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Abstract—A systematic construction of capacity achieving low-
density parity-check(LDPC) code ensemble sequences over the
Binary Erasure Channel (BEC) has been proposed by Saeedi
et al. based on a method, here referred to as Successive
Maximization (SM). In SM, the fraction of degree-𝑖 nodes are
successively maximized starting from 𝑖 = 2 with the constraint
that the ensemble remains convergent over the channel. In this
paper, we propose SM to design universally capacity approach-
ing rate-compatible LDPC code ensemble sequences over the
general class of Binary-Input Output-Symmetric Memoryless
(BIOSM) channels. This is achieved by first generalizing the
SM method to other BIOSM channels to design a sequence
of capacity approaching ensembles called the parent sequence.
The SM principle is then applied to each ensemble within the
parent sequence, this time to design rate-compatible puncturing
schemes. As part of our results, we extend the stability condition
which was previously derived for degree-2 variable nodes to
other variable node degrees as well as to the case of rate-
compatible codes. Consequently, we prove that using the SM
principle, one is able to design universally capacity achieving
rate-compatible LDPC code ensemble sequences over the BEC.
Unlike the previous results in the literature, the proposed SM
approach is naturally extendable to other BIOSM channels. The
performance of the rate-compatible schemes designed based on
our method is comparable to those designed by optimization.

Index Terms—Low-density parity-check (LDPC) codes, rate-
compatible LDPC codes, capacity-achieving codes, capacity-
approaching codes, systematic design of LDPC codes, stability

Paper approved by T.-K. Truong, the Editor for Coding Theory and
Techniques of the IEEE Communications Society. Manuscript received July
14, 2010; revised December 2, 2010.

A preliminary version of this work has been partly presented at the
Information Theory Workshop, June 2009, Volos, Greece, and in part at the
Allerton Conference on Communication, Control, and Computing, Sep. 2009.

This work was supported by the National Science Foundation under grants
ECS-0636569 and CCF-0830614.

H. Saeedi was with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts, Amherst, MA, USA. He is now with the
Wireless Innovations Lab, Department of Electrical and Computer Engineer-
ing, Tarbiat Modares University, Tehran, Iran (e-mail: hsaeedi@ieee.org).

H. Pishro-Nik is with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA, USA (e-mail:
pishro@ecs.umass.edu).

A. H. Banihashemi is with the Department of Systems and Com-
puter Engineering, Carleton University, Ottawa, ON, Canada (e-mail:
ahashemi@sce.carleton.ca).

Digital Object Identifier 10.1109/TCOMM.2011.060911.100409

condition, binary erasure channel (BEC), binary symmetric
channel (BSC), additive white Gaussian noise (AWGN) channel.

I. INTRODUCTION

LOW-DENSITY Parity-Check (LDPC) codes have re-
ceived much attention in the past decade. During this

period there have been great achievements in the area of
designing LDPC code ensembles with Belief Propagation (BP)
decoding which exhibit an asymptotic performance practically
close to the capacity over different types of channels, including
the general class of Binary-Input Output-Symmetric Memory-
less (BIOSM) channels [1]-[11]. In particular, for the Binary
Erasure Channel (BEC), the performance analysis and code
design have been addressed in both the asymptotic regime [3]-
[9] and for finite block lengths [1], [2]. In [3]–[5], Shokrollahi
et al. proposed a scheme to design sequences of LDPC code
ensembles over the BEC, whose performance is proved to
achieve the capacity for sufficiently large average check and
variable node degrees. A more general category of capacity
achieving sequences over the BEC were proposed in [12]–[14].
Construction and analysis of capacity achieving ensemble
sequences of codes defined on graphs have also been studied
in [6]–[9] for the BEC. A sequence of degree distributions
with rate 𝑅 is said to be capacity achieving over the BEC if
the thresholds of the ensembles can be made arbitrarily close
to 1 − 𝑅, the capacity upper bound over the BEC, as the
average check and variable node degrees tend to infinity. For
BIOSM channels, it is easier to consider ensembles for a given
channel parameter instead of a given rate. The results however
are easily extendable to the case of fixed rate ensembles. We
call a sequence of degree distributions capacity achieving over
a BIOSM channel, if the rate of the ensembles within the
sequence can be made arbitrarily close to the channel capacity
while maintaining the reliable communication. The design of
provably capacity achieving sequences over general BIOSM
channels is still an open problem.

Another important problem of interest in LDPC codes is
to design rate-compatible LDPC code schemes. In such a
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scheme, starting from a given primary ensemble called the
parent code, we are interested in obtaining a set of codes with
higher transmission rates, which can provide reliable trans-
mission when the channel condition improves, by puncturing
the parent code. For rate-compatibility, the design must be
such that for two consecutive rates, the code with the higher
rate can be constructed by puncturing the code with the lower
rate. Starting from a parent code with performance close to
capacity, the important challenge in a rate-compatible design is
to also keep the performance of the punctured codes close to
the capacity. More specifically, if the parent code is chosen
from a capacity achieving sequence, all punctured codes
should be capacity achieving as average check node degree
increases. To formulate the problem mathematically, imagine
a parent code with rate 𝑅𝑛 from a capacity achieving sequence
which can provide reliable transmission over a channel with
parameter 𝜃0. Our aim is to provide reliable transmission over
a set of channels with parameters 𝜃𝑗 , 𝑗 = 1, ..., 𝐽 , while
increasing the rate by puncturing the parent code in a rate-
compatible fashion. For each 𝜃𝑗 , 𝑗 = 1, ..., 𝐽 , we need to
choose a puncturing pattern that maximizes the corresponding
reliable transmission rate 𝑅𝑛,𝑗 . Let 𝑐(𝜃𝑗) denote the capacity
of the channel with parameter 𝜃𝑗 , and assume that 𝜃𝑖 < 𝜃𝑗

and 𝑐(𝜃𝑖) > 𝑐(𝜃𝑗) for 𝑖 > 𝑗. We call a rate-compatible scheme
universally capacity achieving, if lim𝑛→∞ 𝑅𝑛,𝑗 = 𝑐(𝜃𝑗) for
𝑗 = 1, .., 𝐽 . Analysis and design of rate-compatible LDPC
codes have been addressed asymptotically in [15]-[19] and
for finite block lengths in [20]-[23]. It is worth mentioning
here that Raptor codes [24] can also achieve the capacity of
the BEC at several rates but in a different framework than
puncturing.

Unlike the BEC for which almost all aspects of conventional
(unpunctured) and rate-compatible codes have been analyti-
cally investigated, for the general family of BIOSM channels,
the contributions are mostly based on numerical methods
and optimization. This usually provides little insight into the
design method. In this respect, a fundamental open problem
is to prove the existence of capacity achieving sequences of
LDPC codes with BP decoding over BIOSM channels as
well as to systematically construct such sequences. This can
be seen as a sub-problem as well as a building block for
the more general problem of designing universally capacity
achieving rate-compatible LDPC coding schemes. In [10], it
has been shown that capacity approaching LDPC codes over
BIOSM channels can be designed using optimization1. A less
complex optimization-based design method over the Binary-
Input Additive White Gaussian Noise (BIAWGN) channel has
been proposed in [25]. Several important analytical properties
including the so-called stability condition have been proven for
BIOSM channels in [10], [11]. For rate-compatible codes, it
has been shown in [15], [17] that there is an upper bound on
the puncturing ratio of LDPC codes over BIOSM channels,
above which the code can not provide reliable transmission
for any channel parameter. Moreover, it has been shown that

1We distinguish between “capacity approaching” and “capacity achieving”
sequences. The former term is used when the performance of the ensemble
sequence can be shown (probably numerically) to approach capacity without
any guarantee to achieve it. The latter term is used if the performance provably
tends to capacity as the average node degrees tend to infinity.

over the BEC, the random puncturing maintains the ratio of
rate to capacity at the same value as that of the parent code.
Several bounds on the performance of punctured LDPC codes
have been derived in [19]. For the case of maximum-likelihood
decoding, capacity achieving codes have been designed based
on puncturing in [18]. Among the results on the optimization-
based design of rate-compatible codes over BIOSM channels,
we can mention [16] for the asymptotic regime and [20]–[22]
for finite block lengths.

In this paper, we systematically design sequences of uni-
versally capacity approaching rate-compatible LDPC code
ensembles over BIOSM channels. We then provide some evi-
dence suggesting that the designed sequences could in fact be
universally capacity achieving. Starting from the unpunctured
case, we extend some of the properties of capacity achieving
sequences over the BEC [12], [13], to BIOSM channels.
Among such properties, only the stability condition [10]
has been shown to be extendable to BIOSM channels other
than the BEC. We will analyze the case where the stability
condition is satisfied with equality, i.e, the fraction of degree
2 edges (𝜆2) is set equal to its upper bound, and show that this
imposes an upper bound on the fraction of degree 3 edges (𝜆3).
Using a similar approach for the other degrees, we propose
Successive Maximization (SM) of 𝜆𝑖 values as a systematic
approach to design a sequence of LDPC code ensembles with
performance approaching the capacity as the average check
node degree increases. For the rate-compatible LDPC codes
over BIOSM channels, we first prove a property similar to
the stability condition. We show that for a given parent code,
there is an upper bound on the fraction of punctured degree-2
variable nodes (Π2) above which the probability of error of the
punctured code is bounded away from zero and below which
the probability of error tends to zero if it is made sufficiently
small. We then consider the special case of the BEC and show
that similar upper bounds can be obtained for variable nodes of
all degrees in addition to degree-2 nodes. Using such upper
bounds, we prove that applying the SM principle results in
a universally capacity achieving rate-compatible scheme over
the BEC. Moreover, for such a scheme, if puncturing fractions
Π𝑛,𝑗
𝑖 are used to puncture the parent sequence (𝜆𝑛, 𝜌𝑛) over

the channel with parameter 𝜃𝑗 , where 𝑖 is the variable node
degree, the values of Π𝑛,𝑗

𝑖 are independent of 𝑛. This result
is consistent with the one obtained in [15], [17] based on
a completely different approach. We then extend the results
for the BEC to general BIOSM channels, and show that
the SM principle can be applied to puncturing fractions of
variable nodes to systematically design a coding scheme
whose performance universally approaches the capacity in a
rate-compatible fashion. This proposes a significantly different
approach than the existing optimization-based methods in the
literature. Our numerical results indicate that if the parent
ensemble is chosen from the capacity approaching sequences
designed based on the SM principle, the performance of the
resulting rate-compatible schemes is similar to that of the
existing optimization-based results in the literature. Moreover,
we show that for a sequence of parent code ensembles (𝜆𝑛, 𝜌𝑛)
designed based on the SM principle, the values of puncturing
fractions Π𝑛,𝑗

𝑖 for degree 2 variable nodes (𝑖 = 2) are
independent from the parent ensemble (𝑛) and only depend
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on the original channel parameter (𝜃0) and the one for which
the puncturing pattern is designed (𝜃𝑗). Our numerical results
suggest that this property may in fact hold for other values of
𝑖. The importance of this property is that for a given channel
parameter 𝜃𝑗 , the computed values of Π𝑖 can universally be
applied to any ensemble designed based on the SM method
for a given original channel parameter 𝜃0 with an arbitrary
check node distribution.
The paper organization is as follows. The next section is
devoted to notations and some definitions. In Section III,
after a short review on the construction of capacity achieving
sequences over the BEC, we explain the successive maximiza-
tion approach to devise capacity approaching sequences for
other channels. Section IV provides some analytical results
related to the proposed approach. In Section V, we focus on
the puncturing of a given ensemble within a sequence that is
designed based on the SM methodology. We also provide some
properties of rate-compatible codes for the BEC and BIOSM
channels. Moreover, we show that a similar SM principle to
that of Section III can be used to devise a universally capacity
approaching rate-compatible scheme. In Section VI, we show
examples of our designs and Section VII concludes the paper.
The details of the design algorithm and some numerical issues
are discussed in the appendix.

