehicles to decrease their distance with their leaders without
decreasing their speeds. This would lead to more compact
clusters which consequently means higher flow of vehicles
on the highway. IntelliDrive could also be utilized to help
a vehicle perform more efficient lane-changing maneuvers.
As we shall see, a lane change, which might at first seem
unlikely for a driver, could be made possible with the help of

IntelliDrive. However, unlike its effect on driver P-R time, the
effect of IntelliDrive on lane-changing is highly dependent on
the specific traffic conditions.

In this paper, we propose a mathematical framework
which can be used to foresee the effect of the gradual
deployment of IntelliDrive-enabled vehicles on the efficiency
of transportation systems. As a first step, we develop an
appropriate mobility model which shall serve our analysis
throughout the paper. For the base case of a single-lane
highway, mathematical modeling of vehicle clusters is pro-
vided. To make the analysis more realistic, the modeling is
generalized to multilane highways next. Appropriate lane-
changing mechanisms are also discussed in the framework.
With the mobility model in hand, we then proceed to derive
mathematical expressions to address the effect of IntelliDrive
on vehicular flow under mixed traffic conditions.

2. Related Work

The current literature on the safety and efficiency of
vehicular networks contains studies conducted within both
wireless communications and transportation societies. It
has long been established that car clustering (platooning)
in automated highways increases the highway capacity [9].
This is accomplished by automated vehicles following each
other very closely at highway speeds and without increasing
the risk of a collision [10, 11]. Real-world experiments in
this prospect have validated the increase in capacity [12].
However, stable clusters are viable only under a certain
degree of intervehicle communications [13]. The safety and
efficiency of manual and automated highways have been
compared in [14]. There, automated highways with different
levels of cooperation between individual vehicles and also
platoon-based systems have been considered. Currently, due
to practical and deployment cost considerations, the trend
has moved from fully automated to driver-assisted vehicles.
USDOT’s IntelliDrive initiative is a pioneer in this prospect.
The effect of driver-assisting technologies such as cruise
control on vehicular traffic flow has been addressed in [15,
16]. In Adaptive Cruise Control (ACC) systems, the main
objective is to safely increase driver comfort rather than
improving highway capacity. The global impact of ACC on
the safety of highways is studied in [17]. In that study,
the effect of ACC on traffic flow capacity is considered a
secondary issue. In [18], Tampere et al. prove that the time
gap and driver relaxation times have the greatest effect on
traffic stability. Based on this, they propose that any driver
assistance system that intends to improve traffic stability
should aim at influencing these parameters. Despite all this,
there is a lack of a study that specifically addresses the effect
of IntelliDrive on traffic flow efficiency.

Within the wireless communications society, specific
characteristics of VANETs such as its highly dynamic topol-
ogy, delay-sensitive applications, and constrained deploy-
ment region have led to the outgrowth of an abundant
number of VANET-specific physical, MAC, and routing layer
schemes [4, 19, 20]. The authors have also addressed MAC
and network layer issues for urban deployments of VANETs
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[21]. The goal in most of these schemes is to establish reliable
point-to-point communications between vehicles to achieve
safety goals such as intersection collision warning. To the best
of the authors’ knowledge, there has little been done, if any,
to study the effect of communications on traffic flow capacity
and stability.

3. System Modelling and Preliminaries

3.1. Mobility Model: Vehicle Clustering. In this section, we
study how vehicle clusters form and evolve in a multi-lane
highway. Within a cluster, vehicles follow their leaders
according to a car-following model elaborated in the next
subsection. Furthermore, we shall see that the intervehicle
spacings within a cluster ought to be enough to ensure
a safe maneuver for the follower in case of the leaders
abrupt braking. This spacing is a function of driver P-R
time which is itself dependent on the level of IntelliDrive
market penetration rate. Here, we first show, through a
probabilistic analysis, how clusters are formed in a single
lane highway. The analysis is then extended to account for
multilane highways. As we shall later see, the beneficial effect
of IntelliDrive on the capacity of multi-lane highways is
not only because of its potential in reducing intervehicle
spacings, but also due to the advantages it renders in terms
of allowing for more efficient lane-changing operations.

3.1.1. Vehicle Clustering on a Single Lane. Consider a group
of N vehicles on a single-lane highway. Typically, each driver
has a desired speed which it chooses from a (truncated)
normal distribution [22, 23] within the range [VminVmax].
Clearly, if a vehicle’s desired speed is higher than at least
one of the cars preceding it, it will join the cluster ahead;
otherwise, it will trail back and form a new cluster. Hence, if
the vehicles are numbered from 1 to N from the beginning
to the end of the road, the ith vehicle would form a new
cluster with probability 1/i and join the cluster ahead with
probability (i − 1)/i. In what follows, we shall denote the
initial randomly chosen speed of vehicle i by vi and its
ultimate speed within cluster j by Vj . Note that all vehicles
within a cluster move with the same speed. Within a cluster,
a vehicle would leave a safety distance with its leader,
proactively avoiding collisions.

