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Abstract In wireless sensor networks, both nodes and

links are prone to failures. In this paper we study connec-

tivity properties of large-scale wireless sensor networks

and discuss their implicit effect on routing algorithms and

network reliability. We assume a network model of n

sensors which are distributed randomly over a field based

on a given distribution function. The sensors may be

unreliable with a probability distribution, which possibly

depends on n and the location of sensors. Two active sensor

nodes are connected with probability pe(n) if they are

within communication range of each other. We prove a

general result relating unreliable sensor networks to reli-

able networks. We investigate different graph theoretic

properties of sensor networks such as k-connectivity and

the existence of the giant component. While connectivity

(i.e. k = 1) insures that all nodes can communicate with

each other, k-connectivity for k [ 1 is required for multi-

path routing. We analyze the average shortest path of the k

paths from a node in the sensing field back to a base sta-

tion. It is found that the lengths of these multiple paths in a

k-connected network are all close to the shortest path.

These results are shown through graph theoretical deriva-

tions and are also verified through simulations.

Keywords Wireless sensor networks � Connectivity �
Multi-path routing � Unreliable sensors

1 Introduction

Wireless sensor networks have received a great deal of

interest lately. They have benefited from advances in both

MEMS technology and networking. Potential applications

include a diversified range in military and civilian sur-

veillance and sensing tasks and services that would

enhance the ability of the growing domain of wireless

technologies [1].

Wireless sensor networks consists of a large number (in

the order of thousands) of identical nodes which are con-

strained in available energy, computational power, mem-

ory, and communication range. In potential sensing

applications, the sensor nodes may be randomly deployed

in a hazardous or dangerous environment where the nodes

are physically inaccessible after deployment. Hence, the

design of the network needs to consider energy conserving

schemes to account for a limited energy supply, low

memory/computation and resilient networking schemes to

account for the hostile environment.

The primary task of wireless sensor networks is to have

the sensors relay information back to one or more base

stations. This is accomplished without globally known

network addressing (i.e. IP addresses); therefore, the sensor

nodes rely on broadcasting techniques to deliver informa-

tion in possibly a multihop fashion. Information is either

sent from the base stations to the sensor nodes or from the

sensor nodes to the base stations. The flow of information
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in wireless sensor networks distinguishes itself from ad hoc

networking and other varieties of wireless networking. The

characteristics of the other wireless communications is less

defined, as communications may occur in node-to-node

fashion which potentially requires communication schemes

and algorithms that are quite different than those of wire-

less sensor networks.

The design of networks must consider routing protocols

and communication schemes to best fit the intended sensing

task at hand [2]. Furthermore, these schemes must observe

the restrictions of the sensor network such as the conserva-

tion of energy while still maintaining a certain level of

resiliency against node failure or capture. Resiliency in

large-scale sensor networks is often linked to the connec-

tivity of the network. That is, every node in the network

should be able to communicate with the base stations in the

network. Without such connectivity, the network is unable to

provide proper functionality. Moreover, redundancy that is

added through sending information through multiple paths is

another characteristic within sensor networks that is utilized.

Graph theoretic properties of wireless networks have

been studied extensively. In this paper we consider the

effect of node and link failures, which are common in sensor

networks, on different network properties. Our model of

sensor networks assumes n sensors are distributed randomly

over a field based on a given distribution function. We

include link failures in our model, that is two active sensor

nodes are connected with probability pe(n) if they are within

the communication range of each other. The parameter pe(n)

represents the effect of link failures, that is a link fails with

probability 1 - pe(n). In sensor networks, different factors

may contribute to link failures. In some scenarios, the link

failures are not black and white as assumed here. For

example, each transmission, rather than each link, may fail

with a certain probability. In these cases, our analysis can

give an instantaneous status of the network. Nevertheless, in

some other scenarios, a link may fail permanently with

probability 1 - pe(n). In these cases, our analysis provides a

steady state status of the network. For example, consider

key management schemes used for security of wireless

sensor networks. In random key management schemes [3,

4], two neighbor nodes can establish a link only if they share

a key. In these schemes, we choose a random key pool from

the key space. Each key has an identifier. Before deploy-

ment, each sensor node is given a random subset of keys

along with their identifiers from the key pool. If two nodes

are in the communication range of each other and share a

common key identifier, then they can use the corresponding

key as their shared secret to initiate communication. In [4],

authors gave a modified version of the above scheme which

they called q-composite key predistribution scheme. If s(n)

is the number of keys in the key pool and k(n) is the number

of keys stored in each sensor, then we have

peðnÞ ¼ 1�

sðnÞ
kðnÞ

� �
sðnÞ � kðnÞ

kðnÞ

� �

sðnÞ
kðnÞ

� �2
: ð1Þ

Usually, k(n) and s(n) are chosen such that pe(n) is

bounded away from zero as n grows [3, 4]. Node failure is

also a common phenomenon in sensor networks. Sensor

nodes may fail due to lack of power, physical damage or

environmental interference [1]. It is very important that the

network can still continue to work properly even after some

nodes have failed. In our model any sensor node may fail

with probability 1 - psf(x, y, n), where (x, y) is the location

of the node in the plane. For simplicity we study the link

failures and node failures separately. First, we study the

effect of link failures on the network. While some properties

of link-reliable networks (networks with reliable links) can

be easily extended to networks with unreliable links, some

other properties require more complicated analysis. We then

study the effect of node failures. We prove general

statements relating node-reliable networks to unreliable

ones. Using this general theorems we study the properties of

networks with unreliable sensor nodes. Finally, we show

that the two results can be combined for the analysis of

networks with unreliable nodes and links.
The focus of this paper is to provide analysis of some

network properties that affect network functionality. We

study k-connectivity of large-scale sensor networks. We

derive necessary and sufficient conditions for k-connec-

tivity of the network graph. We study the minimum

communication radius of sensor nodes to provide k-con-

nectivity within the network. We analyze the average

shortest path of the k paths from a node in the sensing field

back to a base station. We also study the existence of the

giant component (a large subset of nodes that are con-

nected). These results have been shown through graph

theoretical derivations and also have been verified through

simulations. For clarity of exposition, we provide the

lengthy proofs in the Appendix. However, it should be

noted that a major contribution of this paper is to provide

the mathematical methodology for dealing with large-scale

sensor networks. Thus, an important part of the paper lies

in the proofs of the results given in Appendix.

Formally, we say that a graph is connected if there is a

path between every pair of vertices. A graph is said to be k-

vertex-connected or simply k-connected if there does not

exist a set of k - 1 vertices whose removal disconnects the

graph. For k C 2, we say a graph is k-edge-connected if it

has at least two vertices and no set of at most k - 1 edges

separates it.

The k-connectivity property is important from the net-

work reliability perspective. In particular, a k-connected

network remains connected if less than k nodes are
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removed from the network as a result of node failures or an

attack by an enemy. Moreover, k-connectivity is necessary

for multi-path routing. The concept of k-connectivity

considers a random graph and infers that there exists k

disjoint paths between each pair of nodes. Thus, there exist

k disjoint paths between any two nodes if an only if the

associated random graph is k-connected. In terms of

wireless networks, this implies that, on the link level, there

exists k disjoint paths from each pair of nodes by hopping

through unique sets of intermediate nodes. In the case of

sensor networks, it is important to show the k-connectivity

between the base station(s) and each sensor node in the

field. However it is still up to the route discovery mecha-

nism to find these k disjoint paths. The existence of the

giant component is important when the network loses

connectivity. In some applications, it is sufficient for the

operation of the network to have a large subset of active

nodes connected to each other (i.e., the network possesses a

giant component).