II. DEFINITIONS AND NOTATIONS

In this section we present some definitions and properties
which will be frequently used throughout the paper. We mainly
follow the notations and definitions of [11], [17]. As our
focus is on symmetric channels and a BP decoder, throughout
the paper, without loss of generality, we assume that the all-
one code word is transmitted. Moreover, we assume that the
messages in the BP algorithm are in the log-likelihood ratio
domain. We represent a (𝜆, 𝜌) LDPC code ensemble with its
edge-based check and variable node degree distributions as
𝜌(𝑥) =

∑𝐷𝑐

𝑖=2 𝜌𝑖𝑥
𝑖−1 and 𝜆(𝑥) =

∑𝐷𝑣

𝑖=2 𝜆𝑖𝑥
𝑖−1, with con-

straints
∑𝐷𝑐

𝑖=2 𝜌𝑖 = 1 and
∑𝐷𝑣

𝑖=2 𝜆𝑖 = 1, where the coefficient
of 𝑥𝑖 represents the fraction of edges connected to the nodes
of degree 𝑖 + 1, and 𝐷𝑣 and 𝐷𝑐 represent the maximum
variable node degree and the maximum check node degree,
respectively. Average check node and variable node degrees
are given by: 𝑑𝑐 = 1/(

∑𝐷𝑐

𝑖=2 𝜌𝑖/𝑖) and 𝑑𝑣 = 1/(
∑𝐷𝑣

𝑖=2 𝜆𝑖/𝑖),
respectively. The code rate 𝑅 satisfies

𝑅 = 1− 𝑑𝑣/𝑑𝑐. (1)

We also define node-based degree distributions as 𝜌(𝑥) =∑𝐷𝑐

𝑖=2 𝜌𝑖𝑥
𝑖−1 and 𝜆(𝑥) =

∑𝐷𝑣

𝑖=2 𝜆𝑖𝑥
𝑖−1, with constraints∑𝐷𝑐

𝑖=2 𝜌𝑖 = 1 and
∑𝐷𝑣

𝑖=2 𝜆𝑖 = 1, where the coefficient of 𝑥𝑖

represents the fraction of nodes having degree 𝑖 + 1. We rep-
resent a BIOSM channel with parameter 𝜃 by 𝐶(𝜃) and define
𝑐(𝜃) as the Shannon capacity of that channel. We also assume
that the channel is physically degraded when 𝜃 increases. For
a sequence of degree distributions (𝜆𝑛(𝑥), 𝜌𝑛(𝑥)), 𝜆𝑛𝑖 and 𝜌𝑛𝑖
indicate the 𝑖th coefficient of the 𝑛th member of the sequence
for variable node and check node degree distributions, respec-
tively. Notation 𝑇𝑖 is used for the coefficient of 𝑥𝑖−1 in the
Taylor series expansion of 1− 𝜌−1(1− 𝑥) around 𝑥 = 0, i.e.,
we have 1 − 𝜌−1(1 − 𝑥) =

∑∞
𝑖=2 𝑇𝑖𝑥

𝑖−1 (note that 𝑇1 = 0).

Similar to [5], we limit our discussions to check node degree
distributions for which 𝑇𝑖’s are positive. For example, check
regular ensembles exhibit such a property.

Consider now the density evolution in the belief propagation
algorithm for the channel 𝐶(𝜃), where we track the evolution
of the initial channel density 𝑃0 throughout iterations in the
asymptotic regime, where the block length tends to infinity.2

Based on [10], [11], 𝑄𝑙, the probability density function (den-
sity) of the outgoing message from check nodes at iteration
𝑙 can be written as 𝑄𝑙 = Γ−1𝜌(Γ(𝑃𝑙−1)), where 𝑃𝑙−1 is
the density of the message from iteration 𝑙 − 1 entering the
check nodes and Γ is the check node operator defined in [10],
[11]. Also, 𝑃𝑙, the outgoing density from variable nodes at
iteration 𝑙, can be written as 𝑃𝑙 = 𝑃0⊗𝜆(𝑄𝑙), where ⊗ is the
convolution operation, and the power of a density in variable
node and check node degree distributions has been defined in
[11]. Note that there is a one-to-one correspondence between
the density 𝑃0 and the channel parameter 𝜃.

Let 𝑃 be a symmetric density (as defined in [10]). For such
a density, parameters ℙ(𝑃 ) and 𝔓(𝑃 ) are defined by:

ℙ(𝑃 ) = 0.5

∫ ∞

−∞
𝑃 (𝑥)𝑒−(∣𝑥/2∣+𝑥/2)𝑑𝑥,

and

𝔓(𝑃 ) =

∫ ∞

−∞
𝑃 (𝑥)𝑒−(𝑥/2)𝑑𝑥.

Parameter ℙ(𝑃 ) is the probability that the random variable
with density 𝑃 is negative. In the setting of this paper, ℙ(𝑃 )
is the probability of error for the message with density 𝑃 .
Parameter 𝔓(𝑃 ) is called the Bhattacharyya constant. For any
density 𝑃 , 𝔓(𝑃 ) tends to zero if and only if (iff) ℙ(𝑃 ) tends
to zero. Let 𝑝𝑙 = 𝔓(𝑃𝑙) and 𝑞𝑙 = 𝔓(𝑄𝑙). Corresponding to
the density evolution equations, we then have the following
relationship [11]:

𝑝𝑙 ≤ 𝔓(𝑃0)𝜆(1 − 𝜌(1− 𝑝𝑙−1)). (2)

It is important to note that for the BEC, (2) is satisfied with
equality. Moreover, 𝔓(𝑃0) is equal to the channel erasure
probability. The following important inequalities also hold
[11]:

2ℙ(𝑃 ) ≤ 𝔓(𝑃 ) ≤ 2
√
ℙ(𝑃 )(1− ℙ(𝑃 )). (3)

A given degree distribution (𝜆, 𝜌) is called stable iff there
exists 𝜉 > 0 such that if ℙ(𝑃𝑙) < 𝜉 then lim𝑙→∞ ℙ(𝑃𝑙) = 0.
In that respect, it is proven in [10], [11] that if 𝜆′(0)𝜌′(1) >
1/𝔓(𝑃0), then ℙ(𝑃𝑙) is bounded away form zero for every 𝑙
and if 𝜆′(0)𝜌′(1) < 1/𝔓(𝑃0), then the ensemble is stable.

We call an ensemble (𝜆, 𝜌) convergent over 𝐶(𝜃), if starting
from the initial density 𝑃0, lim𝑙→∞ ℙ(𝑃𝑙) = 0. The threshold
of an ensemble over 𝐶(𝜃) is the supremum value of 𝜃 for
which the ensemble is convergent. A sequence of degree
distributions (𝜆𝑛, 𝜌𝑛) is called capacity achieving over a
BIOSM channel 𝐶(𝜃), if the corresponding ensembles are
convergent over 𝐶(𝜃) and if their rates 𝑅𝑛 tend to 𝑐(𝜃) for
sufficiently large average check node degrees as 𝑛 tends to
infinity.

2All the results presented in this paper are for the asymptotic regime where
the block length tends to infinity.
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Consider the (𝑘 + 2)-tuple (𝜆2, 𝜆3, ...., 𝜆𝑘, 𝐷𝑣, 𝜌(𝑥); 𝜃)
which corresponds to a degree distribution (𝜆(𝑥), 𝜌(𝑥)) =
(
∑𝑘

𝑖=2 𝜆𝑖𝑥
𝑖−1+(1−∑𝑘

𝑖=2 𝜆𝑖)𝑥
𝐷𝑣−1, 𝜌(𝑥)) over 𝐶(𝜃) where

𝐷𝑣 > 𝑘, and 0 ≤ 𝜆𝑖 < 1, ∀𝑖 ∈ {2, ..., 𝑘,𝐷𝑣}.
We call this setting a code-channel pair. With slight
negligence, we call a code-channel pair convergent if
the ensemble is convergent over the channel. We de-
fine Λ2(𝜌(𝑥), 𝜃) = {𝜆2 : ∃𝐷𝑣; (𝜆2, 𝐷𝑣, 𝜌(𝑥); 𝜃) is
convergent}. Similarly, Λ3(𝜌(𝑥), 𝜃) = {𝜆3 : ∀𝜆2 ∈
Λ2(𝜌, 𝜃), ∃𝐷𝑣; (𝜆2, 𝜆3, 𝐷𝑣, 𝜌(𝑥); 𝜃) is convergent} and so on.
We show the corresponding complement sets with respect to
[0,1], with Λ𝐶𝑖 (𝜌(𝑥), 𝜃). It can be verified that these sets are
continuous for BIOSM channels.

III. CAPACITY ACHIEVING SEQUENCES AND THE

PRINCIPLE OF SUCCESSIVE MAXIMIZATION

Capacity achieving sequences of LDPC code ensembles
over the BEC were first designed by Shokrollahi et al. in
[3]–[5]. In [12]–[14], the authors proposed new sequences of
capacity achieving LDPC code ensembles over the BEC which
contained Shokrollahi’s sequences as a special case. Unlike
Shokrollahi’s sequences in which all variable node degrees
from 2 to 𝐷𝑣 have to be present, the sequences of [12]–[14]
only contain variable node degrees from 2 to 𝑘 < 𝐷𝑣 and
degree 𝐷𝑣 , where 𝑘 is a strictly increasing function of 𝐷𝑣 (and
ultimately a function of 𝜌(𝑥) and 𝜃).3 For a given ensemble
(𝜆𝑛, 𝜌𝑛) within the sequences proposed in [12]–[14], we have:
𝜆𝑛𝑖 = 𝑇𝑖/𝜃 = 𝜆𝑛∗𝑖 , 2 ≤ 𝑖 ≤ 𝑘, and 𝜆𝑛𝐷𝑣

= 1 − ∑𝑘
𝑖=2 𝜆𝑛𝑖 ,

where 𝐷𝑣 is determined by 𝜃 and 𝜌(𝑥) such that

𝐷𝑣−1∑
𝑖=2

𝑇𝑖 ≤ 𝜃 <

𝐷𝑣∑
𝑖=2

𝑇𝑖. (4)

In the following, we generalize the definition of 𝜆𝑛∗𝑖 to any
type of BIOSM channel as

𝜆𝑛∗𝑖 ≜ 𝑇𝑖/𝔓(𝑃0). (5)

In the method proposed in [12]–[14], the values of 𝜆𝑛𝑖 are
computed based on the following principle: Starting from
𝑖 = 2, and by sequentially going through the values of 𝑖 ≥ 2,
set the value of 𝜆𝑛𝑖 to a maximum value 𝜆𝑛𝑖 such that the
ensemble remains convergent for sufficiently large 𝐷𝑣 . For the
BEC, this process results in 𝜆𝑛𝑖 = 𝜆𝑛∗𝑖 [13], [14]. Intuitively,
the method of [12]–[14] works since based on (1), maximizing
the rate is equivalent to maximizing 𝑑𝑣

−1
, which in turn

implies that one should assign higher percentages to the lower
degree coefficients as far as the constructed ensemble remains
convergent.