Figure 1 shows the clustering probabilities for up to 5
vehicles. The numbers on the branches separated by commas
show the length of the clusters, and the number in the
circle to which the branch ends is the probability of having
that specific clustering configuration. For example, the
branch labeled as (2, 2, and 1) represents the configuration
of having 2, 2 and 1 vehicles in the 1st, 2nd, and 3rd
clusters, respectively. As can be seen from the tree, this
happens with the probability of 1/40. The following example
illustrates how these probabilities are derived. Assume that
we have a (2,2) configuration. The 5th vehicle either joins
the cluster ahead with probability 4/5, hence arriving at
a (2,3) arrangement with probability 3/24 × 4/5 = 1/10,
or trails back with probability 1/5, resulting in the (2,2,1)
configuration with probability 3/24 × 1/5 = 1/40 (see

dotted section of Figure 1). By extending this tree for an
arbitrary number of vehicles, one can derive all the clustering
probabilities. In this sense, each cluster can be seen as a
kinematic wave [24] moving with the speed of its leader.

In what follows, we shall compute the average number of
the clusters. Let us define Xi as

Xi =
⎧
⎨

⎩

1 if the ith vehicle is a clusterhead,

0 otherwise.
(1)

With this definition, it can be seen that if C denotes the
mean number of clusters

C = E

⎡

⎣
N∑

i=1

Xi

⎤

⎦ =
N∑

i=1

E[Xi]

=
N∑

i=1

pi =
N∑

i=1

1
i
= 1 + ln(N)(1 + o(1)),

(2)

where pi = P(Xi = 1) and o(1) → 0 as N → ∞, where N is
the number of vehicles on the road.

3.1.2. Multilane Highway System. Here, we study the exten-
sion of the above scenario to multi-lane highways. Multi-lane
highways typically allow for a more dynamic environment
where vehicles with a high desired speed that are “stuck” in a
low-speed cluster of vehicles are allowed to change lanes and
join a higher-speed cluster on the other lane. As mentioned
before, a vehicle on a specific lane either moves with its
own desired speed (as a cluster head) or with the speed of
its predecessor, whichever is lower. However, in this case, if
the current speed of a vehicle within a cluster is lower than
its desired speed, it might have the chance to overtake this
cluster of vehicles and join a higher-speed one on the lane
to its left. To this end, assume vehicle i with the desired
speed vi resides in cluster m (and hence has speed Vm) when
cluster n on the lane to its left with speed Vn comes cruising
by. Here, vehicle i decides to make a lane change and join
cluster n if vi ≥ Vn > Vm. Once such a vehicle has made a
lane-change decision, it seeks an opportunity to merge into
the higher-speed lane by searching for a sizeable gap. Such
a gap-acceptance model works as follows. Consider cluster
n + 1 to immediately follow cluster n on the left lane. We
assume that in equilibrium conditions, the speed of a leading
cluster is larger than the trailing one (because otherwise they
would ultimately merge into a single cluster) in each lane.
This fact is well anticipated by our clustering model proposed
in Section 3.1.1. At the same time, we also assume that the
left lane clusters have higher speeds than all the ones on the
right lane. Hence, under these conditions, we have Vm <
Vn+1 < Vn. A valid gap-acceptance model should determine
the circumstances under which vehicle i is able to make a lane
change and join cluster n such that it collides with neither
the vehicles of cluster n nor those of cluster n + 1. Note that
after making a lane change and with an initial speed of Vm,
vehicle i would accelerate to reach its final speed, Vn. Since
Vm < Vn+1, it is during this period of time that the trailing
cluster n + 1 could collide with vehicle i. Assuming the worst
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Figure 1: Decision tree demonstrating clustering probabilities.

case where the vehicles in cluster n+ 1 do not decelerate (and
hence continue cruising with their previous speeds) upon
observing a leading lane changing vehicle, it can be verified
that the following condition ensures a safe lane-changing
maneuver for vehicle i:

sn,n+1 >
(Vn+1 −Vm)2 − (Vn −Vn+1)2

2ai
, (3)

where sn,n+1 is the spacing between clusters n and n + 1 at
the intended time of the lane change and ai denotes vehicle
i comfortable acceleration rate. The derivation of (3) is
elaborated in Appendix A.