Throughout the paper we assume BðR2Þ is the Borel

r-algebra on R
2 and m is the Lebesgue measure on

BðR2Þ:BðX;RÞ is the closed ball with radius R centered at X

in R
2: SðX; LÞ is the closed square with side L centered at X

in R
2: In particular S0 ¼ SðO; 1Þ is the closed square with

unit area centered at the origin. For any E 2 BðR2Þ we

define mðEÞ ¼ mðE \ S0Þ: Clearly m defines a measure on

BðR2Þ: For an integer n; ðnÞk ¼ nðn� 1Þ. . .ðn� k þ 1Þ:
For a random variable Y, E(Y)k shows the kth factorial

moment. That is EðYÞk ¼ E½YðY � 1Þ. . .ðY � k þ 1Þ�: Let

en be an event depending on a parameter n. We say that en

holds asymptotically almost surely, or en holds with high

probability, if Pr{en} tends to 1 as n??. For two

sequences an and bn, an� bn means lim
n!1

an

bn
¼ 1:

The remainder of the paper is structured into several

parts. The next section provides an overview of the work

related to our study. Section 3 establishes the formula-

tion and preliminaries of the problem we have consid-

ered. Section 4 studies sensor networks with unreliable

links and establishes proofs pertaining to connectivity

and k-connectivity. Section 5 considers unreliable sensors

and establishes a general connection between reliable

and unreliable networks. We study some properties of

unreliable sensor networks such as connectivity and the

existence of the giant component. Section 6 contains

simulations of these graph theoretic properties, in par-

ticular k-connectivity and average path lengths for net-

works with unreliable links and giant component analysis

for networks with unreliable sensors. We propose some

extensions of our work by applying them to specific

routing algorithms in Sect. 7. Finally Sect. 8 concludes

the paper.

2 Related work

Related problems to graph theoretic results in this paper

have been studied in the context of random graph theory

[5], continuum percolation and geometric probability [6–

10] and the study of wireless network graphs [11–16]. In

random graph theory, the model G(n, p) is extensively

studied, in which edges appear in a graph of n vertices with

probability p independently of each other. In continuum

percolation theory, usually infinite graphs on R
d are stud-

ied. Finally, in geometric probability and the study of

graphs of wireless networks, the graphs in which nodes and

links are reliable are usually studied.

Previously, k-connectivity of wireless networks has been

studied in [17] and [18]. In [17] k-connectivity is studied in

the context of fault-tolerant networks. The authors find

lower bounds for the probability that the network is

k-connected. They also present a method to control the

network topology given that the network is k-tolerant

(k-connected). In [18], authors study the asymptotic critical

transmission radius for k-connectivity and asymptotic

critical neighbor number for k-connectivity in wireless

networks. The connectivity in ad-hoc and hybrid networks

is studied in [19]. In [19], authors specifically consider the

effect of base stations. They show that the introduction of a

sparse network of base stations significantly increases the

connectivity. In [20], trade-off between connectivity and

capacity of dense networks is studied. In particular, the

effect of the attenuation function on network properties is

studied. In [21], authors consider a model in which two

nodes can communicate if and only if the signal to noise

ratio at the receiver is higher than some threshold. Thus, in

this way they study the impact of interferences on the

connectivity of ad hoc networks.

In this paper, we consider the connectivity properties of

large-scale sensor networks. Thus, we consider the effects

of the specific parameters of sensor networks on network

properties. In particular, we consider unreliable links,

unreliable nodes, and non-uniform distribution of nodes.

However, in the papers mentioned above, it is assumed that

links and nodes do not experience failures and nodes are

distributed uniformly at random over the region. It is

sometimes trivial to extend the previous results to include

sensor networks (with node and link failures and non-

uniform distribution). However, in many cases these new

properties of sensor networks introduce new challenges.

Thus, in this paper we need to use new methods for ana-

lyzing network properties. In particular, this paper provides

the following contributions:

• It provides a detailed analysis on how the link failures

affect connectivity and k-connectivity of sensor net-

works. The new challenges that arise from boundary
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conditions and the different regions for failure proba-

bilities are addressed.

• It obtains the distributions for isolated nodes and

discusses the effect of the sensor deployment density on

the connectivity and the required transmission power.

• It introduces a general result that relates reliable

networks and unreliable networks. This result provides

a tool to extend the previous results on reliable

networks to the case of networks with unreliable links

and nodes.

• Using the general framework, it studies the emergence

of the giant component in wireless sensor networks.

• The length of the shortest paths in the network is

studied and the implications on multi-path routing

algorithms are discussed.

It is worth noting that the node failure has been studied in

[16]. However, the sensor deployment is confined to a grid

and the random distribution of nodes is unexplored. A

similar issue to link failures has been studied in [22] in the

context of gossip-based routing. They introduce a gossiping-

based routing, where each node forwards a message with

some probability. However, [22] only provides empirical

results. Moreover, in this paper, we introduce new results

about the path lengths and latency in k-connected networks.

In particular, we show that multi-path routing can be done

efficiently (in a certain sense) in sensor networks.

In this paper we also consider multi-path routing with its

implicit connection to k-connectivity. Several works have

been published in sensor network multiple-path routing.

Ganesan et al. [23] introduces multi-path routing in wire-

less sensor networks and considers disjoint and braided

multi-paths. Our work provides the underlying mathemat-

ical foundations for which these algorithms may be

applied. Multi-path routing in ad hoc networks has also

been studied in [24]. Ayanoglu et al. [25] study coding

diversity in multiple paths. The results in the following

sections, particularly the study of k-connectivity, help to

formalize the connectivity and availability of multiple

paths in large-scale sensor networks.

Finally, there are some other papers that have empirically

studied node failures and the lifetime of wireless sensor

networks. Lifetimes of networks have also been considered

in terms of energy usage of proposed communications and

routing algorithms. Ganesan et al. [23] study the presence of

patterned and isolated failures as it relates to multi-path

routing. In [26], the lifetime of the network is measured in

terms of the number of alive nodes as a function of time for a

specific routing algorithm in LEACH. There are also com-

parisons the energy usage over time for several multicast and

flooding schemes against proposed algorithm [27, 28]. Other

common studies consider the packet delivery ratio [29, 30],

but this work considers properties of the network on the link

level. Our paper focuses on the broader scope of properties of

wireless sensor networks as a whole, including connectivity,

average path length, and the presence of a giant component.

3 Formulation and preliminaries

In this section we provide some definitions and preliminary

lemmas that are needed throughout the paper. Wireless

networks are sometimes modeled by the probability space

of graphs that we represent with g(n, r(n)). The properties

of this model have been studied previously [11, 12, 31]. In

this model, it is assumed that n nodes are uniformly and

randomly distributed over S0 ¼ SðO; 1Þ: If two nodes u

and v satisfy d(u, v) B r(n) (d(u, v) is the Euclidean dis-

tance between u and v), then the edge {u, v} belongs to

edges of the graph. A more general model is the model

g(n, r(n), fXY) that is defined as follows. Let X and Y be

absolutely continuous random variables with continuous

joint density function fXY(x, y) satisfying fXY(x, y) [ 0 for

all ðx; yÞ 2 S0 ¼ SðO; 1Þ; and fXY(x, y) = 0 otherwise. A

graph in g(n, r, f) has n nodes and is generated as follows.

For any node v, its position (X, Y) is chosen according to

fXY(x, y) independently of other nodes. If two nodes u and v

satisfy d(u, v) B r(n), then the edge {u, v} belongs to

edges of the graph.

However, to study sensor networks, we now introduce

two new parameters, link failure probability 1 - pe(n) and

node failure probability 1 - psf(x, y, n) = 1 - psf(x, y)

psf(n). We first consider networks experiencing link failures.

We introduce the probability space g(n, r(n), fXY(x, y), pe(n))

that we use to model graphs of sensor networks with

possibly unreliable links. Let X and Y be absolutely con-

tinuous random variables with continuous joint density

function fXY(x, y) satisfying fXY(x, y) [ 0 for all ðx; yÞ 2
S0 ¼ SðO; 1Þ; and fXY(x, y) = 0 otherwise. A graph in

g(n, r(n), fXY(x, y), pe(n)) has n nodes and is generated as

follows. For any node v, its position (X, Y) is chosen

according to fXY(x, y) independently of other nodes. If two

nodes u and v satisfy d(u, v) B r(n), then with probabil-

ity pe(n) the edge {u, v} belongs to the edges of the

graph. Note that in the above model sensors are assumed to

be reliable. Similar to reliable networks, if fXYðx; yÞ ¼
1fðx;yÞ2S0g (i.e., nodes are distributed uniformly over the

square S0), we show the corresponding random graph by

g(n, r(n), pe(n)).

