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Abstract— Today, due to the vast amount of literature on large-
scale wireless networks, we have a fair understanding of the
asymptotic behavior of such networks. However, in real world
we have to face finite networks for which the asymptotic results
cease to be valid. We refer to networks as being finite when the
number of nodes is less than a few hundred. Here we study a
model of wireless networks, represented by random geometric
graphs. In order to address a wide class of the network’s
properties, we study the threshold phenomena. Being extensively
studied in the asymptotic case, the threshold phenomena occurs
when a graph theoretic property (such as connectivity) of the
network experiences rapid changes over a specific interval of
the underlying parameter. Here, we find an upper bound for
the threshold width of finite line networks represented by
random geometric graphs. These bounds hold for all monotone
properties of such networks. We then turn our attention to an
important non-monotone characteristic of line networks which
is the medium access (MAC) layer capacity, i.e. the maximum
number of possible concurrent transmissions. Towards this goal,
we provide an algorithm which finds a maximal set of concurrent
non-interfering transmissions and further derive lower and upper
bounds for the cardinality of the set. Using simulations, we show
that these bounds serve as reasonable estimates for the actual
value of the MAC-layer capacity.

Index Terms— Finite Wireless Networks, Threshold phenom-
ena, MAC-layer capacity, Random geometric graphs, Unreliable
sensor grids.

I. INTRODUCTION

There currently exists a vast amount of literature on the
asymptotic analysis of different properties for large-scale
random networks [1]–[10]. However, in real world we have
to face small or moderate-size networks which consist of a
limited number of nodes. As previously shown by the authors,
asymptotic results often cease to be valid for such networks
[11], [12]. Here, we study a model which is extensively used
in analyzing these networks: the random geometric graph. In
a random geometric graph, vertices are distributed randomly
according to a uniform distribution and there exists an edge
between any two vertices not more than a specific distance
apart.

We first study the threshold phenomena for monotone
properties in finite wireless networks modeled by random
geometric graphs. A monotone graph property is a graph
property such that if a graph H satisfies it, every graph G
on the same vertex set obtained by adding edges to H also
satisfies the property. Note that many of the graph properties
such as connectivity, bearing a complete subgraph of a specific
size, or having a specific minimum degree are monotone
properties. What makes the monotone properties so interesting
is that the probability of having a monotone property in a large
random graph jumps from a value near 0 to a value close to 1
in a relatively short interval of the communication radius. The
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length of this interval- known as the threshold width- has been
under close scrutiny in percolation theory, statistical physics,
cluster analysis and some related issues in computer science,
economics and political sciences. The asymptotic behavior
of the threshold phenomena for random geometric graphs is
well-studied in [1]–[5] where some upper bounds have been
derived for the threshold width of the monotone properties.
Here, we aim to analyze the threshold phenomena when the
graph consists of a finite number of nodes. In this paper,
we will first find an upper bound for the threshold width
of the monotone properties in finite one-dimensional random
geometric graphs, called random interval graphs. Moving on,
we extend our approach to other models of random networks
such as networks with random Poisson node deployment and
unreliable sensor grids. Note that previous studies on finite
networks are limited to specific properties such as coverage
and connectivity (see for example [11]–[16]). However, our
method is a comprehensive one which leads to a bound, true
for all monotone properties.

We then move on to study a non-monotone characteristic
of finite wireless networks which is the MAC-layer capacity.
The problem of capacity has been investigated extensively
for different models of wireless networks (see for example
[7], [10]). However, almost all previous analytic results are
asymptotic since they consider large-scale networks. In the
second part of this paper, we study the MAC-layer capacity
in random line networks. Asymptotic MAC-layer capacity of
ad hoc wireless networks is studied in [17]. The MAC-layer
capacity is defined in [17] as the maximum possible number of
concurrent transmissions at the medium access layer. However,
the asymptotic result obtained there is not as precise when we
consider finite networks [11]. In this paper, we analyze the
average MAC-layer capacity for finite line networks. Here we
obtain lower and upper bounds for the MAC-layer capacity.
We also provide an algorithm which finds the exact value for
the MAC-layer capacity along with a set of active links which
achieves it. Our simulations show that our bounds are good
estimates for real values.