In this paper, we generalize the method of [12]–[14] to
BIOSM channels and refer to it as successive maximization.
At the core of this method are the successive upper bounds 𝜆𝑛𝑖
on 𝜆𝑛𝑖 values. These upper bounds should fulfill a threshold
property similar to that of 𝜆𝑛∗𝑖 over the BEC as follows:
Suppose that 𝜆𝑛𝑖 = 𝜆𝑛𝑖 for every 𝑖 < 𝑘, then for any ensemble
with 𝜆𝑛𝑘 > 𝜆𝑛𝑘 , the probability of error is bounded away
from zero. Moreover, for any ensemble with 𝜆𝑛𝑘 < 𝜆𝑛𝑘 , if the

3Shokrollahi’s sequences correspond to those of [12] with 𝑘(𝐷𝑣) = 𝐷𝑣 −
1.

probability of error is made sufficiently small, then it will tend
to zero as the number of iterations tends to infinity, regardless
of the values of 𝜆𝑛𝑖 , 𝑖 > 𝑘. Unlike the BEC case, there is no
proof that such upper bounds exist for other BIOSM channels
(with the exception of the bound on 𝜆2), and even if they
do exist, their values may not be easily obtained analytically
(except for 𝑖 = 2, where we have 𝜆𝑛2 = 𝜆𝑛∗2 ). It should be
noted that for the BIAWGN channel, the existence of such an
upper bound on 𝜆3 was demonstrated empirically in [25]. In
the next section, we prove the existence of a positive upper
bound on 𝜆3 that fulfils the aforementioned properties over
any BIOSM channel, and conjecture that similar upper bounds
exist for other 𝜆𝑖 values. This makes it possible to apply
the SM principle as a design tool for ensemble sequences.
Numerical evidence presented in Section VI confirms that the
resulting sequences are at least capacity approaching and may
in fact be capacity achieving.

IV. SOME ANALYTICAL RESULTS ON UNPUNCTURED

LDPC CODES

We first derive an inequality which helps in proving the
statements of this section. For the code-channel pair 𝐸 ≜
(𝜆2, 𝜆3, ...., 𝜆𝑘, 𝐷𝑣, 𝜌(𝑥); 𝜃), define 𝑓(𝑦) = 𝔓(𝑃0)𝜆(1−𝜌(1−
𝑦)). Using (2), it is easy to see that the inequality 𝑓(𝑦) < 𝑦, for
0 < 𝑦 ≤ 𝔓(𝑃0), is a sufficient condition for the convergence
of 𝐸. Defining 𝑥 = 1 − 𝜌(1 − 𝑦), this condition can be
reformulated as

𝔓(𝑃0)𝜆(𝑥)−1+𝜌−1(1−𝑥) < 0, 0 < 𝑥 ≤ 1−𝜌(1−𝔓(𝑃0)) < 1.

Using the Taylor series expansion of 1 − 𝜌−1(1 − 𝑥) and
rearranging the terms, we thus have the following sufficient
condition for convergence:

𝑘∑

𝑖=2

(𝔓(𝑃0)𝜆𝑖 − 𝑇𝑖)𝑥
𝑖−1 + (𝔓(𝑃0)𝜆𝐷𝑣 − 𝑇𝐷𝑣 )𝑥

𝐷𝑣−1−

∞∑

𝑖=𝑘+1,𝑖∕=𝐷𝑣

𝑇𝑖𝑥
𝑖−1 < 0, 0 < 𝑥 ≤ 1− 𝜌(1−𝔓(𝑃0)) < 1. (6)

Recall that the stability condition in [10], [11] remains
silent about the case where 𝜆′(0)𝜌′(1) is exactly equal to
1/𝔓(𝑃0). Here, we prove that for this case, a similar upper
bound exists for 𝜆3. Before proving the main result, we prove
some auxiliary lemmas and propositions.
Proposition 1: Consider a convergent code-channel pair
𝐸1 = (𝜆2, 𝜆3, .., 𝜆𝑎, ..., 𝜆𝑏, ..., 𝜆𝑘, 𝐷𝑣, 𝜌(𝑥); 𝜃0). Define
𝐸2 = (𝜆2, 𝜆3, .., 𝜆𝑎 − 𝜖, ..., 𝜆𝑏 + 𝜖, ..., 𝜆𝑘, 𝐷𝑣, 𝜌(𝑥); 𝜃0) such
that 0 < 𝜆𝑎 − 𝜖, 𝜆𝑏 + 𝜖 < 1. Then the code-channel pair 𝐸2

is also convergent.
Proof : The proof is similar to the proof of Lemma 1 of [30]
and is thus omitted.
Corollary 1: Consider a code-channel pair
(𝜆2, .., 𝜆𝑘, 𝜆𝐷𝑣 , 𝜌(𝑥); 𝜃) and the set Λ3(𝜌, 𝜃) as defined
in Section II. Select a 𝜆†

3 ∈ Λ3. Then any 0 ≤ 𝜆3 < 𝜆†
3 also

belongs to Λ3. In other words, the set Λ3 is continuous.

Lemma 1 (Sufficient condition for stability): Let (𝜆, 𝜌)
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be a degree distribution over 𝐶(𝜃) and 𝑃0 be the initial
channel density. Let 𝜆2 = 𝜆∗

2 = 1/(𝔓(𝑃0)𝜌
′(1)), and

𝜆3 < 𝜆∗
3 = 𝜌′′(1)/(2𝔓(𝑃0)𝜌

′(1)3) (note that the right hand
side is strictly positive), then the ensemble is stable, i.e., there
exists 𝜉 > 0 such that if ℙ(𝑃𝑙) < 𝜉, then lim𝑙→∞ ℙ(𝑃𝑙) = 0.
Proof : Starting from (2) and writing the Taylor expansion of
the right hand side of the inequality at zero, we have:

𝑝𝑙 ≤ 𝔓(𝑃0)[𝜆
′(0)𝜌′(1)𝑝𝑙−1 + (−𝜆′(0)𝜌′′(1) + 𝜆′′(0)𝜌′2(1))𝑝2𝑙−1]

+𝑂(𝑝3𝑙−1).

Let 𝑔(𝑡) = −𝜌′′(1)/𝜌′(1) + 𝔓(𝑃0)2𝑡𝜌
′2(1). Using

𝜆′(0)𝜌′(1) = 1/𝔓(𝑃0), we thus have:

𝑝𝑙 ≤ 𝑝𝑙−1+𝔓(𝑃0)[−𝜆′(0)𝜌′′(1)+𝜆′′(0)𝜌′2(1)]𝑝2𝑙−1+𝑂(𝑝3𝑙−1)

= 𝑝𝑙−1 + [−𝜌′′(1)/𝜌′(1) +𝔓(𝑃0)2𝜆3𝜌
′2(1)]𝑝2𝑙−1 + 𝑂(𝑝3𝑙−1)

= 𝑝𝑙−1+𝑔(𝜆3)𝑝
2
𝑙−1+𝑂(𝑝3𝑙−1) ≤ 𝑝𝑙−1+(𝑔(𝜆3)+𝛿)𝑝2𝑙−1

Δ
= ℎ(𝑝𝑙−1),

where the last inequality is valid for small enough
𝑝𝑙−1, and 𝛿 is a small positive number. Since
𝜆3 < 𝜌′′(1)/(2𝔓(𝑃0)𝜌

′(1)3), then 𝑔(𝜆3) < 0. We choose
a positive constant 𝜅, such that if 𝑝𝑙−1 < 𝜅, then 𝛿 can be
chosen small enough such that 𝑔(𝜆3) + 𝛿, the coefficient of
𝑝2𝑙−1, is negative. This means that 𝑝𝑙 ≤ ℎ(𝑝𝑙−1) < 𝑝𝑙−1 for
0 < 𝑝𝑙−1 < 𝜅. Note that for 𝑡 ∈ [0, 𝜅], the only fixed point
of function ℎ(𝑡) is at 𝑡 = 0. Since ℎ(𝑡) < 𝑡 for 𝑡 ∈ (0, 𝜅),
we can see that lim𝑙→∞(𝑝𝑙) = 0. Now if we let 𝜉 = 𝜅2/4,
using (3), if ℙ(𝑃𝑙) < 𝜉, then lim𝑙→∞(𝑝𝑙) = 0. This means
that lim𝑙→∞ ℙ(𝑃𝑙) = 0. ■

Lemma 2: Consider the code-channel pair (𝜆∗
2, 𝜆3, 𝐷𝑣, 𝜌(𝑥); 𝜃)

such that 𝜆3 < 𝜆∗
3. Then for large enough 𝐷𝑣, the pair is

convergent.
Proof : The sufficient convergence condition of (6) for the
given ensemble reduces to

(𝔓(𝑃0)𝜆3 −𝑇3)𝑥
2+(𝔓(𝑃0)𝜆𝐷𝑣 −𝑇𝐷𝑣 )𝑥

𝐷𝑣−1−
∞∑

𝑖=4,𝑖∕=𝐷𝑣

𝑇𝑖𝑥
𝑖−1

= 𝑥2[(𝔓(𝑃0)𝜆3 − 𝑇3) + (𝔓(𝑃0)𝜆𝐷𝑣 − 𝑇𝐷𝑣)𝑥
𝐷𝑣−3]

−
∞∑

𝑖=4,𝑖∕=𝐷𝑣

𝑇𝑖𝑥
𝑖−1 < 0; 0 < 𝑥 ≤ 1− 𝜌(1−𝔓(𝑃0)) < 1.

Note that the first term in the coefficient of 𝑥2 is negative
based on the lemma assumption and since 0 < 𝑥 < 1, this
term can be made dominant for sufficiently large 𝐷𝑣, making
the term with 𝑥2 negative. All the other terms including
𝑥𝑖, 𝑖 ≥ 3 are also negative as 𝑇𝑖 > 0, ∀𝑖. Therefore, the
convergence condition holds for the given ensemble. ■

Lemma 3: Let (𝜆, 𝜌) be a convergent degree distribution
over 𝐶(𝜃). Then we necessarily have 𝜆3 ≤ 𝜆𝑈3 where
𝜆𝑈3 = 3/(𝑑𝑐(1− 𝑐(𝜃))) − (3/2)𝜆2.

4

4Note that other (possibly tighter) upper bounds have recently been
proposed in [27].

Proof : For any convergent ensemble, we must have
𝑅 ≤ 𝑐(𝜃). Using (1), we thus have 𝑑𝑣

−1 ≤ 1/(𝑑𝑐(1− 𝑐(𝜃))).
Also, 𝜆2/2 + 𝜆3/3 ≤ ∑𝐷𝑣

2 𝜆𝑖/𝑖 = 1/𝑑𝑣. Therefore,
𝜆2/2+ 𝜆3/3 ≤ 1/(𝑑𝑐(1− 𝑐(𝜃))), which reduces to 𝜆3 ≤ 𝜆𝑈3 .