We then consider node failures. To study sensor net-

works with unreliable nodes, we define the probability

space g(n, r(n), psf(x, y, n)), where psf(x, y, n) = psf(x,

y)psf(n). In this model n nodes are uniformly and randomly

distributed over S0; however, a sensor node at the point

(x, y) is active with probability psf(x, y)psf(n) and fails with

probability 1 - psf(x, y)psf(n). The function psf(x, y)
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models the possible spatial dependency of failure proba-

bility and psf(n) models possible dependency on n. The

nodes that are not active are assumed to be removed from

the graph. If two active nodes u and v satisfy d(u, v) B r(n),

then the edge {u, v} belongs to edges of the graph. The

generalized model g(n, r(n), fXY(x, y),psf(x, y, n)) is defined

similarly. Finally we will consider the combined model

g(n, r(n), fXY(x, y), pe(n), psf(x, y, n)). For simplicity, when

there is no danger of confusion, we may drop the argu-

ments, for example we may use g(n, r, fXY) instead of

g(n, r(n), fXY(x, y)). For the purpose of analysis, we divide

the square S0 to different regions shown in Fig. 1.

The following lemma is useful when working on large-

scale wireless sensor networks. It can be proved using

direct computations and taking limits.

Lemma 1

lim
x
r!o

pr2 � m Bð0; rÞ \ Bðð0; xÞ; rÞ
� �

2rx

2
4

3
5 ¼ 1: ð2Þ

lim
x
r!o

m Bðð1
2
� x; 0Þ; rÞ

� �
� pr2

2

2rx

2
4

3
5 ¼ 1: ð3Þ

We frequently need to find asymptotic behavior of

integrals of the form

Zþ1

�1

uðx; nÞdx n!1; ð4Þ

in which u(x, n) has a sharp peak. These integrals can

usually be approximated by the contribution of some

neighborhood of the peak. This method is usually called the

Laplace method for integrals.

We now quickly review some definitions and results

from continuum percolation that we will need later. For a

point process v on R
2 and a Borel set A, let v(A) be the

number of points of the process in A. The point process is

said to be a Poisson process with density k[ 0 if [31]

• For mutually disjoint Borel sets A1;A2; . . .;Ak; the

random variables vðA1Þ; . . .; vðAkÞ are mutually

independent.

• For any bounded Borel set A 2 BðR2Þ and for every

k C 0, we have

Pr vðAÞ ¼ kf g ¼ ekmðAÞk
kðmðAÞÞk

k!
: ð5Þ

The model for continuum percolation that we use in this

paper is obtained from a Poisson process that is

conditioned to have a point at the origin vk [ fOg and a

connection radius d. In this model two points are connected

to each other by an edge if their distance is less than or

equal to d. We denote this model by (vk, d) and show the

corresponding graph by g(vk, d). Let pk(k) be the

probability that the component of g(vk, 1) containing the

origin has k vertices. Then the percolation probability

p?(k) is the probability that O lies in an infinite component

of the graph g(vk, 1), and is defined by [6, 31]

p1ðkÞ ¼ 1�
X1
k¼1

pkðkÞ: ð6Þ

The critical value kc which is called the continuum

percolation threshold is defined by

kc ¼ inffk[ 0: p1ðkÞ[ 0g: ð7Þ

It is well-known that 0 \ kc \?. In particular, we

know that .696 \ kc \ 3.372 [6, 31].

4 Networks with unreliable links

In this section, we study the random graph g(n, r(n),

fXY(x, y), pe(n)). Here is the summary of the results. In

Sect. 1, we study connectivity (1-connectivity). Theorem

1 relates k-connectivity to minimum vertex degree. This

simplifies the study of connectivity. In particular, Theo-

rem 1 relates the connectivity to isolated vertices. The-

orem 2 gives conditions for having isolated vertices. By

combining Theorems 1 and 2, the connectivity of

g(n, r(n), pe(n)) is characterized in Theorem 3. Lemma 2

is used to show the existence of isolated vertices in the

proof of Theorem 3. Theorem 4 takes the study one step

further and provides the distribution of the isolated

vertices for the unconnected networks. Finally, Theorem

5 generalizes the results for any continuous distribution

of the sensor node deployment. In Sect. 2, we generalize

the results for k-connectivity.

r(n)

1

r(n)

1

1S 2S

3S

Fig. 1 The field S0 and its divisions S1, S2, and S3
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4.1 Connectivity

We first consider the case where fXYðx; yÞ ¼ 1fðx;yÞ2S0g (i.e.,

nodes are distributed uniformly over the square S0). As we

discussed, in this case we show the random graph by

g(n, r(n), pe(n)). Similar results for general fXY(x, y) will be

given later. We first need to prove a lemma. Let

An;1;An;2; . . .;An;n be a sequence of events in the proba-

bility space ðXn;F n;PnÞ: Let Xn,j be the random variable

defined to be one when An,j occurs and zero otherwise for

j ¼ 1; 2; . . .; n: Let also Xn ¼
Pn

j¼1 Xn;j be the number of

events that occur from the set fAn;1;An;2; . . .;An;ng: Define

ln ¼ E½Xn� ¼
Xn

j¼1

PrfAn;jg; ð8Þ

Dn ¼
Xn

i¼1

X
j 6¼i

PrfAn;i \ An;jg: ð9Þ

We now state the following lemma which is similar to

Janson’s inequality; however, it is applicable to a more

general case.

Lemma 2 Let An, j, Dn, lnbe as defined. Assume

lim
n!1

ln ¼ l; 0� l�1 and lim
n!1

Dn ¼ D; 0�D�1:

Then

lim sup
n!1

Pr
\n
i¼1

An;i

( )
� 1� lþ D

2
: ð10Þ

If D C l, then

lim sup
n!1

Pr
\n
i¼1

An;i

( )
� 1� l2

2D
: ð11Þ

Proof We have

1� Pr
\n
i¼1

An;i

( )

�
Xn

j¼1

PrfAn;jg �
Xn

i¼1

X
j� i

PrfAn;i \ An;jg

¼ ln �
Dn

2

ð12Þ

Thus,

lim sup
n!1

Pr
\n
i¼1

An;i

( )
� 1� lþ D

2
: ð13Þ

Now, if D C l, Then
ln

Dn
� 1þ oð1Þ: Let J �

f1; 2; . . .; ng be chosen in the following way. For any i 2
f1; 2; . . .; ng; we have i 2 J with probability

ln

Dn
ð1� oð1ÞÞ

� 1 independently. Then, using (12) we have

Pr
\
i2J

An;i

( )
� 1�

X
i2J

PrfAn;ig

þ 1

2

X
i2J

X
j2J;j6¼i

PrfAn;i \ An;jg:
: ð14Þ

By taking expectation, we get

E Pr
\
i2J

An;i

( )" #
� 1� E

X
i2J

PrfAn;ig
" #

þ E
1

2

Xn

i2J

X
j2J;j6¼i

PrfAn;i \ An;jg
" #

¼ 1� ln

Dn
ln �

ln

Dn

� �2Dn

2
þ oð1Þ

¼ 1� l2
n

2Dn
þ oð1Þ: ð15Þ

In particular, there exists J � f1; 2; . . .; ng such that

Pr
\
i2J

An;i

( )
� 1� l2

n

2Dn
þ oð1Þ: ð16Þ

Therefore, we obtain

Pr
\n
i¼1

An;i

( )
� Pr

\
i2J

An;i

( )
� 1� l2

n

2Dn
þ oð1Þ: ð17Þ

Taking limits we obtain

lim sup
n!1

Pr
\n
i¼1

An;i

( )
� 1� l2

2D
: ð18Þ

Consider the class of graphs g(r) = g(n, r, f, pe) in

which the radius r is variable and all other parameters are

fixed. In other words, to generate a class of graphs from the

ensemble, we place n nodes randomly and independently

on S0. For any two nodes v and w, we assign the number

xvw which is zero with probability 1 - pe(n) and is 1 with

probability pe(n). Now for a given r, the vertices v and w

are connected by an edge if and only if xvw = 1 and

d(u, v) B r. Let Q be a property of graphs and let

rðQÞ ¼ inffr: g(r) has Qg: ð19Þ

Let Qc,k be the property of being k-connected and let Qd,k

be the property that the minimum degree of the graph is at

least k. The following result is very similar to the one for

the g(n,p) model. It can be shown by using arguments

similar to [32] and [10] and we omit the proof due to the

space limitation.