The rest of the paper is organized as follows. In section
II, we derive upper bounds for the threshold width of one-
dimensional finite networks. We follow on by analyzing the
MAC-layer capacity of random line networks in section III.
The paper is concluded in section IV.

II. THRESHOLD PHENOMENA IN FINITE LINE NETWORKS

In this section we provide an upper bound on the threshold
width of finite wireless networks on a line. Consider n points
distributed uniformly and independently in the d-dimensional
unit cube [0, 1]d . Given a fixed distance r > 0, connect two
points if their Euclidean distance is at most r. Such graphs are
called random geometric graphs, and are denoted by G(n, r),
as in [18]. Random geometric graphs are better suited than
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more combinatorial classes (such as Bernoulli random graphs)
to model problems where the existence of an edge between two
different nodes depends on their spatial distance. As a result,
random geometric graphs have received increased attention in
recent years in the context of distributed wireless networks
such as sensor networks (see for example, [1], [6], [7]). In
these graphs, the probability of a monotone property is an
increasing function of r and when r =

√
d, the graph is a

complete graph which satisfies every monotone property. In
[2], the authors show that all monotone graph properties have
a sharp threshold for large random geometric graphs. For a
definition of the sharp threshold see [19]. However, the goal
of most of the previous studies is to address the asymptotic
behavior of the threshold phenomena. In this paper, we only
consider one-dimensional random geometric graphs, called
random interval graphs. In fact, random geometric graphs of
higher dimensions are usually much more difficult to analyze.
We believe that studying the threshold phenomena for finite
one-dimensional networks could serve as the cornerstone of
analyzing higher dimensions.

We now explain some notations and some definitions we
need to state our results. The key idea in our analysis is to
relate the behavior of monotone properties to the weight of
the ”bottleneck” matching (to be defined later) of the bipartite
graph whose vertex sets are obtained by distributing n points
uniformly and independently on [0, 1]. Such a relation has
been exploited in [2] to find an upper bound on the threshold
width in the asymptotic case. Here, we describe the concept of
bottleneck matching and its relation with monotone properties.
Recall that in a bipartite graph with vertex sets V1 and V2,
a perfect matching is a bijection (a one-to-one and onto
mapping) φ : V1 → V2, such that each v ∈ V1 is adjacent
to φ(v) ∈ V2. Thus a perfect matching is a disjoint collection
of edges that covers every vertex. If the graph is weighted,
then we define the weight of the matching as the maximum
weight of any edge in the matching. A bottleneck matching
is a perfect matching with the minimum weight. Let S1 and
S2 denote two sets of n points each, where the points are
i.i.d., chosen uniformly at random from the set [0, 1]. Form
the complete bipartite graph on (S1, S2) and let the weight of
an edge be the Euclidean distance between its endpoints. Let
Mn denote the bottleneck matching weight of this graph. If
A is a monotone property, then for 0 < ε < 1, let r(n, ε) =
inf{r > 0 : Pr{G(n, r) has property A} ≥ ε}. We define
the threshold width of A as τ(A, ε) = r(n, 1 − ε) − r(n, ε)
when 0 < ε < 1/2. In [2], the authors linked the weight of the
bottleneck matching with the threshold width of the monotone
properties in a theorem which we repeat here.

Theorem 1: If Pr{Mn > γ(n)} ≤ p for some function
γ(n) and some constant p, then τ(A,

√
p) of any monotone

property A is at most 2γ(n).
According to this theorem, if we can find an upper bound

on the probability Pr{Mn > γ(n)} then we can use it to find
an upper bound on the threshold width. We first state a lemma
about the weight of the bottleneck matching for two sets of
points on the unit interval. We omit the proof of this lemma
due to the limited space.