■

Theorem 1: Consider the code-channel pair
(𝜆∗

2, 𝜆3, 𝐷𝑣, 𝜌(𝑥); 𝜃) where 𝐷𝑣 can be arbitrarily large.
There exists a threshold value 𝜆3 in the interval [𝜆∗

3 , 𝜆𝑈3 ]

such that if 𝜆3 < 𝜆3, the ensemble is convergent for a
sufficiently large value of 𝐷𝑣 and if 𝜆3 > 𝜆3, the probability
of error is bounded away from zero regardless of the value
of 𝐷𝑣.
Proof : Define 𝜆3 = inf(Λ𝐶3 (𝜌(𝑥), 𝜃)). Based on this
definition, ∀𝜆3 > 𝜆3, the probability of error of the resulting
ensemble (𝜆∗

2, 𝜆3, 𝐷𝑣, 𝜌(𝑥)) over 𝐶(𝜃) is bounded away
from zero no matter how large 𝐷𝑣 is. Also, there exists an
arbitrarily small 𝜖 ≥ 0, such that (𝜆∗

2, 𝜆3 − 𝜖,𝐷𝑣, 𝜌(𝑥); 𝜃) is
convergent for a sufficiently large value of 𝐷𝑣. Now based on
Proposition 1, if such a code-channel pair is convergent, any
other pair (𝜆∗

2, 𝜆3, 𝐷𝑣, 𝜌(𝑥); 𝜃) for which 𝜆3 < 𝜆3 − 𝜖 is also
convergent. Based on Lemma 2, we know that if 𝜆3 < 𝜆∗

3,
(𝜆∗

2, 𝜆3, 𝐷𝑣, 𝜌(𝑥), 𝜃) is convergent for sufficiently large 𝐷𝑣.
Therefore 𝜆3 ≥ 𝜆∗

3. From Lemma 3, we know that 𝜆3 ≤ 𝜆𝑈3 .
This proves the theorem. ■
We expect the result of Theorem 1 to be generalizable to
𝜆𝑘, 𝑘 > 3, if 𝜆𝑖 = 𝜆𝑖 = inf(Λ𝐶𝑖 (𝜌(𝑥), 𝜃)), 2 ≤ 𝑖 ≤ 𝑘 − 1.
This, however, remains to be proved.

V. UNIVERSALLY CAPACITY APPROACHING

RATE-COMPATIBLE LDPC CODES

In Section III, we discussed the design of sequences of
degree distributions (𝜆𝑛, 𝜌𝑛) whose rates approach the ca-
pacity as 𝑛 tends to infinity. In this section, we consider the
problem of puncturing a degree distribution for a given 𝑛.
For simplicity, we sometime drop the index 𝑛 and refer to the
ensemble as the parent ensemble. We use the notations (𝜆𝑝, 𝜌)
and 𝑅𝑝 for the parent ensemble and its rate, respectively. We
show the fraction of the punctured bits (variable nodes) by Π.
The resulting code rate in this case is equal to 𝑅𝑝/(1 − Π).
If the puncturing is performed randomly, we refer to it
as random puncturing. Otherwise, the puncturing is called
intentional [16]. In intentional puncturing, variable nodes of
degree 𝑖 can potentially have different puncturing fractions
Π𝑖. The overall puncturing fraction Π can then be expressed
as Π =

∑𝐷𝑣

𝑖=2 Π𝑖𝜆
𝑝

𝑖 where {𝜆𝑖𝑝} is the node-based degree
distribution of variable nodes for the parent ensemble.

In many situations, it is necessary to obtain more than one
rate by puncturing. In this case, for a simple implementation,
the puncturing pattern should be in such a way that for 2
consecutive rates, the punctured code with a higher rate can
be constructed by puncturing the code with the lower rate. A
puncturing pattern with this property is called rate-compatible.
Let the set of channel parameters 𝜃𝑗 be ordered reversely
by channel degradation (i.e., 𝜃0 is for the worst channel
condition which corresponds to the parent code). For any
𝐶(𝜃𝑗), consider the set Φ𝑗 = {Π𝑗

𝑖 , 2 ≤ 𝑖 ≤ 𝐷𝑣}.5 For a

5For 𝜆𝑖 = 0, we assume Π𝑖 = 0.
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rate-compatible puncturing scheme, we must have Π𝑚
𝑖 ≤ Π𝑛

𝑖

for any 𝑚 < 𝑛 and any 𝑖.
To analyze the asymptotic behavior of a punctured ensem-

ble, we model the puncturing of LDPC codes over a channel
𝐶(𝜃) as the transmission of the unpunctured bits over 𝐶(𝜃)
while sending the punctured bits on an erasure channel with
erasure probability of 1. Let ℰ be the set of all edges in
the graph. Also let ℰ𝑝𝑢𝑛𝑐𝑖 be the set of edges in the graph
which are connected to the variable nodes of degree 𝑖 which
are punctured. Also, let ℰ𝑝𝑢𝑛𝑐 be the union of sets ℰ𝑝𝑢𝑛𝑐𝑖 .
Similarly, define ℰ𝑢𝑛 and ℰ𝑢𝑛𝑖 for unpunctured edges. We
define 𝜆𝑝𝑢𝑛𝑐(𝑥) =

∑
𝜆𝑝𝑢𝑛𝑐𝑖 𝑥𝑖−1, where 𝜆𝑝𝑢𝑛𝑐𝑖 =

∣ℰ𝑝𝑢𝑛𝑐
𝑖 ∣

∣ℰ𝑝𝑢𝑛𝑐∣ .
Notation ∣.∣ denotes the cardinality of the set. We also define
𝜑𝑝𝑢𝑛𝑐 as the fraction of punctured edges: 𝜑𝑝𝑢𝑛𝑐 = ∣ℰ𝑝𝑢𝑛𝑐∣

∣ℰ∣ .

The polynomial 𝜆𝑢𝑛(𝑥) and the fraction 𝜑𝑢𝑛 can be defined
similarly for unpunctured edges. Based on the above defini-
tions, we have:

Π𝑖 =
∣ℰ𝑝𝑢𝑛𝑐𝑖 ∣

∣ℰ𝑝𝑢𝑛𝑐𝑖 ∣+ ∣ℰ𝑢𝑛𝑖 ∣ =

∣ℰ𝑝𝑢𝑛𝑐
𝑖 ∣
∣ℰ∣
𝜆𝑝𝑖

=
𝜆𝑝𝑢𝑛𝑐𝑖 𝜑𝑝𝑢𝑛𝑐

𝜆𝑝𝑖
, (7)

𝜑𝑝𝑢𝑛𝑐𝜆𝑝𝑢𝑛𝑐𝑖 + 𝜑𝑢𝑛𝜆𝑢𝑛𝑖 = 𝜆𝑝𝑖 . (8)

We can now derive the density evolution equations for
our setting. Similar to the previous section, let 𝑄𝑙 be the
probability density function of the outgoing message of the
check nodes at iteration 𝑙. We define 𝑃 𝑝𝑢𝑛𝑐

𝑙 and 𝑃𝑢𝑛
𝑙 as

the density at the output of the punctured and unpunctured
variable nodes at iteration 𝑙, respectively. We then have

𝑃 𝑝𝑢𝑛𝑐
𝑙 = 𝑃 𝑝𝑢𝑛𝑐

𝑜 ⊗ 𝜆𝑝𝑢𝑛𝑐(𝑄𝑙),

𝑃𝑢𝑛
𝑙 = 𝑃𝑢𝑛

𝑜 ⊗ 𝜆𝑢𝑛(𝑄𝑙), (9)

𝑃 ′
𝑙 = 𝜑𝑝𝑢𝑛𝑐𝑃 𝑝𝑢𝑛𝑐

𝑙 + 𝜑𝑢𝑛𝑃𝑢𝑛
𝑙 ,

𝑄𝑙 = Γ−1(𝜌(Γ(𝑃 ′
𝑙−1))),

in which 𝑃 𝑝𝑢𝑛𝑐
0 = Δ0 where Δ𝑥 is the Dirac delta func-

tion at 𝑥 [11]. Consider a sequence of degree distributions
(𝜆𝑛(𝑥), 𝜌𝑛(𝑥)). Consider also a set of channels with pa-
rameters 𝜃𝑗 , 𝑗 = 0, 1, ..., 𝐽 , ordered increasingly by their
quality. Now assume that the parent ensemble sequence
(𝜆𝑛(𝑥), 𝜌𝑛(𝑥)) is punctured by the set 𝜙𝑛,𝑗 = {Π𝑛,𝑗

𝑖 , 2 ≤
𝑖 ≤ 𝐷𝑣} to create higher rate ensemble sequences that are
convergent over the corresponding channels. This scheme is
universally capacity achieving if lim𝑛→∞ 𝑅𝑛,𝑗 = 𝑐(𝜃𝑗) for
all values of 𝑗. A universally capacity achieving scheme is
called rate-compatible if the puncturing patterns 𝜙𝑛,𝑗 are rate-
compatible for every value of 𝑛.

In the following, we prove a theorem for puncturing a
given degree distribution. Let (𝜆𝑝, 𝜌) be a convergent parent
ensemble over a channel with parameter 𝜃0. The code-channel
pair (𝜆𝑝, 𝜌; 𝜃) is convergent for any 𝜃 ≤ 𝜃0. Let 𝑃0 be the
channel density associated with 𝜃. We define parameter Π̃2,
corresponding to the parent code-channel pair, as:

Π̃2 =
[1−𝔓(𝑃0)𝜌

′(1)𝜆𝑝2]
[1−𝔓(𝑃0)]𝜌′(1)𝜆

𝑝
2

. (10)

Note that if the pair is stable, i.e., if 𝜆2 < 𝜆∗
2, then Π̃2 > 0.

The following lemma can be easily proved based on (7) and

(8).
Lemma 4: Let

𝜗 = 𝜌′(1)(𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐2 + 𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛2 ), (11)

where 𝑝𝑢𝑛0 = 𝔓(𝑃𝑢𝑛
0 ) and 𝑝𝑝𝑢𝑛𝑐0 = 𝔓(𝑃 𝑝𝑢𝑛𝑐

0 ) = 1. We have
Π2 ⪋ Π̃2 iff 𝜗 ⪋ 1.

Theorem 2: Let (𝜆𝑝, 𝜌) be a parent ensemble convergent
over 𝐶(𝜃) with 𝜆𝑝2 ∕= 0. Suppose that this code is punctured
based on the set Φ = {Π𝑖; 𝑖 = 2, . . . , 𝐷𝑣} (note that 𝐶(𝜃)
has a one-to-one correspondence with the channel density
𝑃0). There exists a threshold value Π̃2, given by (10), such
that if Π2 > Π̃2, then for any 𝑙, ℙ(𝑃 𝑝𝑢𝑛𝑐

𝑙 ) and ℙ(𝑃𝑢𝑛
𝑙 ) are

bounded away from zero and if Π2 < Π̃2, there exists a
strictly positive constant 𝜉 such that if ℙ(𝑃 𝑝𝑢𝑛𝑐

𝑙 ) < 𝜉, and
ℙ(𝑃𝑢𝑛

𝑙 ) < 𝜉 for some 𝑙, then lim𝑙→∞ ℙ(𝑃 𝑝𝑢𝑛𝑐
𝑙 ) = 0 and

lim𝑙→∞ ℙ(𝑃𝑢𝑛
𝑙 ) = 0.