Theorem 1 Given a positive integer k, for almost all g(r)

in g(n, r, f, pe) we have

rðQc;kÞ ¼ rðQd;kÞ: ð20Þ
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We note that if r(Qce,k) is the corresponding threshold for

k-edge-connectivity, we have r(Qc,k) C r(Qce,k) C r(Qd,k).

Thus Theorem 1 implies that r(Qc,k) = r(Qce,k) = r(Qd,k).

Discussion This theorem states that for large enough

networks, the graph is k-connected if and only if the

minimum vertex degree is at least k. This is very useful

because studying the minimum degree is much simpler

than studying k-connectivity. This can also be useful in

practice when we want to check the connectivity number of

the networks. A simple algorithm is to look at the mini-

mum vertex degree in the graph.

We now consider the connectivity of the random graph

g(n, r, pe). Let V = {v1, v2,…, vn} be the set of vertices of

a random graph gn = g(n, r, pe) that are uniformly placed

on S0 ¼ SðO; 1Þ: Suppose Xi ¼ ðxi; yiÞ is the position of vi

for i = 1, 2,…, n and Bi ¼ BðXi; rðnÞÞ is the coverage area

of vi. For any node vi, if we know the location of the node

Xi ¼ ðxi; yiÞ; then the probability that the node is isolated

(i.e., the node is not connected to any other node in the

graph) is given by

1� mðBiÞpeðnÞð Þn�1: ð21Þ

Since Xi ¼ ðxi; yiÞ is uniformly distributed over S0, the

probability that a certain node in the graph is isolated is

given by

n

Z
S0

1� mðBðX; rðnÞÞÞpeðnÞ
� �n�1

dmðXÞ: ð22Þ

Let Zn be the number of isolated vertices in gn. Then

EZn ¼ EZnðrðnÞÞ

¼ n

Z
S0

1� mðBðX; rðnÞÞÞpeðnÞ
� �n�1

dmðXÞ: ð23Þ

It is easy to prove that EZn is a decreasing function of n and

there exists r*(n) satisfying 0� lim
n!1

EZnðr�ðnÞÞ�1: We

call r*(n) a threshold of gn = g(n, r, pe) for isolated ver-

tices. In fact, as we will see, r*(n) is a threshold for the

property of having isolated vertices in the graph. Thus by

Theorem 1, r*(n) is the connectivity threshold.

Theorem 2 Let peðnÞ� c
ln n ; for some constant c. Then r

(n) = r*(n) is a threshold of gn = g(n, r, pe) for isolated

vertices if and only if

0\ lim
n!1

�
npr2ðnÞpeðnÞ � lnðnÞ

�
�1: ð24Þ

More specifically, lim
n!1

EZnðrðnÞÞ ¼ 0 if and only if

lim
n!1

�
npr2ðnÞpeðnÞ � lnðnÞ

�
¼ 1 and lim

n!1
EZnðrðnÞÞ ¼

1 if and only if lim
n!1

�
npr2ðnÞpeðnÞ � lnðnÞ

�
¼ �1:

Discussion Theorem 2 gives us the threshold for isolated

vertices. As we will see asymptotically, this determines the

threshold for connectivity. This theorem also reveals an

important difference between reliable networks like g(n, r)

and unreliable networks such as g(n, r, pe). To see this, let

us examine the condition peðnÞ� c
ln n : It is worth noting

that the condition peðnÞ� c
ln n is not crucial for our proofs.

We can still prove the existence of connectivity thresholds

without assuming this condition. However, without this

assumption, the results would not have closed form rep-

resentation. Instead, they would include integrals over the

region. Hence, the results would depend on the field shape

and boundary. As we will see, by assuming peðnÞ� c
ln n ; we

will obtain very simple conditions for connectivity and the

results would not depend on the shape of the sensor field. In

fact, although we prove the theorems for S0, they can be

extended to all regions with smooth boundary. Thus unlike

reliable networks, in unreliable networks, if pe(n) is small,

the connectivity properties of the networks may depend on

the shape of the deployment field. In these networks, unlike

the reliable networks, the boundary effects are important.

Nevertheless, in most practical applications such as random

key distribution schemes, the condition peðnÞ� c
ln n is

usually satisfied. This theorem is proved in the Appendix.

The connectivity of g(n, r, pe) can be characterized by

the following theorem.

Theorem 3 Consider the random graph g ¼ gðn; r; peÞ:
Let peðnÞ� c

lnn ; for some constant c. Then g is connected

asymptotically almost surely if and only if lim
n!1

�
npr2ðnÞ

peðnÞ � lnðnÞ
�
¼ 1:

Discussion Theorem 3 gives a necessary and sufficient

condition for connectivity of g(n, r, pe). In particular, we

can observe the effect of link failures on the connectivity of

the network. Under the condition peðnÞ� c
ln n ; the effect of

pe can be modeled by defining an effective radius reff ðnÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
peðnÞ

p
rðnÞ: That is, the random graph g(n,r,pe) is

asymptotically almost surely connected if and only if

g(n,reff) is connected asymptotically almost surely. How-

ever, if the condition peðnÞ� c
ln n does not hold, such an

easy interpretation is not possible. The theorem is proved

in the Appendix.

Moreover, we can find the distribution of the isolated

vertices as follows.

Theorem 4 Consider the random graph g = g(n, r, pe)

for which peðnÞ� c
ln n : Let

rðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nþ c

pnpeðnÞ

s
: ð25Þ
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Let I n be the number of isolated vertices in g, which are

in Sð0; 1� 2rðnÞÞ: Let I 2 Poðe�cÞ (i.e., I has Poisson

distribution with mean e-c). Then In converges in distri-

bution to I.

Discussion Theorem 4 gives the distribution of the

number of isolated vertices in g(n, r, pe). First of all, if the

condition of Theorem 3 is satisfied, then we should have

c ? ? and thus e-c ? 0, which implies that there is no

isolated vertices in the network with high probability. This

is obviously predictable because the network should be

connected in this case. On the other hand, when c \? the

network is not connected because of some isolated vertices.

One way to solve this problem is to increase the commu-

nication coverage of the isolated vertices such that they get

connected to the rest of the graph. Theorem 4 provides the

number of isolated vertices in the network in these situa-

tions. Thus, we can estimate the amount of extra trans-

mission power needed for connectivity.

Proof We use the method of factorial moments to prove

the theorem. It suffices to show

EðInÞk ! e�kc as n!1 for k ¼ 1; 2; . . . ð26Þ

In fact, for k = 1 and 2, this has been shown in the proof of

Theorem 3 and it is easily extendable to higher values of k.

Let IsðX1;X2; . . .;XkÞ be the probability that the nodes

which are located at the locations X1;X2; . . .;Xk are

isolated in g = g(n, r, pe). Then

EðInÞk¼ðnÞk
Z

ðS1Þk

IsðX1;X2; . . .;XkÞdmðX1;X2; . . .;XkÞ ð27Þ

Thus, for example by (46) in the Appendix, EðInÞ1 !
e�c as n!1: For k = 2, we note that E(In)2 = (1 -

o(1))Dn
1, where Dn

1 defined in (54). Thus, using (55), we

conclude that EðInÞ2 ! e�2c as n!1: Finally, we note

that this argument can be generalized for an arbitrary k.h

In summary, Theorem 3 gives the necessary and suffi-

cient condition for connectivity for g = g(n, r, pe). We

now generalize this result to any other continuous density

function fXY(x, y) as follows. First, note that since S0 is a

compact set in R
2 and fXY(x, y) [ 0 for all ðx; yÞ 2 Bð0;RÞ;

the function fXY(x, y) has a strictly positive minimum on

Bð0;RÞ: We call this minimum fmin. The following theorem

gives the the necessary and sufficient condition for con-

nectivity of g = g(n, r, f, pe).