A driver of a unequipped vehicle has to rely on his own
visual eyesight and estimate of the speed and spacing in order
to make a lane-change decision. Moreover, in the case where
it cannot see a possible trailing vehicle in the other lane in its
rear or side mirrors (e.g., when there is curvature in highway
trajectory or fluctuations in its elevation), it should account
for the worst case when a high-speed vehicle rapidly closes up
onto it once the lane change has been made. An IntelliDrive-
enabled vehicle, on the other hand, typically knows the exact

location and speed of a trailing vehicle on the destination
lane in case the latter is also assisted. Hence, the driver
does not have to assume for the worst case scenario and
further would not suffer from estimation deficiencies to miss
a potential lane-change opportunity. Here, we want to study
the effect of IntelliDrive on the average number of vehicles
that leave cluster m for the higher speed cluster n. In general,
this value is dependent on the relative speeds and the distance
between the leading and trailing clusters on the destined lane,
that is, even if all the vehicles in cluster m were IntelliDrive-
enabled, none of them could perform a lane change when
sn,n+1 does not satisfy (3). Hence, the effect of IntelliDrive on
the lane-change maneuvers entirely depends on the real-time
traffic conditions. Moreover, clusterm could belong to one of
the following categories with respect to cluster n:

(1) neither the equipped nor the unequipped vehicles
within it are able to join cluster n,

(2) only the equipped vehicles, based on the real time
information that they obtain, are able to join cluster
n,

(3) all vehicles, whether equipped or not, can complete
the lane-change maneuver and join cluster n.

The road topology along with the gap-acceptance equa-
tion (3) determines to which of the above classes does cluster
m belong. For an equipped vehicle, equation (3) suffices to
indicate whether a lane change is possible. For unequipped
vehicles, road topology plays a role as well, that is, if the road
topology is such that any trailing cluster is visible to the lane-
changing vehicle, it would deploy (3) to estimate whether
it could perform the lane change or not. If not, it should
assume that the trailing cluster has speed Vn+1 = Vmax and
resides at the furthest visible point from cluster n. For future
analysis, let Ymn = j if cluster m is category j ∈ {1, 2, 3} with
respect to cluster n.

To see how many vehicles leave cluster m for cluster n, we
define Xmn(i) as

Xmn(i) =
⎧
⎨

⎩

1 vehicle i in cluster m leaves for cluster n,

0 otherwise.
(4)

Note that Xmn(i) = 1 if vi ≥ Vn and otherwise vehicle
i stays in cluster m. With the above definition, Xmn =
∑Nm

i=1 Xmn(i) denotes the total number of departures from
cluster m for cluster n where Nm is the number of vehicles
within cluster m.

3.2. Mobility Model: Car Following. The spacing between
vehicles within a cluster should allow for a safe and comfort-
able declaration of the follower in case of the leader’s sudden
braking. As we shall see, this spacing is highly dependent on
the driver’s P-R time which is assumed to be a function of
IntelliDrive market penetration rate. Car following models
have long been studied by transportation engineers. Models
such as Pipes [25], General Motors (GM) [26, 27], and
Gipps [28] account for different car following behaviors.
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Our analysis adopts a variation of the Gipps’ model which
is rather conservative. In this model, vehicles allow for a
safety distance between themselves and their leading vehicle.
The safety distance should be such that in the event when
the leader (vehicle i − 1) applies a sudden brake and slows
down with maximum deceleration Bi−1, the follower (vehicle
i) should be able to safely stop behind it after going through
a P-R process and a deceleration process at a comfortable
rate bi (|bi| < |Bi|). If we denote by xi and vi the position
and speed of the ith vehicle, and by x∗i−1 and x∗i the stopping
position of the leader and follower, respectively, we shall have

x∗i−1 = xi−1(t)− v2
i−1(t)
2Bi−1

, (5)

x∗i = xi(t) + viτi − v2
i (t)
2bi

, (6)

where τi is driver i’s P-R time. Equation (6) is true because
the follower would go through a P-R time before applying the
brakes. To ensure safety, we must have x∗i−1−Li−1 ≥ x∗i where
Li−1 is the length of the (i − 1)th vehicle. Within a cluster,
where the two vehicles have the same speed v = vi = vi−1, we
have for the intervehicle spacing, Si

Si = xi−1 − xi ≥ τiv + Gv2 + L, (7)

where G = 1/2B − 1/2b and the subscripts for B, b,
and L have been dropped for simplicity. As evident from
(7), the stochastic properties of the intervehicle spacing is
solely dependent on the stochastic properties of driver P-R
time. As discussed before, a driver of an unequipped vehicle
on average goes through a longer P-R time in case of an
unexpected situation in comparison to an assisted vehicle
where the driver has been alerted (and hence his or her P-
R time reduced) via timely warning messages. In [7], the
author emphasizes that driver attention is a graded function.
Hence, the above two cases represent a graded continuum
rather than a dichotomy. Based on this and prior discussions,
we propose that the mean and the variance of drivers’ P-R
time is a decreasing linear function of IntelliDrive market
penetration rate, that is, the more the percentage of assisted
vehicles within a cluster, the lower is the mean and variance
of its drivers’ P-R times. Note that the linear relation is
considered for the convenience to expedite the mathematical
analysis and that other decreasing functions would yield
similar results of this paper. Moreover, if α denotes the
market penetration rate of assisted vehicles, we assume that
the driver P-R time, τ(α) has a truncated normal distribution
with (The normal distribution for driver P-R time is justified
in [7], noting that in reality it is mostly skewed towards larger
values.)