Lemma 1: Let S1 and S2 be two sets of points each, where
the points are chosen uniformly and randomly from the set
[0, 1]. Let Ŝ1 = X1, X2, ..., Xn and Ŝ2 = Y1, Y2, ..., Yn be

the points ordered according to their positions on [0, 1], i.e.
X1 < X2 < ... < Xn and Y1 < Y2 < ... < Yn. Then the
bottleneck matching is the perfect matching φ : S1 → S2 such
that φ(Xi) = Yi for i = 1, 2, ..., n. Accordingly, the weight of
the bottleneck matching is Mn = maxi=1,...,n |Yi −Xi|.

Now we need to find an upper bound for
Pr{maxi=1,...n |Yi −Xi| > γ} for every γ.

Theorem 2: For the two sets of random points defined in
Lemma 1 and for every γ > 0, we have

Pr{Mn > γ} ≤
∑

i=1,...n

2
∫ ∞

0

fi(u + γ)Fi(u)du, (1)

where fi(u) = i
(
n
i

)
ui−1(1− u)n−i, and

Fi(u) = Iu(i, n + 1− i) =
n∑

j=i

(
n

j

)
uj(1− u)n−j ,

where Iu(i, n + 1 − i) is the regularized incomplete beta
function with parameters i and n + 1− i.

Proof: Using Union bound, we have

Pr{Mn > γ} = Pr{ max
i=1,...,n

|Yi −Xi| > γ}

≤
∑

i=1,...,n

Pr{|Yi −Xi| > γ}. (2)

Xi and Yi are the ith order statistics of the uniform distribution
and have Beta distribution with parameters i and n−i+1 (see
[20] chapter 7). Note that if we denote the PDF and CDF of
Xi (or Yi) by fi(u) and Fi(u), respectively, then

fi(u) =
n!

(i− 1)!(n− i)!
ui−1(1− u)n−i =

i

(
n

i

)
ui−1(1− u)n−i,

Fi(u) = Iu(i, n + 1− i) =
n∑

j=i

(
n

j

)
uj(1− u)n−j .

On the other hand, since Xi and Yi are independent random
variables, we know that

Pr{|Yi −Xi| > γ} = 2
∫ ∞

0

fi(u + γ)Fi(u)du,

which along with (2) gives (1).
We can evaluate (1) for different values of γ and n, and

hence find the upper bound for the threshold width. Note
that Theorem 2 gives an upper bound for every monotone
graph property and it is not limited to a specific property.
The bound for n = 50 is depicted in Figure 1. Comparing our
bound against the actual value of the threshold width for some
famous graph properties, we observed that the bound does not
provide a tight approximation for them. It remains as an open
problem to see whether our bound is tight for any monotone
property. It is noteworthy that for large n’s, the bound leads
to better estimates as it will converge to the bound in [2] for
the asymptotic case.

An interesting point about the upper bound of Theorem 2
is that Theorem 1 and Lemma 1 hold for any two independent
sets of random points that have the same size and the same
distribution. Therefore, given the PDF and CDF of the order
statistics of an arbitrary random variable, we can use them as
fi(u) and Fi(u) in (1) to find a version of Theorem 2 for that
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Fig. 1. Upper bound on the threshold width of the monotone properties for
G(50, r).
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Fig. 2. Upper bound on the threshold width of the monotone properties for
a one-dimensional unreliable sensor grid with parameters n = 100, m = 35.

random variable. As an example, suppose that the nodes in our
line network are placed according to a Poisson point process
with parameter λ. Then, for i = 1, ..., n we can derive (see
[20] chapter 7)

fi(u) =
λiui−1e−λu

(i− 1)!
, and Fi(u) = 1−

i−1∑
m=0

(λu)me−λu

(m− 1)!
.

Using fi(u) and Fi(u) as above, we can find the upper bound
of the threshold width for the geometric graphs generated by
a Poisson point process.