Theorem 5 Consider the random graph g = g(n, r, f, pe)

for which peðnÞ� c
ln n ; and fmin ¼ minffXYðx; yÞ; ðx; yÞ

2 S0g:Then g is connected asymptotically almost surely if

and only if there exists x(n) satisfying x(n) ? ? as n

? ? and n0 [ 0 such that

rðnÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nþ xðnÞ
npeðnÞpfmin

s
for n� n0: ð28Þ

Discussion The main message here is that the

connectivity condition is completely determined by the

area in the field that has the lowest density fmin. Thus, if we

have a non-uniform distribution of nodes, assuming the

same communication radius, we will need more nodes to

obtain a connected network.

Proof (Sketch) If rðnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nþxðnÞ
npeðnÞpfmin

q
; then the expected

number of isolated vertices in S0 tends to zero by direct

calculation and by comparison with (23). Thus, there are no

isolated vertices with high probability. On the other hand,

if lim
n!1

sup xðnÞ in (28) is finite, then for a small enough e,

we consider a square S0 in S0 such that fXY(x,y)

\ (1 ? e)fmin for all ðx; yÞ 2 S0: Then, similar to the proof

of Theorem 3, we can show that with a strictly positive

probability independent of n, there exists an isolated vertex

in S0. h

This theorem implies an interesting property of the

uniform distribution:

Corollary 1 The uniform distribution fXYðx; yÞ ¼ 1fðx;yÞ2S0g
requires the lowest amount of transmission power for

connectivity.

If we let pe(n) be the probability of having a shared

secret key between two nodes, then Theorem 5 gives a

necessary and sufficient condition for the connectivity of

the graph in the general key distribution schemes.

4.2 K-connectivity

In this section we study the k-connectivity property of

g(n, r, f, pe). In summary, the k-connectivity transitions are

very sharp. In fact, similar to the situation in G(n, p) model, it

can be shown that increasing pr2ðnÞpeðnÞ ln n by an additive

factor Oðln ln nÞ will change the probability of k-connec-

tivity from o(1) to 1 - o(1). Although, this can be proved

using similar arguments to the previous section, for analyz-

ing sensor networks, we might be interested in a coarser view

of the k-connectivity threshold. Again, for simplicity we

prove the result for the case fXYðx; yÞ ¼ 1fðx;yÞ2S0g; and then

state the general result for other densities by considering the

minimum value of the density function fmin.

Theorem 6 Consider the random graph g = g(n, r, pe).

Let peðnÞ� c
ln n ; for some constant c. Assume

lim
n!1

npr2ðnÞpeðnÞ
ln n

� �
¼ a: ð29Þ
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Let k be a positive integer. If a[ 1, then g is k-connected

asymptotically almost surely. On the other hand, if a\ 1,

then g is not k-connected asymptotically almost surely.

Discussion Note that the condition given here for

k-connectivity does not depend on k. We can actually give

a more refined condition for k-connectivity, and show that

increasing pr2ðnÞpeðnÞ ln n by an additive factor Oðln ln nÞ
will change the probability of k-connectivity from o(1) to

1 - o(1). However, in practice the condition given here is

sufficient to show the behavior of k-connectivity. An

important conclusion that we obtain here is that, the tran-

sition from a disconnected graph to a fully k-connected

graph is very sharp in large-scale sensor networks. Thus,

for example, the graph is actually disconnected with high

probability when a = .99. On the other hand choosing

a = 1.01, the graph suddenly becomes k-connected.

However, in practice, depending on the network size, we

may need to choose a larger a to ensure k-connectivity.

It is also worth noting that for the special case of

reliable networks in which pe(n) = 1, the result of The-

orem 6 is consistent with [17]. In particular, for reliable

networks, it is shown in [17] that if npr2ðnÞ� ln nþ
ð2k � 1Þ ln ln n� 2 lnðk!Þ þ 2b; then the probability that

the network is (k ? 1)-connected is at least e�e�b
: Now

for pe(n) = 1, our condition reduces to lim
n!1

npr2ðnÞ
ln n

� �
[ 1:

It easy to see that under this condition we should have

lim
n!1

b ¼ þ1: Thus, the probability of (k ? 1)-connec-

tivity, e�e�b
; converges to one when n approaches infinity,

as suggested by Theorem 6. This theorem is proved in the

Appendix.

Similar to Theorem 5, we can generalize Theorem 6 to

other density functions.

Theorem 7 Consider the random graph g = g(n, r, f, pe)

for which peðnÞ� c
ln n ; and fmin ¼ minffXYðx; yÞ; ðx; yÞ 2

S0g: Assume

lim
n!1

nfminpr2ðnÞpeðnÞ
ln n

� �
¼ a: ð30Þ

Let k be a positive integer. If a[ 1, then g is k-connected

asymptotically almost surely. On the other hand, if a\ 1,

then g is not k-connected asymptotically almost surely.

As we mentioned previously, k-connectivity is a nec-

essary and sufficient condition for the existence of at least

k-disjoint paths between every two vertices in the graph. In

sensor networks, we may only need k disjoint paths

between the sink and other nodes. However, in large scale

sensor networks, this requirement is also equivalent to

k-connectivity. The reason is as follows. If the graph is

k-connected then obviously there are at least k disjoint

paths between the sink and any other node in the graph. On

the other hand, if the graph is not k-connected, there is a

node in the graph with degree lower than k with high

probability by Theorem 1. Thus, there cannot be k disjoint

paths between this node and the sink.

5 Networks with unreliable sensors

Here, we consider sensor failures. The summary of the

results is as follows. In Sect. 1 we provide fundamental

results that relate unreliable networks to the reliable ones.

First, using Lemma 3, we simplify the analysis by reducing

the graph model g(n, r(n), fXY(x, y), psf(x, y, n)) to g(n, r(n),

fXY(x, y), psf(n)). We then prove Theorem 8 which shows a

general method to obtain the properties of the unreliable

networks using the previously known results concerning the

reliable networks. Theorem 9 is a converse to Theorem 8.

Section 2 provides two important applications of these

results. Theorem 10 provides a necessary and sufficient

condition for k-connectivity. Theorem 12 provides condi-

tions for having a giant component. Finally, in Sect. 3, we

combine the results on link failures and node failures.

5.1 Connection between reliable and unreliable

networks

In continuum percolation, unreliable nodes are handled

easily by using the Thinning Theorem, which states that an

unreliable (with the above definition of reliability) Poisson

process is equivalent to a reliable one. For instance, if in

the process vk, each node is accepted with probability p and

rejected with probability 1 - p, then the resulting process

is equivalent to vk p, that is a Poisson point process with

density kp. However, the relation between reliable graphs

(g(n, r(n), fXY)) and unreliable graphs (g(n, r(n), fXY, psf))

is more complicated. In this section, we prove a general

result about this relation. This results allows us to find

properties of unreliable sensor networks from the well

studied model for reliable networks.

Note that a common choice for psf(x, y, n) is a spatially

uniform distribution of unreliability, that is psf(x, y, n) =

psf(n) for all ðx; yÞ 2 S0:However, in some scenarios, sensor

nodes at some part of the field may be more prone to failure

than other parts. For these situations a spatially non-uniform

psf(x, y, n) is more suitable. We first prove that it suffices to

study the uniform psf(x, y, n) = psf(n). This is because any

g(n, r(n), fXY(x, y),psf(x, y, n)) is equivalent to g(n, r(n),

f0XY(x, y), p0sf(n)) for some f0XY(x, y) and p0sf(n) as shown in

below. Remember we always assume psf(x, y, n) = psf(x, y)

psf(n).
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Lemma 3 The two models g(n, r(n), fXY(x, y), psf(x, y, n))

and g(n, r(n), fXY
0(x, y), psf

0(n)) are equivalent if

f 0XYðx; yÞ ¼
fXYðx; yÞpsf ðx; yÞR

S0
fXYðx; yÞpsf ðx; yÞdxdy

p0sf ðnÞ ¼
Z

S0

fXYðx; yÞpsf ðx; y; nÞdxdy:

ð31Þ

Discussion Note that as we mentioned before, in these

models we always assume that the failed sensors are

removed from the graph. Otherwise, obviously the two

models will not be equivalent. The importance of this

lemma is its implication that we only need to study

g(n, r(n), fXY(x, y), psf(n)). That is, we do not need to

consider the dependency of psf on the location (x, y)

because it can be absorbed in f0XY(x, y) as stated in the

lemma. This significantly simplifies the analysis.