μτ(α) = α
(
μτ(α=1) − μτ(α=0)

)
+ μτ(α=0), (8)

σ2
τ(α) = α

(

σ2
τ(α=1) − σ2

τ(α=0)

)

+ σ2
τ(α=0), (9)

where μ and σ are the mean and variance of driver P-R time
with μτ(α=1) ≤ μτ(α=0) and σ2

τ(α=1) ≤ σ2
τ(α=0). This way, the

spacing between an assisted vehicle and its leader also follows

a truncated normal distribution with the same variance as in
(9) and mean an appropriately scaled and shifted version of
(8). The P-R time of unequipped vehicles is the same as when
α = 0 for assisted vehicles and the P-R time for automated
vehicles is deterministic (and equal to μτ(β)) as discussed
before. Figure 2 shows how the probability distributions of
driver’s P-R time varies with IntelliDrive market penetration.
As we shall see in the next section, the mean values for
driver P-R times suffice to compute the lower bounds on the
expected value of vehicular flow.

4. Effect of IntelliDrive on Highway Efficiency

In this section, we quantify the enhancements IntelliDrive
renders in terms of traffic flow efficiency. Moreover, we
mathematically explore the extent at which IntelliDrive can
increase the flow of vehicles on roads without increasing the
risk of collisions. As mentioned before, this is a result of the
drivers’ reduced P-R time which lets them maintain their
speed while reducing their spacing with the leading vehicle.
We shall also study how IntelliDrive can enhance lane-
change maneuvers in multilane highways. In what follows,
the term flow shall denote the number of vehicles that pass
an arbitrary point of the highway in unit time. In equilibrium
conditions, the following relation exists between traffic flow
characteristics, flow (q), density (k), and speed (v) [29]:

q = kv. (10)

As vehicles within a cluster move with the same speed,
equation (10) can be used as follows to derive the flow within
cluster i as:

qi = NiVi
∑Ni

j=1 Si j
, (11)

where Vi, Ni, and Si j are the speed, number of vehicles, and
intervehicle spacings in cluster i. Note that here, flow is a
probabilistic value as a result of the intervehicle spacings
being probabilistic due to (7). The following theorem
addresses its expected value.

Theorem 1. For a single cluster of Ni vehicles all moving with
the same speed Vi, the following holds for the flow of the cluster
when each vehicle within it is assisted with probability α and
automated with probability β:

E
[
qi
] ≥ Vi

c + aβ + bα2
(
1− β

) , (12)

where a = Vi(μτ(β) − μτ(α=0)), b = Vi(μτ(α=1) − μτ(α=0)), and
c = GV 2

i + μτ(α=0)Vi + L.

Proof. See Appendix B.

Notice that the lower bound is independent of the
number of vehicles within the cluster, Ni. We shall later see
that the lower bound is also quite tight. Figure 3 depicts the
enhancement in flow due to IntelliDrive. The values used to
evaluate (12) are gathered in Table 1. First, notice that, as



6 International Journal of Vehicular Technology

Table 1: Parameter values.

μτ(α=0) 2 s B −6
m

s2
αr1 27.3% β

r

1 9.1% Nr
1 30 E[N

r
1] 28.3

μτ(α=1) 1 s b −3
m
s2

αl1 36.6% β
l

1 12.2% Nl
1 10 E[N

l
1] 11.7

μτ(β) 0.1 s α 30% αl2 30% β
l

2 10% Nl
2 15 E[N

l
2] 15

L 5 m β 10% αl3 29% β
l

3 9.7% Nl
3 20 E[N

l
3] 31.8

α = 0%

α = 100%

P-R time

P.
D

.F

Figure 2: Perception-Reaction times for different classes of vehi-
cles. The normal distributions correspond to the P-R times of
assisted vehicles for various market penetration rates. P-R time of
unequipped vehicles is the same as when α = 0. The delta function
represents the P-R time of an automated vehicle.

seen in Figure 3(a), the flow-speed relation in a cluster of
vehicles moving with the same speed follows closely the trend
of a typical macroscopic flow-speed relation in a highway
[29]. The only difference is that the speed at which the
peak flow occurs is somewhat lower which is due to the
rather conservative car following model we have used in our
analysis. Hence, our results also provide a good insight on
the effect of IntelliDrive on the macroscopic behaviors of
general highway systems. Figure 3(a) also shows the effect of
IntelliDrive on the speed-flow curve for various penetration
rates of assisted and automated vehicles. Further, by looking
at Figure 3(c), one can see that for a fixed β, flow increases
by increasing α. The same is true when β is increased
for a fixed α (see Figure 3(d)). However, the augmentation
in throughput obtained by increasing β is greater than
the one achieved by increasing α. This is seemingly right
since automated vehicles have lower P-R times than assisted
vehicles. Moreover, when all vehicles are automated, flow
can increase by up to 65%, whereas when they are all just
assisted, the increase in flow is by about 25%. As a final
remark, in Figure 3(d), we have compared the exact value of
flow against the lower bound in (12). As can be seen, with an
accuracy of about 99.9%, the lower bound serves as a perfect
approximation for the exact value.