Proof : [Sufficiency] (Π2 < Π̃2):
Let 𝑝𝑝𝑢𝑛𝑐𝑙 , 𝑝𝑢𝑛𝑙 , 𝑝𝑝𝑢𝑛𝑐0 , 𝑝𝑢𝑛0 , 𝑝′𝑙 and 𝑞𝑙 denote
𝔓(𝑃 𝑝𝑢𝑛𝑐

𝑙 ),𝔓(𝑃𝑢𝑛
𝑙 ),𝔓(𝑃 𝑝𝑢𝑛𝑐

0 ),𝔓(𝑃𝑢𝑛
0 ),𝔓(𝑃 ′

𝑙 ) and 𝔓(𝑄𝑙),
receptively. Now for the density evolution equations, we
have:

𝑝𝑝𝑢𝑛𝑐𝑙 = 𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐(𝑞𝑙),

𝑝𝑢𝑛𝑙 = 𝑝𝑢𝑛0 𝜆𝑢𝑛(𝑞𝑙), (12)

𝑝′𝑙 = 𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐𝑙 + 𝜑𝑢𝑛𝑝𝑢𝑛𝑙 ,

𝑞𝑙 ≤ 1− 𝜌(1 − 𝑝′𝑙−1).

Combining the equations, we obtain:

𝑞𝑙+1 ≤ 1− 𝜌(1− 𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐(𝑞𝑙)− 𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛(𝑞𝑙)).
(13)

By expanding the above formula into Taylor series at zero we
have:

𝑞𝑙+1 ≤ 𝜌′(1)(𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐2 𝑞𝑙 + 𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛2 𝑞𝑙) + 𝑂(𝑞2𝑙 ),

or
𝑞𝑙+1 ≤ 𝜗𝑞𝑙 + 𝑂(𝑞2𝑙 ),

where 𝜗 is defined in (11). Based on Lemma 4, 𝜗 < 1 and
thus we can find 𝜂 > 0 such that 𝜗 + 𝜂 < 1. Note that since
ℙ(𝑃 𝑝𝑢𝑛𝑐

𝑙 ) < 𝜉, and ℙ(𝑃𝑢𝑛
𝑙 ) < 𝜉 for an arbitrarily small 𝜉,

based on (3), 𝑝𝑢𝑛𝑙 and 𝑝𝑝𝑢𝑛𝑐𝑙 are also arbitrarily small. This
makes 𝑝′𝑙 arbitrarily small based on (12). Since 1−𝜌(1−𝑥) is a
strictly increasing function and lim𝑥→0 1−𝜌(1−𝑥) = 0, based
on (12), we can make 𝑞𝑙 arbitrarily small if we choose small
enough 𝜉. For sufficiently small 𝑞𝑙, we can see that 𝑞𝑙+1 <
(𝜗 + 𝜂)𝑞𝑙 < 𝑞𝑙. With an argument similar to the one used in
the proof of Lemma 1, we thus have lim𝑙→∞ 𝑞𝑙 = 0. Based
on (12), lim𝑙→∞ 𝑝𝑝𝑢𝑛𝑐𝑙 = lim𝑙→∞ 𝑝𝑢𝑛𝑙 = 0, which implies
lim𝑙→∞ ℙ(𝑃 𝑝𝑢𝑛𝑐

𝑙 ) = 0, and lim𝑙→∞ ℙ(𝑃𝑢𝑛
𝑙 ) = 0.

[Necessity](Π2 > Π̃2):
To prove the necessity, it is enough to show that the probability
of error of 𝑄𝑛, (ℙ(𝑄𝑛)) is bounded away from zero as 𝑛 tends
to infinity. Suppose that ℙ(𝑄𝑛) tends to zero. Then there exists
an iteration 𝑙 for which ℙ(𝑄𝑙) = 𝜖/2, where we can choose
𝜖 arbitrarily small. For the next iteration, similar to the proof
of Theorem 5 of [10], assume that we replace this density
with the BEC density of the same probability of error, i.e.,
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Υ0 = 𝜖Δ0 + (1 − 𝜖)Δ∞. Now, if we indicate the resulting
density, at the output of variable nodes, for the next iteration
by Υ1, we have:

Υ1 = 𝜖(𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1)𝑃 𝑝𝑢𝑛𝑐
0 + 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1)𝑃𝑢𝑛

0 )+

Δ∞(1− 𝜖(𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1) + 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1))) + 𝑂(𝜖2).

It can be verified that after 𝑖 iterations, we obtain:

Υ𝑖 = 𝜖[𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1)𝑃 𝑝𝑢𝑛𝑐
0 + 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1)𝑃𝑢𝑛

0 ]⊗𝑖+

Δ∞(1− 𝜖[𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1) + 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1)]𝑖) + 𝑂(𝜖2),

where ⊗ denotes the 𝑖-fold convolution.
Define the sequence of densities

𝐷𝑖 = [𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1)𝑃 𝑝𝑢𝑛𝑐
0 + 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1)𝑃𝑢𝑛

0 ]⊗𝑖/𝐷,

where

𝐷 =

∫ ∞

−∞
[𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1)𝑃 𝑝𝑢𝑛𝑐

0 + 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1)𝑃𝑢𝑛
0 ]⊗𝑖𝑑𝑥.

Using the properties of 𝔓(⋅) in Section II, it is easy to verify
that the value of 𝔓(𝐷𝑖) is equal to 𝜗𝑖/𝐷. We claim that there
exists an 𝑛 for which, if 𝑖 ≥ 𝑛, we have 1 < 𝜗2𝑖

4𝐷 . To see this,
note that if 4𝐷 ≤ 1, since based on Lemma 4 𝜗 > 1, the
inequality is trivial. Otherwise, to satisfy the inequality, we
set 𝑛 = ⌈ ln 4𝐷

2 ln𝜗 ⌉. Based on (3),

(
𝜗𝑖

𝐷
)2 ≤ 4ℙ(𝐷𝑖)(1− ℙ(𝐷𝑖)) < 4ℙ(𝐷𝑖).

Therefore, for 𝑖 ≥ 𝑛, we obtain 1
𝐷 < ℙ(𝐷𝑖). For 𝑖 = 𝑛, we

can write

ℙ(Υ𝑛) = 𝜖ℙ([𝜆𝑝𝑢𝑛𝑐2 𝜑𝑝𝑢𝑛𝑐𝜌′(1)𝑃 𝑝𝑢𝑛𝑐
0

+ 𝜆𝑢𝑛2 𝜑𝑢𝑛𝜌′(1)𝑃𝑢𝑛
0 ]⊗𝑛) + 𝑂(𝜖2).

For sufficiently small 𝜖, we then have ℙ(Υ𝑛) = 𝜖𝐷ℙ(𝐷𝑛) +
𝑂(𝜖2) > 𝜖 > 𝜖/2 = ℙ(Υ0). Now since 𝑄𝑙 is physically
degraded with respect to Υ0 (see [11], Lemma 4.78), 𝑄𝑙+𝑛

is physically degraded with respect to Υ𝑛 (see [11], Lemma
4.80). Therefore, ℙ(𝑄𝑙+𝑛) ≥ ℙ(Υ𝑛) > ℙ(Υ0) = ℙ(𝑄𝑙). This
contradicts the fact that the probability of error is a decreasing
function of the number of iterations. In other words, 𝜖 can not
become arbitrary small. This completes the proof. ■
This property is similar to the stability condition [10] for
parent LDPC codes which provides an upper bound on 𝜆2.
Corollary 2 (Independency of Π2 from 𝑛 for puncturing
schemes with Π2 = Π̃2): Consider a sequence of ensembles
(𝜆𝑛(𝑥), 𝜌𝑛(𝑥)) which are convergent over 𝐶(𝜃0) and let 𝑃 0

0

be the associated channel density. Now consider an improved
channel 𝐶(𝜃𝑗), 𝑗 > 0 and let 𝑃 𝑗

0 be the associated channel
density. If for any ensemble within the sequence, the value of
𝜆2 satisfies the stability condition corresponding to 𝜃0 with
equality, i.e., if 𝜆𝑛2 = 𝜆𝑛∗2 , then the value of the upper bound
Π̃2 corresponding to 𝜃𝑗 obtained in Theorem 2, is independent
of 𝑛 (in fact, it is independent of the parent ensemble sequence
(𝜆𝑛, 𝜌𝑛)).
Proof : We have 𝜆𝑛2 = 1/(𝔓(𝑃 𝑝

0 )𝜌′𝑛(1)). Replacing this

value in (10), we obtain Π̃2 =
[1−𝔓(𝑃 𝑗

0 )/𝔓(𝑃 0
0 )]

[1−𝔓(𝑃 𝑗
0 )]/𝔓(𝑃 0

0 )
, which is

independent of 𝑛. ■

Corollary 3 (Rate-compatibility of Π2 for puncturing schemes
with Π2 = Π̃2): Consider a sequence of ensembles
(𝜆𝑛(𝑥), 𝜌𝑛(𝑥)) which are convergent over 𝐶(𝜃0) and let 𝑃 0

0

be the associated channel density. Now consider an improved
channel 𝐶(𝜃𝑗), 𝑗 ≥ 0 and let 𝑃 𝑗

0 be the associated channel
density. If for any ensemble within the sequence, the value of
𝜆2 satisfies the stability condition corresponding to 𝜃0 with
equality, i.e., if 𝜆𝑛2 = 𝜆𝑛∗2 , then the value of the upper bound
Π̃2 is a decreasing function of 𝜃𝑗 .

Proof : From Corollary 2, we have Π̃2 =
[1−𝔓(𝑃 𝑗

0 )/𝔓(𝑃 0
0 )]

[1−𝔓(𝑃 𝑗
0 )]/𝔓(𝑃 0

0 )
.

It is easy to check that function 𝑓(𝑥) =
[1−𝑥/𝔓(𝑃 0

0 )]

[1−𝑥]/𝔓(𝑃 0
0 )

is a
decreasing function of 𝑥 for 𝑥 ∈ (0, 1). This together with the
fact that 𝔓(𝑃 𝑗

0 ) is an increasing function of 𝜃𝑗 proves that Π̃2

is a decreasing function of 𝜃𝑗 . ■
In [12], [13], similar upper bounds to that of stability

condition were obtained for other variable node degrees over
the BEC. In the following, we prove a similar result for the
case of rate-compatible codes over the BEC. Equation (13)
can be rewritten as follows for the case of the BEC:

𝑞𝑙+1 = 1−𝜌(1−𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐
0 𝜆𝑝𝑢𝑛𝑐(𝑞𝑙)−𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛(𝑞𝑙)) = 𝑔(𝑞𝑙).

(14)
Similar to the unpunctured case, the convergence condition

can be rewritten as

𝑔(𝑦) < 𝑦, 0 < 𝑦 ≤ 1− 𝜌(𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 + 𝜑𝑢𝑛𝑝𝑢𝑛0 ).