Proof Since in both models the location of a sensor nodes

and its failure is independent of the other sensor nodes, it

suffices to prove that in both models each sensor fails with

the same probability, and if it does not fail its location has

the same probability distribution in both models. First, we

note that in g(n, r(n), fXY(x, y), psf(x, y, n)) each sensor is

active with probabilityZ
S0

fXYðx; yÞpsf ðx; y; nÞdxdy ¼ p0sf ðnÞ; ð32Þ

which is the corresponding probability in g(n, r(n),

f0XY, p0sf(n)). Now, if a sensor does not fail, in g(n, r(n),

f0XY, p0sf(n)) its location has the density function f0XY(x, y).

In g(n, r(n), fXY(x, y), psf(x, y, n)), if a node does not fail its

location has the density function

f 0XYðx; yÞ ¼
fXYðx; yÞpsf ðnÞpsf ðx; yÞR

S0
fXYðx; yÞpsf ðx; yÞpsf ðnÞdxdy

¼ fXYðx; yÞpsf ðx; yÞR
S0

fXYðx; yÞpsf ðx; yÞdxdy

¼ f 0XYðx; yÞ: (

Thus, from now on we study g(n, r(n), fXY(x, y), psf(n)).

We also note that the model g(n, r(n), fXY(x, y), psf(n)) is

similar to the GðPk; rÞ defined in [31] in the sense that both

have a random number of nodes. However, there is an

important distinction between them. The model GðPk; rÞ is

simpler to work with because of the spatial independency in

the Poisson process. However, we do not have such spatial

independency property in g(n,r(n),fXY(x,y),psf(n)). Thus, in

[31] the model GðPk; rÞ is used to prove some properties of

g(n, r(n), fXY) but here we use g(n, r(n), fXY) to prove

properties of g(n, r(n), fXY(x, y), psf(n)).

Let Q be a property of graphs. Then, g 2 Q means the

graph g has property Q. The following result establishes a

connection between reliable and unreliable networks. It is

in some sense similar to the relation between G(n, p) and

G(n, M) given in [5, 33] and in fact it is proved using a

similar argument. We say that almost every graph in

g(n, r(n), fXY(x, y), psf(n)) has Q if g(n, r(n), fXY(x, y), psf(n))

has Q asymptotically almost surely.

Theorem 8 Let Q be a graph property and let psf ðnÞð1�
psf ðnÞÞn!1 as n!1: If for every sequence m = m(n)

satisfying m ¼ npsf ðnÞ þ O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npsf ðnÞð1� psf ðnÞÞ

p� �
; we

have Pr{g(m(n), r(n), fXY(x, y)) has Q} ? 1 as n ? ?,

then almost every graph in g(n, r(n), fXY(x, y), psf(n)) has Q.

Discussion This is a fundamental theorem that relates

unreliable networks to reliable ones. In particular, it shows

how to apply any previously known result for reliable net-

works, to prove the same result for unreliable networks. Note

that the theorem is quite general and can be applied to any

properties of the networks, not just the connectivity properties.

Proof Let N(g) be the number of vertices of the graph g

and q(n) = 1 - psf(n). For any positive real number b, let

An(b) be the set of integers m satisfying jm� psf ðnÞnj
� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psf ðnÞqðnÞn

p
: Let En(b) be the event that Nðgðn; rðnÞ;

fXYðx; yÞ; psf ðnÞÞÞ 2 AnðbÞ and let Ec
nðbÞ be its compliment.

Then by Chebyshev’s inequality

PrfEc
nðbÞg ¼ PrfNðgðn; rðnÞ; fXYðx; yÞ; psf ðnÞÞÞ

2 AnðbÞg�
1

b2
:

Let also mmin(n) be an element of An(b) with the lowest

Pr{g(m(n),r(n),fXY(x,y))} and define mmax similarly. Then

we have

Prfgðn; r; fXY ; pÞÞ has Qg
� Prfgðn; r; fXY ; pÞÞ has Q given EnðbÞgPrfEnðbÞg

� PrfgðmminðnÞ; rðnÞ; fXYðx; yÞÞ has Qgð1� 1

b2
Þ

� ð1� oð1ÞÞð1� 1

b2
Þ:

If we let b tend to infinity, then 1� 1
b2 tends to one, thus we

conclude that Prfgðn; r; fXY ; pÞÞhas Qg is greater than any

fixed real number less than one. Thus Prfgðn; r; fXY ; pÞhas Qg
tends to one as n goes to infinity. Therefore, almost every

graph in g(n, r, fXY, p) has Q. h

Theorem 8 shows how to apply previously proven

results for reliable networks to prove the same results for

unreliable networks. The converse is also possible for

certain properties, although it is less interesting in this

paper. To show the converse we first need some definitions.

For two graphs g, g0 on R
2; we write g0 	v g if g0 is

obtained by deleting a subset of vertices of g. We say that

property Q is increasing if whenever g0 2 Q and g0 	v g
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then g 2 Q: Similarly, we say that property Q is decreasing

if whenever g 2 Q and g0 	v g then g0 2 Q: Finally Q is

said to be convex if g0 	v g 	v g00 and g02Q; g002Q imply

that g 2 Q: Note that the above definitions are slightly

different from the usual definitions of increasing,

decreasing, and convex properties in graph theory. Note

also that if Q is either increasing or decreasing then it is

convex. For example, if Q is the property of having a

specific subgraph, then obviously Q is increasing. There-

fore, it is also convex.

Suppose Q is an increasing property. Let p1
sf ðnÞ\p2

sf ðnÞ
and pðpi

sf ;QÞ be the probability that gðn; r; fXY ; p
i
sf Þ has Q

for i = 1, 2. Using a coupling argument we can easily

show that pðp1
sf ;QÞ� pðp2

sf ;QÞ: Thus, if gðn; r; fXY ; p
1
sf Þ 2

Q with high probability, then gðn; r; fXY ; p
2
sf Þ 2 Q with high

probability, as well. Similarly if Q is decreasing then

pðp1
sf ;QÞ� pðp2

sf ;QÞ: Finally if Q is a convex property and

we have gðn; r; fXY ; p
1
sf Þ 2 Q and gðn; r; fXY ; p

2
sf Þ 2 Q

with high probability, then we can conclude for p1
sf ðnÞ

\p3ðnÞsf \p2
sf ðnÞ;gðn; r; fXY ; p

3
sf Þ 2 Q with high probabil-

ity. Using this fact, we can prove the following theorem. It

states that for convex properties we can use unreliable

networks to prove the similar properties for reliable net-

works. Here, we just state the theorem and omit the proof.

Theorem 9 Let Q be a convex property and let psf

ðnÞð1� psf ðnÞÞn!1 as n ? ?. If almost every graph in

g(n, r(n), fXY(x, y), psf(n)) has Q, then for fixed real number

b, Pr{g(mx(n), r(n), fXY(x, y)) has Q} ? 1 as n ? ?,

where mbðnÞ ¼ bpsf ðnÞnþ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psf ðnÞqðnÞn

p
c:

Discussion This is the converse to Theorem 8. In other

words, if a result has been previously proven for

g(n, r(n), fXY(x, y), psf(n)), for psf(n) = 0, we can use this

theorem to conclude the same result for g(n, r(n), fXY(x, y)).