Now, we consider an unreliable sensor grid on the unit
interval which consists of n equidistant sensor nodes such that
m of them are active. Note that all subsets of size m of the n
nodes are equally probable to be active. For a given r, if the
distance between two active nodes is less than r, there is a link
between them. We can study the threshold phenomena for this
unreliable grid when r ranges between 0 and 1. Note that as
in [12], the probability curve would be piecewise constant for
every graph property. Assuming that the grid nodes are located
at the points k

n , k = 1, ..., n, fi(u) can be easily derived as

fi(u) =
n−(m−i)∑

k=i

(
k−1
i−1

)(
n−k
m−i

)
(

n
m

) δ(u− k

n
). (3)

Substituting (3) in (1), we have found the upper bound
shown in Figure 2 on τ(A, ε) for n = 100 and m = 35.

III. MAC-LAYER CAPACITY

In this section we study the MAC-layer capacity of finite
networks in line deployments. Given a graph G(V, E), the goal

is to choose a subset of the edges on which transmissions
can occur without conflicting with one another. That is, if
transmission along (s, t) and (s′, t′) are occurring simulta-
neously, then none of the edges (s, s′), (s, t′), (s′, t), (t, t′)
should be present in the graph. The set of edges that can be so
chosen is called a D2-Matching (Distance-2 Matching). The
problem of finding a D2-matching of maximum cardinality
is called D2EMIS [17]. There, it is shown that for a wide
class of MAC protocols including IEEE 802.11, the MAC-
layer capacity can be modeled as a maximum D2-matching
(D2EMIS) problem in the underlying wireless network. In
this paper, we define MAC(n, r) as the average, over all
configurations of nodes, of the cardinality of the D2EMIS for
a random interval graph1G(n, r). Note that MAC(n, r) is the
average value of the maximum size of the D2-matching on
G(n, r). We first provide analytical lower and upper bounds
on MAC(n, r). Then, we propose an algorithm to find the
exact value of the size of the D2EMIS for any arbitrary node
configuration. Using this algorithm, we compare our bounds
to the actual value of the capacity.

A. Lower Bound on the MAC-Layer Capacity

In this section we introduce a lower bound on the MAC-
layer capacity which is a combination of two different bounds.
First, recall that a connected component of size k of a graph
G is a maximal connected subgraph of G with k vertices. For
a random interval graph G(n, r), let us denote the number of
connected components of size k by Ck

n and the total number
of the connected components by Cn.

Theorem 3: For a line network modeled by a random
interval graph G(n, r) we have

MAC(n, r) ≥ 1 + (n− 3)(1− r)n − (n− 2)(1− 2r)n.
(4)

Proof: The proof is based on the number of the connected
components in the network’s graph. Since transmissions in
different components do not conflict, every connected com-
ponent of size greater than one can contribute at least one
transmission to MAC(n, r). Therefore, the average number of
the concurrent transmissions is always larger than the average
number of the connected components of size greater than
one. The average number of the total connected components
and the average number of the isolated vertices (connected
components of size one) for a random interval graph are
calculated in [21], Theorems 1 and 4. Using this, we have

MAC(n, r) ≥E[Cn]− E[C1
n] = 1 + (n− 1)(1− r)n−

(n− 2)(1− 2r)n − 2(1− r)n =
1 + (n− 3)(1− r)n − (n− 2)(1− 2r)n.

Now, we prove the following lemma which leads us to a
different lower bound on MAC(n, r).

Lemma 2: Given a line network modeled by G(n, r) and an
interval I of length l on the line, let P (l) be the probability

1one-dimensional random geometric graphs are referred to as random
interval graphs [18].
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of having at least one link in I . Then

P (l) =





1− (1− l)n − nl(1− l)n−1 if l ≤ r,

1−∑min(d l
r e,n)

k=0

(
n
k

)
[l − (k − 1)r]k×

(1− l)n−k if l > r

(5)

Proof: If l ≤ r then P (l) is equal to the probability of
having at least 2 nodes in I which is 1−(1−l)n−nl(1−l)n−1

for n nodes distributed uniformly and independently on [0, 1].
In the case of l > r, we find the probability of having no link
in an interval of length l which we denote by Pnl(l). Then we
will have P (l) = 1− Pnl(l). For Pnl(l), we have