Note that the above equation is a necessary and sufficient con-
dition for convergence. Modifying the inequality we obtain:

𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐(𝑦) +𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛(𝑦)− 1+ 𝜌−1(1− 𝑦) < 0.

By expanding 1−𝜌−1(1−𝑦) into Taylor series and rearranging
the terms we have

𝐷𝑣∑
𝑖=2

(𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐𝑖 + 𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛𝑖 − 𝑇𝑖)𝑦
𝑖−1

−
∞∑

𝑖=𝐷𝑣+1

𝑇𝑖𝑦
𝑖−1 < 0. (15)

Now based on Theorem 2, there is an upper bound Π̃2 on the
value of Π2. Setting Π2 = Π̃2 is equivalent to having 𝜗 = 1.
Putting this together with 𝑇2 = 1/𝜌′(1), makes the coefficient
of 𝑦 in (15) equal to zero. Now to have convergence, the
inequality must hold for all values of 𝑦 including those close
to zero. For those values, the dominant term is the term with
degree 2. This implies that for convergence, we must have
(𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐3 + 𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛3 ) ≤ 𝑇3. This imposes an
upper bound on the value of Π3 above which the probability
of erasure is bounded away from zero and below which the
ensemble is convergent if the probability of erasure is made
sufficiently small. The same method can be applied for other
values of 𝑖. This is explained in the following proposition.

Proposition 2: Let (𝜆𝑝, 𝜌) be a convergent parent ensemble
over the BEC with channel parameter 𝜖0. Suppose that the
parent ensemble is punctured to be used over a channel
with parameter 𝜖𝑗 < 𝜖0. Let 𝑝𝑢𝑛0 be the Bhattacharyya
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constant for this channel, i.e., 𝑝𝑢𝑛0 = 𝜖𝑗 . Also assume that
𝜆𝑝𝑖 ∕= 0, 2 ≤ 𝑖 ≤ 𝑛 ≤ 𝐷𝑣. Define

Π∗
𝑖 =

1− 𝑝𝑢𝑛0 𝜆𝑝𝑖 /𝑇𝑖
(1− 𝑝𝑢𝑛0 )𝜆𝑝𝑖 /𝑇𝑖

. (16)

Then if Π𝑖 = Π∗
𝑖 for 2 ≤ 𝑖 < 𝑛, there exists an upper

bound Π∗
𝑛 =

1−𝑝𝑢𝑛
0 𝜆𝑝

𝑛/𝑇𝑛

(1−𝑝𝑢𝑛
0 )𝜆𝑝

𝑛/𝑇𝑛
on Π𝑛 above which the resulting

punctured ensemble is not convergent over 𝐶(𝜖𝑗) and below
which the ensemble is convergent over 𝐶(𝜖𝑗) if the probability
of erasure can be made sufficiently small.6

Proof : As discussed before, to have a threshold upper bound
on Π𝑛, terms with degree 𝑖 < 𝑛 in (15) have to be removed.
In order to do so, one has to set

(𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐𝑖 + 𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛𝑖 ) = 𝑇𝑖, 2 ≤ 𝑖 < 𝑛.

Using (7) and (8) we can see that this is equivalent to having
Π𝑖 =

1−𝑝𝑢𝑛
0 𝜆𝑝

𝑖 /𝑇𝑖

(1−𝑝𝑢𝑛
0 )𝜆𝑝

𝑖 /𝑇𝑖
= Π∗

𝑖 for 2 ≤ 𝑖 < 𝑛. This completes the
proof. ■

We now would like to prove that the construction of
universally capacity achieving rate-compatible LDPC codes
over the BEC can be achieved by applying the SM principle
to the values of Π𝑖, i.e., starting from a parent sequence and
for each ensemble member of the sequence, we maximize
Π2 as far as the ensemble remains convergent and continue
this procedure successively for other Π𝑖 values. This will be
performed for each of the 𝐽 target channel parameters and
we demonstrate that the resulting puncturing patterns are in
fact rate-compatible. We also show that if the original parent
sequence is capacity achieving, so will be all the 𝐽 sequences
of punctured ensembles.

Theorem 3: Consider a capacity achieving parent ensemble
sequence (𝜆𝑛, 𝜌𝑛) over the BEC with parameter 𝜖0,
constructed based on the method of [12]. For the set of
channel erasure values 𝜖𝑗 (𝜖1 > 𝜖2 > ... > 𝜖𝐽 ), we puncture
each ensemble within the parent sequence based on the SM
principle. The resulting scheme is then universally capacity
achieving rate-compatible.
Proof : For a given 𝑛, assume that the ensemble includes
constituent variable node degrees 2 to 𝑘 and the maximum
variable node degree 𝐷𝑣. For 2 ≤ 𝑖 ≤ 𝑘, the values of Π𝑛,𝑗

𝑖

resulting from the SM principle can be obtained based on
Proposition 2. Also note that since the ensemble is designed
based on [12], we have 𝜆𝑛𝑖 = 𝑇 𝑛

𝑖 /𝜖0 for 2 ≤ 𝑖 ≤ 𝑘. Replacing
the values of 𝜆𝑛𝑖 in (16), we have:

Π𝑛,𝑗
𝑖 =

1− 𝜖𝑗/𝜖0

(1− 𝜖𝑗)/𝜖0
=

𝜖0 − 𝜖𝑗

(1− 𝜖𝑗)
≜ 𝑃 (𝑗); 2 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝐽,∀𝑛,

(17)
which is only a function of 𝑗. We also set Π𝑛,𝑗

𝐷𝑣
= 𝑃 (𝑗), ∀𝑛, ∀𝑗.

In this case, we have (for simplification, the indices 𝑛 and 𝑗
are dropped for the puncturing-related parameters):

𝜑𝑝𝑢𝑛𝑐𝑝𝑝𝑢𝑛𝑐0 𝜆𝑝𝑢𝑛𝑐𝐷𝑣
+𝜑𝑢𝑛𝑝𝑢𝑛0 𝜆𝑢𝑛𝐷𝑣

= 𝜆𝑛𝐷𝑣
𝑃 (𝑗)+𝜖𝑗𝜆𝑛𝐷𝑣

(1−𝑃 (𝑗))

= 𝜖0𝜆𝑛𝐷𝑣
= 𝜖0(1−

𝑘∑
𝑖=2

𝑇𝑖/𝜖
0) = 𝜖0 −

𝑘∑
𝑖=2

𝑇𝑖, (18)

6Note that for 𝑖 = 2, we have Π∗
2 = ˜Π2.

where we use (7), (8) and (17) for the first equality and (17) for
the second equality. To demonstrate that the resulting scheme
is convergent over 𝐶(𝜖𝑗), it is enough to show that (15) holds
for the given puncturing fractions Π𝑛,𝑗

𝑖 . In (15), after applying
the SM principle, the terms with 𝑖 = 2 to 𝑘 will all be equal
to zero, and the terms with 𝑖 > 𝐷𝑣 are equal to −𝑇𝑖𝑦

𝑖−1 and
will be negative. We show the sum of the remaining terms by
𝑆 and will have:

𝑆 = (

𝐷𝑣−1∑
𝑖=𝑘+1

−𝑇𝑖)𝑦
𝑖−1 + ((𝜖0 −

𝑘∑
𝑖=2

𝑇𝑖) − 𝑇𝐷𝑣 )𝑦
𝐷𝑣−1 <

(

𝐷𝑣−1∑

𝑖=𝑘+1

−𝑇𝑖+𝜖0−
𝑘∑

𝑖=2

𝑇𝑖−𝑇𝐷𝑣)𝑦
𝐷𝑣−1 = (𝜖0−

𝐷𝑣∑

𝑖=2

𝑇𝑖)𝑦
𝐷𝑣−1 < 0,

where the first equality is obtained based on (18), the first
inequality is a result of 𝑦𝑖−1 > 𝑦𝐷𝑣−1 for 𝑖 < 𝐷𝑣 and 0 < 𝑦 <
1, and the last inequality holds based on (4). This completes
the convergence proof.
Now we prove that

𝑅𝑛,𝑗/𝑐(𝜖𝑗) = 𝑅𝑛,0/𝑐(𝜖0). (19)

Note that Π𝑛,𝑗 =
∑𝐷𝑣

𝑖=2 𝜆
𝑛

𝑖 Π
𝑛,𝑗
𝑖 = Π𝑛,𝑗

𝑖 ; 2 ≤ 𝑖 ≤ 𝐷𝑣, 1 ≤ 𝑗 ≤
𝐽 . We then have

𝑅𝑛,𝑗

𝑐(𝜖𝑗)
=

𝑅𝑛,0/(1−Π𝑛,𝑗)

1− 𝜖𝑗
=

𝑅𝑛,0

1− 𝜖0
=

𝑅𝑛,0

𝑐(𝜖0)
,

where the 2nd equality is obtained based on (17). This proves
(19). Now since the parent ensemble is capacity achieving,
lim𝑛→∞ 𝑅𝑛,0 = 𝑐(𝜖0). Based on (19), this implies that
lim𝑛→∞ 𝑅𝑛,𝑗 = 𝑐(𝜖𝑗) for any 𝑗. This proves the universally
capacity achieving property. To see the rate-compatibility,
similar to the argument in Corollary 3, one can see that Π𝑛,𝑗

𝑖

in (17) is a decreasing function of 𝜖𝑗 (increasing function of
channel quality) for any 𝑛. Therefore, for 𝜖𝑚 < 𝜖𝑘, we have
Π𝑛,𝑘
𝑖 > Π𝑛,𝑚

𝑖 ; 𝑖 ∈ {2, ..., 𝑘,𝐷𝑣}. This completes the proof.
■

This result is consistent with the one obtained in [17]
stating that random puncturing of a parent ensemble over
the BEC preserves the distance to capacity. The approach
taken in [17] is, however, different and is based on the fact
that one can model the puncturing of an ensemble over the
BEC as the concatenation of the original BEC channel with
another BEC channel with erasure rate equal to puncturing.
Similar to the flatness condition, the approach of [17] is not
extendable to other BIOSM channels. The importance of our
approach is that in principle, it may be extendable to other
BIOSM channels where we can expect that applying the
SM principle to compute Π𝑖 values, might also result in (a
scheme performing close to) a universally capacity achieving
rate-compatible scheme. Unlike the BEC case, however, the
upper bounds on Π𝑖 have to be estimated numerically (similar
to the procedure we use to compute the upper bounds of
𝜆𝑖, 𝑖 > 2, for the unpunctured case) except for Π2 whose
upper bound is given by Theorem 2. Applying this procedure
to the capacity approaching ensembles designed based on
the method of Section III as parent ensembles, we have
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3 and ˜𝜆3 vs. 𝐷𝑐 for a check-regular ensemble
over the BIAWGN channel with 𝜎 = .9574.

in-fact been able to design universally capacity approaching
rate-compatible ensembles over other BIOSM channels.

It is important to note that the values of Π𝑗,𝑛
𝑖 in Theorem 3

do not depend on 𝑖 and 𝑛. While independency of 𝑖 is a special
property for the BEC, based on Corollary 2 these values are
independent from 𝑛 for 𝑖 = 2 over any BIOSM channel. Our
numerical results show that for a given 𝑖 > 2, 𝑖 ∕= 𝐷𝑣 and
𝑗, the values of Π𝑗,𝑛

𝑖 are very close for different values of 𝑛,
suggesting a general independency from 𝑛.