Finally, we end the section by noting that the number of

active nodes has a Gaussian distribution. Let N(g) be the

number of (active) vertices of the graph g = g(n, r(n),

fXY(x, y), psf(n)) and q(n) = 1 - psf(n). Define

UðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

Zx

�1

e�t2=2dt: ð33Þ

If psf(n)(1 - psf(n)) n ? ?, then by the Laplace-

Demoivre Theorem we have

PrfjNðgðn; r; fXY ; pÞÞ � psf ðnÞnj � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psf ðnÞqðnÞn

q
g

¼ ð1þ oð1ÞÞ½UðxÞ � Uð�xÞ�: ð34Þ

5.2 Some properties of unreliable sensor networks

In this section, we specifically study some important graph

theoretic properties of node-unreliable sensor networks.

We employ the results in the previous section relating

reliable and unreliable networks. These results can be

proved directly. However, using the previous work on

g(n, r(n), fXY(x, y)) and the previous section results, they

can be proved in a much simpler way. First, we find the

necessary and sufficient condition for k-connectivity. Then,

we study another important property in the existence of a

giant component. For simplicity we only consider the case

that nodes are distributed uniformly over the field. That is

fXYðx; yÞ ¼ 1fðx;yÞ2S0g: Thus we may use g(n, r(n), psf(n))

and g(n, r(n)) to represent g(n, r(n), fXY(x, y), psf(n)) and

g(n, r(n), fXY(x, y)) respectively.

We now study k-connectivity of g(n, r(n), fXY(x, y),

psf(n)). As a special case of Theorem 6 if we let pe(n) = 1,

then we obtain the following result.

Corollary 2 Consider the random graph g = g(n, r, fXY)

with fXYðx; yÞ ¼ 1fðx;yÞ2S0g: Assume

lim
n!1

npr2ðnÞ
ln n

� �
¼ a: ð35Þ

Let k be a positive integer. If a[ 1, then g is k-connected

asymptotically almost surely. On the other hand, if a\ 1,

then g is not k-connected asymptotically almost surely.

We now prove the following theorem on k-connectivity

of unreliable networks.

Theorem 10 Consider g = g(n, r(n), fXY(x,y), psf(n)) with

fXYðx; yÞ ¼ 1fðx;yÞ2S0g and assume npsf(n) ? ? as n ? ?.

Assume

lim
n!1

nppsf ðnÞr2ðnÞ
ln psf ðnÞ þ ln n

� �
¼ a: ð36Þ

Let k be a positive integer. If a[ 1, then g is k-connected

asymptotically almost surely. On the other hand, if a\ 1,

then g is not k-connected asymptotically almost surely.

Discussion Note that this is very similar to Theorem 6.

Thus, one way to prove this, is to use similar proofs given

for the previous section. However, as we see applying

Theorem 8 makes the proof much simpler.

Proof We use Theorem 8. Consider a sequence m = m(n)

satisfying m ¼ npsf ðnÞ þ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npsf ðnÞð1� psf ðnÞÞ

p
Þ; then

lim
mðnÞ!1

mðnÞpr2ðnÞ
ln mðnÞ

� �
¼ lim

n!1

npð1þ oð1ÞÞpr2ðnÞ
lnðnpð1þ oð1ÞÞ

� �
¼ a:

Thus, by Theorem 8 and Corollary 2, if a[ 1, then g is

k-connected asymptotically almost surely. On the other

hand, if a\ 1, then g is not k-connected asymptotically

almost surely. h

So far, we have studied conditions for connectivity

of unreliable sensor networks. On the other hand, if a

graph is not connected, it can be divided into connected
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components (disjoint connected subgraphs). In these situ-

ations, the sensor network may continue to operate if it has

one large component. For the graph g = g(n, r(n)) it has

been shown in [31] that there exists a threshold r*(n) such

that when r(n)/r*(n) \ 1, all components are small (loga-

rithmic in n) with high probability. On the other hand, if

r(n)/r*(n) [ 1, there exists one giant component (with size

linear in n), and other components are small. Note that if

the density function is not uniform, there may be more than

one giant component. We now generalize these results to

unreliable sensors. Again, for simplicity we only consider a

uniform distribution of nodes the field, that is fXYðx; yÞ ¼
1fðx;yÞ2S0g: Thus we drop the density function from the

notation. The general case of non-uniform distribution can

be proved similarly. Let Lj denote the size of the jth largest

component in a graph. We recall that the critical value kc is

the continuum percolation threshold. The following theo-

rem is proved in [31].

Theorem 11 Consider the random graph g(n, r(n)) and

suppose nr2ðnÞ ! k as n ? ?. Then, if 0 \ k\ kc, there

exists a positive constant d independent of n such that the

size of the largest component satisfies L1\d ln n with high

probability. On the other hand if k[ kc, there exists a

positive constant a independent of n such that the size of the

largest component satisfies L1 [ an with high probability.

Moreover, the size of other components is sublinear. That

is, for j [ 1, Lj/n ? 0 as n ? ? with high probability.

We now state and prove the corresponding result for

unreliable sensor networks, g(n, r(n), psf(n)).

Theorem 12 Consider the random graph g(n, r(n),

psf(n)) and suppose npsf(n) ? ? and n psf(n) r2(n) ? k as

n ? ?. Then if 0 \ k\ kc, there exists a positive con-

stant d independent of n such that the size of the largest

component satisfies L1\d ln n: On the other hand if

k[ kc, there exists a positive constant a independent of n

such that the size of the largest component satisfies

L1 [ anpsf(n) with high probability. Moreover the size of

other components is sublinear. That is for j [ 1, Lj/

(npsf(n)) ? 0 as n ? ? with high probability.

Discussion Note that direct proof of this theorem is very

involved and cumbersome. However, as we see by using

Theorem 8, the proof is almost trivial.

Proof Again we use Theorem 8. Consider a sequence m =

m(n) satisfying m ¼ npsf ðnÞ þ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npsf ðnÞð1� psf ðnÞÞ

p
Þ; then

lim
mðnÞ!1

mðnÞr2ðnÞ

¼ lim
n!1

npsf ðnÞ þ Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npsf ðnÞð1� psf ðnÞÞ

q
Þ

h i
r2ðnÞ

¼ lim
n!1

npð1þ oð1ÞÞr2ðnÞ ¼ k:

Thus, if 0 \ k\ kc, by Theorem 11, there exists a positive

constant d independent of n such that the size of the largest

component satisfies L1\dlnmðnÞ with high probability.

Thus, we conclude that there exists a positive constant d0

independent of n such that L1� d0 lnðnpsf ðnÞÞ: On the other

hand if k[ kc, there exists a positive constant a indepen-

dent of n such that the size of the largest component

satisfies L1 [ am(n) with high probability. Thus we

conclude that there exists a positive constant a0 indepen-

dent of n such that L1 [ a0npsf(n) with high probability.

Moreover, the size of other components is sublinear. Thus,

by Theorem 8 we conclude the proof of this theorem. h

5.3 Networks with Unreliable Links and Nodes

We can easily combine the results in previous sections to

analyze g(n, r, f, pe, psf). Here we state the results for

connectivity.

Corollary 3 Let Znbe the the number of isolated vertices

in gn = g(n, r, pe, psf) and assume peðnÞ� c
ln n ;for some

constant c Then r(n) = r*(n) is a threshold of g for the

existence of isolated vertices if and only if

0\ lim
n!1

�
npr2ðnÞpsf peðnÞ � lnðnÞ

�
\1: ð37Þ

More specifically, lim
n!1

EZnðrðnÞÞ ¼ 0 if and only if lim
n!1�

npr2ðnÞpsf ðnÞpeðnÞ � lnðnÞ
�
¼ 1 and lim

n!1
EZnðrðnÞÞ ¼

1 if and only if lim
n!1

�
npr2ðnÞpsf peðnÞ � lnðnÞ

�
¼ �1:

Corollary 4 Consider the random graph g = g(n, r, f, pe,

psf) for which peðnÞ� c
ln n ; and fmin ¼ minffXYðx; yÞ;

ðx; yÞ 2 S0g: Then g is connected asymptotically almost

surely if and only if there exists xðnÞsatisfying x(n) ? ?
as n ? ? and n0 [ 0 such that

rðnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln nþ xðnÞ
npsf ðnÞpeðnÞpfmin

s
for n� n0: ð38Þ

Corollary 5 Consider the random graph g = g(n, r, f,

pe, psf) for which peðnÞ� c
ln n ; and fmin ¼ minffXYðx; yÞ;

ðx; yÞ 2 S0g: Assume

lim
n!1

nfminpr2ðnÞpsf ðnÞpeðnÞ
ln n

� �
¼ a: ð39Þ

Let k be a positive integer. If a[ 1, Then g is k-connected

asymptotically almost surely. On the other hand, if a\ 1,

Then g is not k-connected asymptotically almost surely.