Pnl(l) =
min(d l

r e,n)∑

k=0

Pr{no link in I| k nodes in I}×

Pr{k nodes in I} =
min(d l

r e,n)∑

k=0

Pr{no link in I| k nodes in I}×
(

n

k

)
lk (1− l)n−k. (6)

Therefore, it suffices to find the probability of having no link
in I given that there are k nodes in it. For k = 0 and 1, this
probability is trivially 1. It is easy to verify that given that
k ≥ 2 nodes are in the arbitrary interval I = [xi, xi + l], they
are distributed independently and uniformly on I . We need
to find the probability of the event that these k nodes have
spacings larger than r. To achieve this, we define two sets
whose ratio of their volumes is the sought probability. The
first set is the set of all configurations of k points in I whose
volume is lk. The other one is the set of all the configurations
of k points in I , k ≤ d l

r e, for which all the k − 1 spacings
between the points are larger than r. This is, in fact, equivalent
to the set of k points drawn uniformly and independently from
a subinterval of length l−(k−1)r of I . The volume of this set
is (l − (k − 1)r)k. Hence, substituting (l−(k−1)r)k

lk
as Pr{no

link in I | k nodes in I} in (6), we will find Pnl(l) which
leads us to P (l) in (5).

Theorem 4: For a line network modeled by G(n, r), define
P (l) as above and m(l) = b 1

l+r c for 0 < l < 1. Then

MAC(n, r) ≥ max
l∈[0,1]

{
m(l)P (l) + P

(
1−m(l)(l + r)

)}
.

(7)
Proof: The proof is based on a constructive algorithm

which finds a number of possible concurrent transmissions
on the unit-length line. Consider the intervals of length l in
Figure 3 which are a distance r apart. We have m(l) = b 1

l+r c
of these intervals which are denoted by I1, I2, ..., Im(l). Also,
there may be an interval of length 1−m(l)(l+r) at the end of
the line which we denote by Im(l)+1. Note that all these inter-
vals do not necessarily contain an edge. However, the edges
contained in I1, I2, ..., Im(l)+1 are at least a distance r apart
and can be in the D2-matching. Therefore, the average number
of the concurrent transmissions obtained in this way is equal
to the average number of the intervals containing at least one
edge. Let X be the number of such intervals. To find E[X],
we assign an indicator random variable Xi to each interval Ii

which is one if there exist at least one edge in that interval

0 1

. . .
l 1 ( )( )m l l r− +

r r r1I 2I 4I3I ( ) 1m l
I

+

l l l

Fig. 3. Intervals corresponding to the constructive lower bound on MAC-
layer capacity. Note that in the figure above we have X1 = 1, X2 = 0,
X3 = 1, X4 = 0, and Xm(l)+1 = 1.

and is zero otherwise. Then, we have X =
∑m(l)+1

i=1 Xi

and E[X] =
∑m(l)+1

i=1 E[Xi]. But according to Lemma 2,
E[Xi] = Pr{Xi = 1} = P (l) for i = 1, 2, ...,m(l), and
E[Xm+1] = Pr{Xm+1 = 1} = P (1−m(l)(l + r)). We can
maximize E[X] over l which gives us (7).

A lower bound on MAC(n, r) can be obtained from
maximum of the lower bounds given by Theorems 3 and 4.

B. Upper Bound on the MAC-Layer Capacity
In this section the upper bound on the MAC-layer capacity

is addressed via a theorem which results from a combination
of two bounds.

Theorem 5: For a line network modeled by G(n, r) we have

MAC(n, r) ≤ min(
n∑

k=1

E[Ck
n]× dk − 1

3
e, d1

r
e),

where

E[Ck
n] =

1∑

j=0

(
n− k − 1

1− j

)(
2
j

)
×

k−1∑

i=0

(
k − 1

i

)
(−1)i × (

1− (2− j + i)r
)n

+

(8)

with a+ = a for positive a and a+ = 0 otherwise.
Proof: Consider a connected component of size 2.