VI. DESIGN EXAMPLES

We first present a plot of the upper and lower bounds
on 𝜆3 related to Theorem 1, namely 𝜆𝑈3 and 𝜆∗

3 as well as
the numerically calculated values for 𝜆3 for different values
of 𝐷𝑐. The results are for check-regular ensembles over
a BIAWGN channel with the noise standard deviation of
𝜎 = .9574 (capacity=1/2). As can be seen in Fig. 1, 𝜆3 is a
strictly decreasing function of 𝐷𝑐 similar to 𝜆2.
Example 1: We apply our method to design ensembles for
a BIAWGN channel with capacity 1/2 (𝜎 = .9574). As a
point of reference, we consider the 4th ensemble of Table II
in [10] with maximum variable node degree of 50, refereed
to as 𝐶𝐴𝑊𝐺𝑁 . This ensemble has the best performance
among the rate one-half ensembles designed in [10] for the
BIAWGN channel. The check node degree distribution of this
ensemble is 𝜌𝐴𝑊𝐺𝑁(𝑥) = .33620𝑥8 + .0883𝑥9 + .57497𝑥10.
The threshold of this ensemble is 𝜎 = .9718. The capacity
of a channel with 𝜎 = .9718 is equal to .5045, implying that
the rate of this ensemble is 99.1% of the capacity. Keeping
the same check node distribution, and setting 𝑘, the number
of constituent variable node degrees to 24, we design the
following variable node degree distribution based on the SM
method:7

𝜆(𝑥) = .1826𝑥 + .1602𝑥2 + .0297𝑥3 + .0306𝑥4 + .0306𝑥5 +
.0307𝑥6 + .0306𝑥7 + .0297𝑥8 + .0296𝑥9 + .0288𝑥10 +
.0288𝑥11 + .0279𝑥12 + .0225𝑥13 + .0171𝑥14 + .0135𝑥15 +
.0099𝑥16 + .0081𝑥17 + .0054𝑥18 + .0045𝑥19 + .0036𝑥20 +

7The details of the design algorithm and some numerical issues are
discussed in the appendix.

TABLE I
PERFORMANCE OF A CHECK-REGULAR SEQUENCE DESIGN BASED ON

THE SM METHOD OVER A BIAWGN CHANNEL WITH 𝜎 = .9557

𝐷𝑐 𝑅𝐴𝑊𝐺𝑁 /𝑐(.9557) 𝑘
5 .8902 3
6 .9386 3
7 .9520 4
8 .9653 6
9 .9756 10
10 .9884 18

.0027𝑥21 + .0018𝑥22 + .0018𝑥23 + .0009𝑥24 + .2460𝑥59.

The rate of this ensemble is 0.4950 which is 99.0% of
the capacity, showing almost the same distance to capacity
as 𝐶𝐴𝑊𝐺𝑁 . The disadvantage of this ensemble compared to
𝐶𝐴𝑊𝐺𝑁 , is having a larger maximum variable node degree
and larger number of constituent variable node degrees.
The average check node degree for this ensemble is about
10.1569.
We applied the SM method to design a check-regular
ensemble with 𝐷𝑐 = 10 (with the same values for 𝜎 and
𝑘), and we were able to design an ensemble whose rate was
also 99.0% of the capacity. This suggests that at least for the
designs based on SM, the important factor that determines
the ensemble performance, is the average check node degree
rather than the actual check node degree distribution. In other
words, no optimization on the check node side would be
necessary.
Example 2: Consider the following sequence design of
check-regular ensembles for channel parameter 𝜎 = .9557.
We start with 𝐷𝑐 = 5 and 𝑘 = 3, and for 𝐷𝑐 > 5, we set
𝑘 = 2𝐷𝑐−6 + 2. This means that the number of constituent
variable node degrees for an ensemble with check node degree
𝐷𝑐 is roughly twice that of an ensemble with check node
degree 𝐷𝑐 − 1. As can be seen in Table I, the performance
of the ensembles consistently improves as the average check
node degree increases. The performance of the ensemble with
𝐷𝑐 = 10 in Table I is slightly less than 99% of the capacity.
Example 3: For the Binary Symmetric Channel (BSC), we

consider the ensemble 𝐶𝐵𝑆𝐶 designed based on optimization
in Example 2 of [10]. This rate one-half ensemble has check
node degree distribution 𝜌𝐵𝑆𝐶(𝑥) = .25𝑥9 + .75𝑥10 and
threshold 𝜃 = .106. This implies that for check node degree
distribution 𝜌𝐵𝑆𝐶(𝑥) and channel parameter 𝜃 = .106, the
best achievable rate based on optimization is 0.5. We now
apply the SM method to design an ensemble with the same
check node degree distribution and channel parameter. The
designed ensemble has the following variable node degree
distribution where we have limited the number of constituent
variable node degrees 𝑘 to 22:

𝜆(𝑥) = .1666𝑥 + .1644𝑥2 + .0171𝑥3 + .0190𝑥4 + .0219𝑥5 +
.0228𝑥6 + .0238𝑥7 + .0257𝑥8 + .0266𝑥9 + .0285𝑥10 +
.0304𝑥11 + .0323𝑥12 + .0352𝑥13 + .0390𝑥14 + .0380𝑥15 +
.0314𝑥16 + .0247𝑥17 + .0200𝑥18 + .0152𝑥19 + .152𝑥20 +
.152𝑥21 + .1874𝑥65.

The rate of this ensemble is .4988 which is very close
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to .5, the best achievable rate based on optimization. The
values of 𝑘 and 𝐷𝑣 for the designed ensemble are also close
to (and smaller than) that of ensemble 𝐶𝐵𝑆𝐶 . This code is
able to achieve 97.4% of the capacity. This example suggests
that the speed of convergence to capacity with respect to the
average check node degree is faster for the BIAWGN channel
compared to the BSC. The speed of convergence to capacity
is considerably higher for the BEC. For the capacity value
of 1/2 as an example, with 𝐷𝑐 = 10, one is able to achieve
99.8% of the capacity of the BEC [12].

One advantage of our method is its simple implementation.
Taking advantage of this property, we investigate the effect
of the number of constituent variable node degrees 𝑘 on
the achievable code rate. We again consider the check node
degree distribution 𝜌𝐵𝑆𝐶(𝑥) and for different values of 𝑘
from 3 to 24, design ensembles using the SM method. In
Fig. 2, we have plotted the rate of the designed ensembles
versus 𝑘. As can be seen, for 𝑘 > 22, the curve starts to
saturate, implying that there is not any advantage of choosing
𝑘 greater than about 22. The values of maximum variable
node degrees for the designed ensembles range from 23 to
81. For the rate-compatible codes, we consider the sequence
of Table I and puncture the first three ensembles for a set

of four channels with noise powers smaller than that of the
parent ensemble. The details are provided in Table II, where
we have the puncturing polynomial Π(𝑥) =

∑𝐷𝑣

𝑖=2 Π𝑖𝑥
𝑖−1 to

represent the puncturing fractions in the last four columns. In
Fig. 3, we have plotted the ratio 𝑅𝑗/𝑐(𝜃𝑗) of the ensembles
of Table II versus the channel noise standard deviation 𝜎.
As can be seen, the performance of the punctured codes
for a given parent ensemble is similar to or better than the
parent ensemble. In fact, we expect the punctured ensemble
to perform almost the same as the parent ensemble, similar
to the case of the BEC. To justify the improvement resulting
from puncturing, we note that although the parent ensembles
have been constructed based on the SM method, for finite
values of 𝐷𝑐, they are not necessarily optimal in that they
may not provide the best possible rate for the given channel
parameter. This leaves the door open for further improvement
with puncturing. From Fig. 3, it is also observed that for
any given channel parameter, the performance of punctured
ensembles approaches the capacity as the average check node
degree increases. Based on Table II, the designed sequence
also fulfills the rate-compatibility property. Note however
that unlike, for example the approach of [16], we did not
impose any constraint to guarantee rate-compatibility and our
empirical results suggest that this property is inherent in the
proposed method. For the case of Π2, we analytically proved
this fact in Corollary 3. To compare the performance of
the schemes designed based on the SM principle and those
obtained by optimization, we consider the ensemble used in
[16] as a reference. This ensemble (𝐶) has been optimized for
the rate one half and has a threshold of 𝜎 = .9557. We can
assume that ensemble 𝐶 has been optimized for the highest
rate when the channel parameter 𝜎 is set to .9557. The degree
distribution of 𝐶 is:

𝜆𝐶(𝑥) = .25105𝑥+ .30094𝑥2 + .00104𝑥3 + .43853𝑥9,

𝜌𝐶(𝑥) = .63676𝑥6 + .36324𝑥7 .

Keeping the check node degree distribution of ensemble 𝐶
intact, we design an ensemble 𝐶𝑆𝑀 with the same number of
constituent variable nodes using the SM method:

𝜆𝑆𝑀 (𝑥) = .2717𝑥 + .2442𝑥2 + .0371𝑥3 + .4471𝑥9.

We then apply the SM method again, this time to puncture
𝐶𝑆𝑀 . The puncturing polynomials for the same four channels
considered in Table II are given in Table III. The distance to
capacity (in dB) for the parent ensemble and its punctured
versions is reported in Fig. 4. As can be seen in Fig. 4,
the scheme performs very closely to the scheme obtained
by optimization-based puncturing of the ensemble 𝐶. In fact,
the proposed scheme even slightly outperforms the scheme
of [16] on channels with 𝜎 = .6300 and 𝜎 = .7410. The
proposed scheme performs inferior only on the best channel
parameter (𝜎 = .4675) and even for this channel parameter,
the performance gap is less than .08 dB.8 We have also demon-
strated the performance of random puncturing of the ensemble
𝐶 for comparison. Also note again that unlike [16], we did

8Note that our parent code itself performs close to .1dB worse than 𝐶 and
the gap in performance is always less than this gap for different puncturing
rates.
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TABLE II
THE VALUES OF Π𝑖 USED TO PUNCTURE THE FIRST 3 ENSEMBLES OF THE SEQUENCE OF TABLE I

𝐷𝑐 𝜎 = 0.9557 𝜎 = 0.7410 𝜎 = 0.6300 𝜎 = 0.5609 𝜎 = 0.4675
5 𝜆(𝑥) = .4322𝑥 Π(𝑥) = .2947𝑥+ Π(𝑥) = .4115𝑥+ Π(𝑥) = .4703𝑥+ Π(𝑥) = .5308𝑥+

+.3534𝑥2 + .2144𝑥5 .2037𝑥2 + .2231𝑥5 .2697𝑥2 + .3473𝑥5 .2949𝑥2 + .4676𝑥5 .3026𝑥2 + .7460𝑥5

6 𝜆(𝑥) = 0.3457𝑥 Π(𝑥) = .2947𝑥+ Π(𝑥) = .4115𝑥+ Π(𝑥) = .4703𝑥+ Π(𝑥) = .5308𝑥+
+0.2974𝑥2 + 0.3569𝑥6 .2124𝑥2 + .2357𝑥6 .2755𝑥2 + .3483𝑥6 .2997𝑥2 + .4142𝑥6 .3065𝑥2 + .5015𝑥5

7 𝜆(𝑥) = 0.2881𝑥 Π(𝑥) = .2947𝑥+ Π(𝑥) = .4115𝑥+ Π(𝑥) = .4703𝑥+ Π(𝑥) = .5308𝑥+
+0.2556𝑥2 + 0.0380𝑥3 .1921𝑥2 + .3240𝑥3 .2590𝑥2 + .4472𝑥3 .2862𝑥2 + .5063𝑥3 .2997𝑥2 + .5772𝑥3

+0.4183𝑥9 +.2862𝑥9 +.3638𝑥9 +.4094𝑥9 +.5950𝑥9

TABLE III
THE VALUES OF Π𝑖’S USED TO PUNCTURE THE ENSEMBLE 𝐶𝑆𝑀

𝜎 = 0.7410 Π(𝑥) = 0.2947𝑥+ .1921𝑥2 + .3376𝑥3 + .2222𝑥9

𝜎 = 0.6300 Π(𝑥) = 0.4115𝑥+ .2600𝑥2 + .4462𝑥3 + .3470𝑥9

𝜎 = 0.5609 Π(𝑥) = 0.4703𝑥+ .2871𝑥2 + .5063𝑥3 + .3628𝑥9

𝜎 = 0.4675 Π(𝑥) = 0.5308𝑥+ .3007𝑥2 + .5820𝑥3 + .4200𝑥9

not impose any constraint to guarantee rate-compatibility. This
reduces the design complexity significantly.