For a two-lane highway, consider an instance where Nr

and Nl vehicles initially reside on the right and left lanes,
respectively, (Nr + Nl = N). We number the clusters from 1
through Cr and 1 through Cl on the right and left lanes, from
the beginning to the end of each lane. Hence, Nr = ∑Cr

i=1 N
r
i

and Nl =∑Cl
i=1 N

l
i , where Nr

i (Nl
i ) is the number of vehicles in

cluster i on the right (left) lane. Here, we address the average
traffic flow after a group of high-speed clusters on the left
lane overtake a group of lower speed ones on the right lane,
during which lane-changing maneuvers can happen when
needed and allowed based on the discussion in Section 3.1.2.
As we shall see, the effect of IntelliDrive on traffic flow is
due to its role in the lane-changing maneuvers as well as
the lowering of driver P-R times. Note that if C = Cr + Cl,
then according to (2) we would have C = O(lnN). Hence,
the effect of the bounded inter-cluster spacings on the total
flow would be negligible as N grows arbitrarily large, and a
weighted average of the per-cluster flows would serve as a
fine approximation of the total flow. The total flow after the
overtakings take place can be stated as (the superscripts have
been dropped for simplicity)

q =
∑C

i=1 Niqi

N
. (13)

Hence,

E
[
q
] =

∑C
i=1 E

[
Niqi

]

N

= 1
N

C∑

i=1

N∑

ni=1

niE
[
qi | Ni = ni

]
P(Ni = ni)

(1)≥ 1
N

C∑

i=1

E
[
qi
]

N∑

ni=1

niP(Ni = ni)

= 1
N

C∑

i=1

E
[
qi
]
E[Ni],

(14)

where (1) is due to Theorem 1 which implies that the lower
bound on the expected flow of a cluster is independent of the
number of vehicles within it.

In what follows, we aim at comparing the value of
E[qi] after the overtakings take place with and without the
utilization of IntelliDrive. When IntelliDrive is available, we
assume that the penetration rate of assisted and automated
vehicles in each cluster is initially α and β before the
overtakings take place. In order to compute (14), we need
to have the ultimate values for E[qi]’s and E[Ni]’s after the
overtakings take place. ForE[qi], note that, according to (12),
the only influential parameters on flow that change during
the course of the overtakings are the percentage of equipped
vehicles in each cluster. Here, we study their evolution over
time.

For an arbitrary cluster m on the right and n on the left
lane, let n′m = maxYmi∈{2,3}i ∈ {1, . . . ,n − 1} and n′′m =
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maxYmi=3i ∈ {1, . . . ,n − 1} where again, Ymn = j if cluster
m is category j ∈ {1, 2, 3} with respect to cluster n. This way,
Vl
n′m is the speed of the nearest leading cluster n′m which the

equipped vehicles in cluster m have had the chance to join
(hence m is category 2 or 3 with respect to n′m). If no such
cluster exists, then Vl

n′ = Vmax. On the other hand, Vl
n′′m is

the speed of the nearest leading cluster n′′m which all vehicles
in cluster m, whether equipped or not, have had the chance
to join. Again, if no such cluster exists, we have Vl

n′′m = Vmax.

Note that essentially Vl
n′m ≤ Vl

n′′m . With this setting, if αrmn+1

denotes the probability that a vehicle within cluster m on the
right lane is assisted, right before being overtaken by cluster
n + 1 on the left lane, we have, starting with αrm1

= α

αrmn+1
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αrmn
, Ymn=1,

αrmn
P
(

v<Vl
n | Vl

m≤v<Vl
n′m

)

1−
(

αrmn
+βrmn

)(

1−P
(

v<Vl
n | Vr

m≤v<Vl
n′m

)) ,

Ymn=2,

αrmn
P
(

Vr
m≤v<Vl

n′′m

)

(

αrmn
+βrmn

)

P
(

Vl
n′m≤v<Vl

n′′m

)

+P
(

Vr
m≤v<Vl

n′m

) ,

Ymn = 3.
(15)

The derivation of (15) is provided in Appendices A and
B. Through (15), the ultimate probability that a vehicle in
cluster m on the right lane is assisted, αrm, can be derived by
computing αrmCl+1

. The same as above holds for automated
vehicles by only replacing β for α in (15). With the ultimate
values of α and β in hand, the new values of E[qi]’s can be
derived from (12).