This component contributes one transmission to MAC(n, r).
Now, consider components of size 3 and 4. According to
the definition of the set of edges in a D2-matching, these
components also contribute at most 1 edge to the D2EMIS. In
fact, any edge chosen for D2-matching precludes at least two
other edges from participating in the matching. Therefore, a
component of size k can support at most dk−1

3 e concurrent
transmissions. Thus, the average number of the concurrent
transmissions is smaller than the sum of the average number
of the connected components of size k times dk−1

3 e. Average
number of the connected components of size k in a random
interval graph is given in [21] as (8).

On the other hand, every transmission covers at least an
interval r of the line. That is, if we pick an edge as a member
of the D2EMIS we can not pick any other edge for D2EMIS in
a distance less than r from the first one. Therefore, there can
not be more than d 1

r e concurrent transmissions. This completes
the proof.

C. Algorithm for Exact Value of the MAC-Layer Capacity
As we mentioned earlier, transmissions in different con-

nected components do not conflict. Therefore, to find the
D2EMIS, it suffices to give an algorithm for finding the
maximum possible number of concurrent transmissions in
every component of size greater than one. We now propose
an algorithm to find the maximum number of concurrent
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Fig. 4. Algorithm to find the exact value of the MAC-layer capacity. Dashed
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Fig. 5. Actual value of MAC(50, r) along with the lower and upper bounds
of Theorems 3, 4 and 5.

transmissions in a connected component. Assume that the first
vertex of the component, vi, is at location xi and the second
vertex, vi+1, is located at xi+1, as it is shown in Figure 4. We
choose the first edge of the component, connecting vi to vi+1,
to participate in the D2EMIS. So, none of the vertices in the
interval (xi+1, xi+1 + r] can participate in the D2EMIS. We
call the interval [xi, xi+1 + r] an interference interval. Then,
we consider the first vertex located after xi+1 + r which is
vl, and choose the edge (vl, vl+1) as another member of the
D2EMIS. Again, none of the vertices within range r of vl+1

can participate in D2EMIS. We repeat this until we reach the
end of the component. It is easy to see that this greedy choice
is optimal. Consider an optimal algorithm which does not
choose the first edge of the component, hence leads to an edge
in D2EMIS in an interference interval larger than [xi, xi+1+r].
Assume that the last vertex of the component is vp and is
located at xp. So, this algorithm has to choose the second edge
of the D2EMIS from an interval shorter than (xi+1 + r, xp].
Note that our algorithm chooses the first edge in (xi+1+r, xp]
as the second edge of the D2EMIS. In fact, moving toward
the end of the component, our algorithm always selects its
next edge for the D2EMIS from an interval at least as large
as the one for the optimal algorithm. Therefore, the optimal
algorithm cannot find a larger D2-matching than our algorithm.

To find MAC(n, r), we need to find the average size
of the D2-matching obtained by the above algorithm. How-
ever, analyzing this algorithm to find the exact value of
MAC(n, r) might be difficult. Figure 5 shows the exact
value of MAC(50, r) resulted from simulations and using the
proposed algorithm, compared against the lower and upper
bounds given by Theorems 3, 4 and 5. It can be easily checked
that both the lower and upper bounds are asymptotically tight,
regarding [17], as they are maximized at r = Θ( 1

n ) resulting
in a maximum of Θ(n).

IV. CONCLUSION
In this paper, we studied the threshold phenomena and

MAC-layer capacity in finite wireless networks on a line. We
considered random geometric graphs as a model for wireless

networks which is used extensively in the literature. We
derived an upper bound for the threshold width of such finite
networks which holds for every monotonic graph property.
We also studied the problem of MAC-layer capacity for
finite line networks. MAC-layer capacity is an example of
non-monotonic characteristics of networks. We provided an
algorithm for finding its exact value and also derived lower
and upper bounds. Through simulations, we verified that our
bounds can give quite a good estimate of the actual value of
the MAC-layer capacity.
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