It is interesting to see that based on Tables II and III,
except for 𝑖 = 𝐷𝑣, the values of Π𝑖 are almost independent
(for Π2 provably independent based on Corollary 2) of the
parent ensembles and only depend on the channel parameter
for which the puncturing is applied. In other words, for a
given channel parameter 𝜃𝑗 , the computed values of Π𝑖 can
universally be applied to any ensemble designed based on the
SM method for a given original channel parameter 𝜃0 and any
arbitrary check node distribution.

VII. CONCLUSION

In this paper, we proposed the method of successive
maximization (SM) for the systematic design of universally
capacity approaching rate-compatible LDPC code ensemble
sequences over BIOSM channels. The SM method was first
applied to design a sequence of capacity approaching parent
ensembles. It was then applied to each parent ensemble, this
time to design rate-compatible puncturing schemes. As part
of our results, we were able to extend the stability condition
which was previously derived for degree-2 variable nodes to
other variable node degrees as well as to the case of rate-
compatible codes. Consequently, we rigorously proved that
using the SM principle, one is able to design universally
capacity achieving rate-compatible LDPC code ensemble se-
quences over the BEC. Unlike the previous results on such
schemes over the BEC in the literature, the proposed SM
approach can be naturally extended to other BIOSM channels.
Using such an extension, we designed rate-compatible codes
over the BIAWGN channel and the BSC whose performance
universally approaches the capacity as the average check node
degree increases. We demonstrated that for finite values of 𝐷𝑐,
the performance of the ensembles designed by our method
is comparable to those designed based on optimization. One
important direction in the continuation of this work is to
analytically compute the values of 𝜆𝑖 or to devise design
algorithms which are more robust against numerical errors.
This can pave the road for demonstrating that the proposed
sequences can in fact achieve the capacity of BIOSM channels.
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APPENDIX

DESIGN ALGORITHM AND NUMERICAL STABILITY ISSUES

The design method of Section III can be formulated into the
following algorithm which will be referred to as Algorithm 1.
Let 𝑘 be the number of constituent variable node degrees.
Starting from 𝑖 = 2, we need to find 𝜆𝑖 = sup{Λ𝑖(𝜌(𝑥), 𝜃0)}
for different values of 𝑖 successively. We know that 𝜆2 = 𝜆∗

2,
and thus start from 𝑖 = 3. The calculation of 𝜆𝑖 can be per-
formed by continuously increasing the value of 𝜆𝑖 from zero
and in each step, checking if the ensemble with sufficiently
large 𝐷𝑣 is convergent using density evolution. In each step 𝑖,
we always set 𝜆𝐷𝑣 = 1−∑𝑖

𝑗=2 𝜆𝑗 . We repeat this process for
successive values of 𝑖 until either 𝜆𝐷𝑣 < 0 for a given value
of 𝑖, or 𝑖 > 𝑘 + 1. Then, we decrease the value of 𝐷𝑣 as far
as the ensemble remains convergent. We, however, remind the
reader that since the computations are performed in critical
values of 𝜆𝑖 (i.e., at the border of stability/instability), this
algorithm is very sensitive to numerical errors. To mitigate
the effect of such errors, one has to use density evolution
with very high precision as well as very small increments in
the values of 𝜆𝑖 in the vicinity of the threshold 𝜆𝑖. This in
turn, increases the computational complexity. Consequently,
reducing the precision may result in numerical errors which
usually propagate to other steps. This issue will be discussed
in this appendix.

Concentrating on the computation of 𝜆3, we note that
this computation directly depends on the value of 𝜆2 and is
performed under the assumption that 𝜆2 = 𝜆2. The important
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question, however, is that what happens if the value of 𝜆2

is slightly different from 𝜆2 due to numerical errors. Is the
upper bound on 𝜆3 a continuous function of 𝜆2 such that the
computed upper bound for 𝜆3 tends to 𝜆3 if 𝜆2 tends to 𝜆2?
Based on our numerical results, the answer to this question
is positive. In fact, we have been able to prove this for the
case of the BEC in the next proposition. We conjecture that
such continuity also exists for other channels as well as other
variable node degrees.

Proposition 3: Over the BEC, consider a code-channel
pair 𝐸 = (𝜆2, 𝜆3, 𝐷𝑣, 𝜌(𝑥); 𝜖) where 𝐷𝑣 can be made
arbitrarily large. For any given value of 𝜆2 in Λ2(𝜌(𝑥), 𝜖),
define the set 𝐴 = {𝜆3 : ∃𝐷𝑣, 𝐸 is convergent} and
ℑ(𝜆2) = sup(𝐴). Then, ℑ is a continuous function of 𝜆2. In
particular, ℑ is continuous at 𝜆2 = 𝜆2.
Proof : Using the convergence condition (6) for 𝑘 = 3 and
rearranging the terms, we have

𝜆3 <
∞∑
𝑖=3

𝑇𝑖
𝜖
𝑥𝑖−3 +

�̃�2 − 𝜆2

𝑥
− 1− 𝜆2 − 𝜆3

𝜖
𝑥𝐷𝑣−3. (20)

Now note that if 𝜆3 ∈ 𝐴 for a certain 𝐷𝑣, for any greater
value of 𝐷𝑣, we still have 𝜆3 ∈ 𝐴. Therefore the value of
ℑ(𝜆2) does not change if 𝐷𝑣 tends to infinity. Therefore we
have:

ℑ(𝜆2) = min
0<𝑥<𝑥0

{ ∞∑
𝑖=3

𝑇𝑖
𝜖
𝑥𝑖−3 +

�̃�2 − 𝜆2

𝑥

}
,

where 𝑥0 = 1 − 𝜌(1 − 𝔓(𝑃0)), and we have neglected the
last term of (20) assuming that 𝐷𝑣 tends to infinity. First, we
prove that lim𝜆2→˜𝜆2

ℑ(𝜆2) = ℑ(𝜆2) = 𝜆3. We define 𝑓1(𝑥) =∑∞
𝑖=3

𝑇𝑖

𝜖 𝑥𝑖−3 + 𝑏
𝑥 , where 𝑏 = �̃�2 − 𝜆2, 0 ≤ 𝑏 ≤ �̃�2. For

𝑏 = 0 (𝜆2 = 𝜆2), the minimum of this function in the interval
[0,∞) is at 𝑥 = 0. Now assume that 𝑏 > 0. The second
derivative of this function is strictly positive in the interval
(0,∞). In other words, this function has a local minimum in
this interval which is the root of equation 𝑓 ′

1(𝑥) = 0 where
𝑓 ′
1(𝑥) =

∑∞
𝑖=4

𝑇𝑖

𝜖 (𝑖 − 3)𝑥𝑖−4 − 𝑏
𝑥2 . This equation has only

one root in the interval of (0,∞). It can easily be seen that if
𝑏 tends to zero, the root of the equation also tends to zero. In
other words, 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓1(𝑥)) tends to zero as 𝑏 tends to zero.
Thus we can conclude that ℑ(𝜆2) is continuous at 𝜆2 = �̃�2.
The proof of continuity for other points is straight forward. ■

As previously mentioned, Algorithm 1 requires very high
precision to mitigate the effect of numerical errors. The reason
is that the value of �̃�𝑖 is very sensitive to the value of �̃�𝑖−1.
For example, although we proved in Proposition 3 that for the
BEC, function ℑ is continuous at 𝜆2 = �̃�2, one can verify that
𝑑
𝑑𝜆2

ℑ(𝜆2)∣𝜆2=˜𝜆2
can be very large, implying that any small

deviation from �̃�2 will cause a significant deviation from the
value of �̃�3. Moreover, the computation of the exact value
of �̃�𝑖−1 by density evolution requires very high precision.
For example, using a similar method to that of Algorithm
1 to compute �̃�2 with a reasonable complexity (in our case,
dynamic range of [-50,50] and 13-bit quantization) would
result in a value for �̃�2 which is non-negligibly different from
(and usually greater than) 𝜆∗

2 (the difference can some times be
as high as half a percent of 𝜆2). Now if we set 𝜆2 = �̃�2 = 𝜆∗

2

and compute the value of 𝜆3 and subsequently the value of
𝜆4, the computed value for �̃�4 will appear to be close to zero.
This, however, is not the correct value, at least for the case of
the BEC where we already know that �̃�4 = 𝜆∗

4. The close to
zero value of �̃�4 is caused by the fact that the computed value
of �̃�3 is sightly larger than its true value (this is confirmed for
the case of the BEC where we already know the true value
of 𝜆3). To prevent this, we need to slightly reduce the value
of 𝜆3 from its computed upper bound. At the same time, the
amount of reduction in the value of 𝜆3 is very critical and may
make the computed value for �̃�4 too large. This in turn will
cause the computed value for �̃�5 in the next step to be close
to zero. In general, a numerical error at one step propagates
to the following steps. One way to prevent 𝜆𝑖+1 to tend to
zero at step 𝑖 + 1 due to an over-estimated value of 𝜆𝑖 in
the previous step (step 𝑖), is to let 𝜆𝑖+1 to also increase to a
fraction of 𝜆𝑖 while increasing 𝜆𝑖. This joint increment can
also be applied to more than 2 consecutive degree coefficients.
This means that at step 𝑖, while increasing 𝜆𝑖, we also increase
𝜆𝑖+1, .., 𝜆𝑖+𝐾 , to a fraction of 𝜆𝑖. We then increase 𝑖 by 1, and
set all coefficients with index greater than 𝑖 to zero, and repeat
the process. At each step, after the maximization is performed,
we still multiply the resulting value by a constant 𝛼 less than
or equal to 1.9 Using this joint increment technique, the values
of 𝜆𝑖 to 𝜆𝑖+𝐾 at step 𝑖 become less dependent on the value
of 𝛼 used at step 𝑖− 1.
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