Let us now consider the evolution of the E[Ni]’s. For
that, we compute the expected number of vehicles that leave
a cluster for another. Note that for an arbitrary cluster m
on the right lane, one of the following is true with respect
to an arbitrary cluster n on the left lane. (Here, we assume
that a vehicle surely performs the lane-change maneuver
once it knows it is safe to do so. In the general case for
assisted drivers, human uncertainty can be accounted for by
incorporating an appropriate probability function based on
which the assisted driver makes a lane-change decision.)

(1) When neither the equipped nor the unequipped
vehicles leave cluster m for cluster n we have Xmn = 0.

(2) When just the equipped vehicles in m can join cluster
n

E[Xmn(i)]
(1)= P(Xmn(i) = 1)

=
(

βrmn
+ αrmn

)

P
(

vi ≥ Vl
n | Vl

n′m ≥ vi ≥ Vr
m

)

,

(16)

where (1) is due to (4). Let us elaborate on the con-
dition of the probability. Note that for vehicle i in
cluster m we already know vi ≥ Vm. Also, if it is
equipped and still resides in cluster m at the the time
it encounters cluster n on the left lane, we know that
vi ≤ Vl

n′m .

(3) When equipped and unequipped vehicles can merge
from m into n, we have:

E[Xmn(i)]

=
(

βrmn
+ αrmn

)

P
(

vi ≥ Vl
n | Vl

n′m ≥ vi ≥ Vr
m

)

+
(

1−βrmn
− αrmn

)

P
(

vi ≥ Vl
n | Vl

n′′m ≥ vi ≥ Vr
m

)

.

(17)

Here, at the time vehicle i in cluster m encounters
cluster n on the left lane it has vi ≤ Vl

n′m if it is

equipped and has vi ≤ Vl
n′′m if it is unequipped.

For all the above scenarios, we have

E[Xmn] = E

⎡

⎣

Nr
mn∑

i=1

Xmn(i)

⎤

⎦

= E
[

Nr
mn

]

E[Xmn(i)],

(18)

where Nr
mn

is the number of vehicles within cluster m on the
right lane, just before the nth cluster on the left lane reaches
it. Here,

E
[

Nr
mn

]

= E
[
Nr

m

]−
n−1∑

i=1

E[Xmi], (19)

where Nr
m = Nr

m1
. Note that (18) follows from Wald’s equa-

tion. (Wald’s equation states that E[
∑T

i=1 Xi] = E[T]E[X]
where the Xi’s are i.i.d, and independent from T and
E[T],E[x] < ∞.) The use of the latter equation needs
independent and identically distributed (i.i.d)Xmn(i)’s which
is true as the desired speed of a vehicle and the chances of
it being equipped are independent of any other. The other
conditions that need to be true in order to let us use the
Wald’s equation is for Nr

mn
and Xmn(i) to have finite mean

values and also to be independent which all clearly hold in
our case.

Finally, (16) or (17) are used along with (18) and (19) to
give us the expected number of vehicles that leave a cluster for
another and consequently the ultimate number of vehicles
within each cluster. The final percentage of assisted vehicles
for cluster n on the left lane is obtained as

αln

=
αNl

n+
∑

m:Ymn=3 α
r
mn
Xmn+

∑
m:Ymn=2

(

αrmn
/
(

αrmn
+βrmn

))

Xmn

Nl
n+
∑

m Xmn
.

(20)

The numerator shows the expected number of assisted
vehicles. Here, αNl

n is the initial number of assisted vehicles
cluster n contains before the overtakings take place. The sec-
ond and third terms represent the contribution of category 2
and 3 clusters during the course of the overtakings. Also, the
denominator is the total number of vehicles in cluster n upon
the completion of the overtakings. A similar equation is true

for β
l

n by just replacing β for α.
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Figure 3: (a) The effect of IntelliDrive on the flow-speed curve. (b) Traffic flow variation with the penetration of automated and assisted
vehicles into the market. (c) Flow enhancement for a fixed penetration of assisted vehicles. (d) Flow enhancement for a fixed penetration of
automated vehicles. V = 44.8 m.p.h. in (b), (c), and (d).

To clarify the concept, here we consider an example
scenario of a two-lane highway depicted in Figure 4, where
three clusters on the left lane overtake a lower speed one on
the right lane. As can be seen from Figure 4(b), the cluster
on the right lane is category 2 with respect to the first cluster
on the left lane, that is, Y11 = 2. This is because if vehicle i
on the right lane that has made a lane-change decision (since
vi ≥ Vl

1) is equipped, then it is able to figure out that the
current gap between the first and second clusters on the left
lane, that is, s12, is more than the minimum required (100 m)
anticipated by the gap-acceptance equation (3). Hence, it
is able to safely make a lane change. However, if it is not
equipped, it goes on to assume that the second cluster resides
at the furthest point which has line of sight to the first and
has virtually the same speed as Vl

1. According to (3), this
requires a gap more than 150 m. But since the furthest line-
of-sight point is only 80 meters away, lane-changing cannot
be performed by an unequipped vehicle. By (15) and letting
m = 1 and n = 1, αr12

can be computed by noting that αr11
= α

and Vl
1′1
= Vmax. Further, we have according to (18) and (16)

that E[X11] = Nr
1(α + β)P(vi ≥ Vl

1 | Vmax ≥ vi ≥ Vr
1 ) and

hence according to (19), E[Nr
12

] = Nr
1 − E[X11].

Following on, note that the cluster on the right lane is
category 1 with respect to the second cluster on the left lane
hence, αr13

= αr12
and X12 = 0. Thus the market penetration of

the equipped vehicles and the total number of vehicles within
the second cluster remain unchanged when it overtakes the
cluster on the right lane.

Finally, as we have Y13 = 3, the ultimate penetration rate
of the equipped vehicles in the cluster on the right lane can
be obtained by letting m = 1 and n = 3 in (15) which results
in αr1 = αr14

= αr13
since Vl

3′′1
= Vl

3′1
= Vl

1. The ultimate num-
ber of vehicles in this cluster is then Nr

1 − E[X11] − E[X13],
where E[X13] = Nr

13
P(vi ≥ Vl

3 | Vl
1 ≥ vi ≥ Vr

1 ) due to (17)
and further (18). Also, for the ultimate penetration rate of
equipped vehicles on the left lane, we have due to (20) that
αl1 = (αNl

1 + (α/(α + β))E[X11])/(Nl
1 + E[X11]), αl2 = α and

αl2 = αNl
3 + αr13

E[X13]/Nl
3 + E[X13].
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Figure 4: (a) Two-lane highway. The distribution of the desired speed of the vehicles is truncated normal with μ = 60, σ = 8 within the
[40–80] m.p.h range. (b) Cluster on the right lane is category 2 with respect to the first cluster on the left. (c) Cluster on the right lane is
category 1 with respect to the second cluster on the left.

Table 1 exhibits the ultimate values of IntelliDrive market
penetration rates and the number of vehicles within each
cluster. These values are used in conjunction with (12) to
evaluate the average flow over all clusters in (14). When there
is no IntelliDrive, we have X11 = X12 = 0 and E[X13] =
Nr

1P(vi ≥ Vl
3 | Vmax ≥ vi ≥ Vr

1 ). For our example scenario
(with the IntelliDrive market penetration rates of α = 30%
and β = 10%), the total flow after the overtakings take place
is higher than when there is no IntelliDrive deployment (702
as opposed to 672 veh/h).

Notice that the effect of IntelliDrive on the flow of a
multi-lane highway is due to two main factors. One, as
before, is by lowering the P-R time of drivers which leads
to a higher per-cluster flow. The other means by which
IntelliDrive can affect flow is by letting the equipped vehicles
make lane changes that are not typically allowed for the
unequipped vehicles. Notice that this does not necessarily
increase the total flow even if the lane-changing vehicle joins
a higher-speed cluster than its own. This is evident from
the flow-speed curve in Figure 3 which implies that higher
speed does not necessarily correspond to higher flow. Hence,
to assess the effect of IntelliDrive on the total flow, the
following should be determined. If there is no category 2
cluster on the right lane, the effect of IntelliDrive on flow
is always constructive. For any category 2 cluster, on the
other hand, we should check whether the flow corresponding
to its speed is higher or lower than the flow of the cluster
to which the lane-changing vehicles merges into. If lower,
IntelliDrive again enhances flow. However, if the flow of
the destined cluster is lower, the total flow increases only
when the constructive effect of the reduced P-R time of

drivers is able to compensate for the loss in flow due to
the lane-changing maneuver, the case held in our example
scenario above. Finally, even if the total flow was seen
to reduce when using IntelliDrive, the total travel time
of drivers is enhanced by letting them join higher-speed
clusters.

5. Conclusion

In this paper, we investigated the effect of IntelliDrive on the
efficiency of multi-lane highway systems. We studied how
the gradual introduction of IntelliDrive-enabled vehicles can
enhance the efficiency of traffic flow. Towards this goal,
we developed a mobility model where vehicles moved in
clusters inside which they constantly maintained a safety car-
following distance with their leaders. Having justified the
fact that IntelliDrive would reduce the perception-reaction
time of drivers, traffic flow was seen to increase due to
the lower lead spacing of the equipped vehicles. A tight
lower bound for the flow of a cluster of a mixed variety
of vehicles was also derived. This bound was shown to be
independent of the number of vehicles inside the cluster. A
weighted average of the per-cluster flows was then used as a
metric to represent the flow over all clusters. Lane-changing
mechanisms where incorporated into the model for multi-
lane highways. In some cases, IntelliDrive could be utilized
to help make lane changes which are otherwise not possible
without such help. We argued that such assisted lane changes,
although might not always increase the overall flow, would in
any case decrease the travel time of the drivers.
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Appendices

A. Derivation of the Gap-Acceptance
Equation (3)

Let vehicle j be the leader vehicle in cluster n + 1 which is
therefore moving with the constant speed Vn+1. Then, its
location evolves with time as xj(t) = xj + Vn+1t, where xj is
vehicle j’s location at the time vehicle i wants to make a lane-
change. Moreover, as vehicle i, after making the lane-change,
accelerates with the rate ai to reach the speed Vn, its location
evolves as xi(t) = 0.5ait2 +Vmt+xi for t ∈ [0 (Vn−Vm)/ai],
where xi is its initial location on the left lane (which is equal
to the location of the last vehicle in cluster n). Note that here
we have assumed that it takes vehicle i zero time to carry
out the lane-changing. To have no collision between cluster
n + 1 and vehicle i, we should have xi(t) − xj(t) ≥ Lt ∈
[0 (Vn − Vm)/ai]. The latter is a degree 2 function which
is positive before its first root. Hence, by letting the first root
being greater than (Vn−Vm)/ai and some manipulations, (3)
is obtained.

B. Proof of Theorem 1

Given that vehicles are assisted or automated with probability
α and β, respectively, (corresponding to 100α% and 100β%
market penetration rates for the assisted and automated
vehicles), the number of assisted and automated vehicles

within cluster i (Nα
i and N

β
i ) would follow a binomial

distribution, hence,

E
[
qi
] = Vi

Ni∑

r=0

Ni−r∑

s=0

E

⎡

⎣
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∑Ni
j=1 Si j
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i = r,Nα

i = s

⎤

⎦

× p
(
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i = s | Nβ

i = r
)

p
(

N
β
i = r

)

=ViNi

Ni∑
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s=0

E

⎡

⎣
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s

)
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(
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ar + bαs + cNi
p
(

N
β
i = r

)

(3)≥ ViNi
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(4)≥ ViNi

(a− bα2)βNi + (c + bα2)Ni

= Vi

c + aβ + bα2
(
1− β

) ,

(B.1)

where (2) is because according to the car-following spacing
(7), we have

E

⎡

⎣

Ni∑

j=1

Si j | Nβ
i = r, Nα

i = s

⎤

⎦

= r
(

GV 2
i + μτ(β)Vi + L

)

+ s
(
GV 2

i + μτ(α)Vi + L
)

+ (Ni − r − s)
(
GV 2

i + μτ(α=0)Vi + L
)
.

(B.2)

which results in (2) when a = Vi(μτ(β) − μτ(α=0)), b =
Vi(μτ(α=1)−μτ(α=0)), c = GV 2

i +μτ(α=0)Vi+L. Note that all (1),
(3) and (4) are due to Jensen’s inequality. (Jensen’s inequality
states that E[ f (x)] ≥ f (E[x]) when f is a convex function.)
The use of Jensen’s inequality in (3) is as follows:

Ni−r∑

s=0

(
Ni−r
s

)
αs(1− α)Ni−r−s

ar + bαs + cNi

= Es

[
1

ar + bαs + cNi

]

≥ 1
ar + bαE[s] + cNi

= 1
ar + bα(α(Ni − r)) + cNi

.

(B.3)

The expectation in the first equality is with respect to
random variable s which is drawn from a set of size Ni − r
according to a binomial distribution with parameter α. This
way the expected value of s would be α(Ni − r) which is used
to achieve the last equality. (4) is a result of applying the same
ideas as above for the automated vehicles.

C. Derivation of Equation (15)

When Ymn = 1, according to definition, no vehicle from
cluster m can join cluster n hence αrmn+1

= αrmn
. For the

case where Ymn=2, multiply both the numerator and the
denominator by Nr

mn
, the number of vehicles in cluster m

at the time of encountering cluster n. Notice that here only
the equipped vehicles could make the lane change. Thus, the
numerator shows the expected number of assisted vehicles
and the denominator the expected total number of vehicles
that remain in cluster m after being overtaken by cluster n.
For the case where Ymn = 3, we define the following events.
Let A = {Vr

m ≤ v < Vl
n}, B = {Vr

m ≤ v < Vl
n′m}, and
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C = {Vr
m ≤ v < Vl

n′′m}. As A ⊆ B ⊆ C, we have P(A | B) =
P(A)/P(B) and P(A | C) = P(A)/P(C). Hence:

αrmn+1

= αrmn
P(A | B)Nr

mn(

αrmn
+βrmn

)

P(A | B)Nr
mn

+
(

1−αrmn
−βrmn

)

P(A | C)Nr
mn

= αrmn
P(C)

(

αrmn
+ βrmn

)

P(C − B) + P(B)

(C.1)

which yields the result.
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