6 Simulation results

Simulations were run to verify the theoretical development

found in the previous sections. The implication of the
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preceding development is a threshold effect on connectiv-

ity under certain network parameters. We show this in

networks of varying communication radii (r(n)), contain-

ing unreliable sensors (sensor failure with probability

1 - psf(n)), unreliable links (link failure with probability

1 - pe(n)) and of varying distributions (fmin). Furthermore,

the developments have shown that k-connectivity is

achieved rapidly at this threshold. We provide the results of

simulations to validate these claims.

The results for networks of size n = {1000, 2000, 5000}

are provided. They have been deployed into a field S0 of

unit dimensions with finite communication radius, r(n). We

look at the probability of disconnectivity, pdisc, as a func-

tion of varying each of the network parameters that we

have considered in this work such as r(n), psf(n), pe(n), and

fmin. Looking at the various sizes of networks verifies that

the claims are asymptotically valid, as the behavior of

connectivity around a threshold is increasingly tighter. This

threshold effect is such that for values lower than this

threshold, the graph is disconnected with high probability.

For values above this threshold, the graph is connected

with high probability. Therefore, in the following figures,

we represent the theoretical threshold as a step function,

where pdisc = 1 for values below the threshold and

pdisc = 0 past this threshold. The simulations show that the

threshold effect occurs situations where each of the net-

work parameters are varied.

We also provide two related characteristics of network

connectivity in looking at shortest paths between nodes and

the presence of giant components. We look at the rela-

tionship between k-connectivity and average shortest path

lengths. We show an important result in that the first k

shortest paths in a k-connected graph have almost the same

length (by the length of a path, we mean the number of

hops). Also, we examine the size of the giant component is

simulated for networks with unreliable sensor nodes.

6.1 Connectivity versus communications radius

The threshold for the radius required to provide connec-

tivity has been derived in previous sections. In this section,

we provide simulation results to validate the theoretical

development of this property (38). As we consider net-

works of different size, we show that the minimum trans-

mission radius occurs at

rðnÞ� ð1þ eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln n

npsf ðnÞpeðnÞpfmin

s
ð40Þ

where e is some small fixed constant. Here we set e = .1.

We assume a fixed, uniform communications radius for

each node in the network. Additionally, the nodes are

distributed uniformly, fXYðx; yÞ ¼ 1fðx;yÞ2S0g; where also

psf(n) = pe(n) = 1. We see that (40) determines the value

of r(n) at which this threshold for connectivity should

occur. From Figs. 2, 3 and 4, we see a threshold effect in

pdisc as r(n) increases. The effect grows tighter to bound as

the size of the network increases. This was expected since

the theoretical results are asymptotic and apply to very

large networks.

6.2 Networks with unreliable links and sensors

With (38), we can also derive the requirement for psf(n) and

pe(n) to achieve connectivity within the network. In this

section, we provide simulation results to validate the
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Fig. 2 The minimum radius to provide connectivity for a network of

size n = 1000
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Fig. 3 The minimum radius to provide connectivity for a network of

size n = 2000
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threshold effect for networks with unreliable links and

sensors. We consider the two cases separately, but it also is

easy to consider them simultaneously. The sensor failure

occurs when after deployment, the node fails to commu-

nicate with any device with probability 1 - psf(n). For the

link failure, we assume that any link between two nodes

within the communication range of each other is formed

with probability pe(n). As we consider networks with

failures in either links or sensors, we show that connec-

tivity is achieved at

psf ðnÞ�
ln n

npeðnÞpfminr2ðnÞ ð1þ e0Þ ð41Þ

and

peðnÞ�
ln n

npsf ðnÞpfminr2ðnÞ ð1þ e0Þ ð42Þ

In experiment, we assume a fixed, uniform commu-

nications radius for each node in the network. Additionally,

the nodes are distributed uniformly, fXYðx; yÞ ¼ 1fðx;yÞ2S0g;
where we have fixed r(n) greater than the threshold of

connectivity for n = {1000, 2000, 5000}, respectively. For

instance, for n = 5000, we have chosen r(5000) = .05,

where the threshold value is r(n) C .0256. Figures 5, 6 and

7 show the probability of disconnectivity versus the values

of pe(n) or psf. For the plot where we vary pe(n) we set

psf(n) = 1 and where we vary psf(n) we set pe(n) = 1. We

have provided the results for networks of size n = {1000,

2000, 5000}, respectively. We see a threshold effect in pdisc

as pe(n) and psf(n) increase. The threshold effect is

increasingly drastic as the size of the network increases.

We note that as the network size increases, the simulation

results approach the theoretical threshold.
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Fig. 4 The minimum radius to provide k-connectivity for a network

of size n = 5000
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Fig. 5 Plot of pdisc versus both pe and psf for n = 1000
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Fig. 7 Plot of pdisc versus both pe and psf for n = 5000
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Fig. 6 Plot of pdisc versus both pe and psf for n = 2000
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6.3 Connectivity versus the distribution of nodes

within networks

Thus far, we have considered the case where the distribu-

tion of the nodes is uniform in S0. Recall the distribution

function fXYðx; yÞ ¼ 1fðx;yÞ2S0g: We have also stated that the

results are valid for any distribution, where the requirement

is dependent on fmin the minimum density in S0.

Therefore, we choose to look at the normal distribution,

with truncation. That is, we consider a bivariate normal

distribution of nodes on the unit area S0, only choosing

nodes whose coordinates were within S0. The relationship

between r and fmin is determined by (43) and (44).

The distribution of nodes in this case

fXYðxyÞ ¼ ae
�ðx2þy2Þ=2r2

fðx;yÞ2S0g : ð43Þ

where

a ¼
Z:5

�:5

Z:5

�:5

e�ðx
2þy2Þ=2r2

dydx

0
@

1
A
�1

ð44Þ

We are able to observe various values of fmin by varying

the value of r. In Fig. 8, we see that the threshold of pdisc

and observe that pdisc for the truncated bivariate normal

distributions follows the general threshold for connectivity.

Distributions were generated from several values in

r = [.2, 1]. Note that we considered reliable sensor

networks.

6.4 Average shortest path in k-connected networks

In this section we consider k-connectivity. Maintaining a

network with several paths when failures in links may

occur is important. Furthermore, in routing protocols,

multiple paths are used to add redundancy to packet

transmission through diversity [25]. Here, we show that for

a k-connected sensor network, the first k shortest paths

between two nodes in the network have almost the same

length. Therefore, when using multiple paths for trans-

mission, the latency between using different paths does not

deviate considerably.

In our simulation, we considered a network of n = 5000

nodes with a fixed uniform communication radius of r(n)

= .05 that ensures k-connectivity for k \ 6. We also set

pe(n) = psf(n) = 1. We select two nodes in extremal areas

of the region S0. The simulation finds the shortest path

between the extremal nodes. Then, the intermediate nodes,

those nodes which were used to traverse between the two

nodes, are eliminated from the network and the new

shortest path is found again. The experiment is repeated to

achieve the average shortest path for k-connectivity for k

= {1, 2, 3, 4, 5}. The result of this simulation shows that

the average shortest path for k = {1, 2, 3, 4, 5} varies by

only one hop. This shows confidence that latency among

multiple shortest paths does not vary greatly and also

demonstrates a great potential for routing algorithms that

consider multiple paths. This is a desirable property for

algorithms of large-scale sensor networks that employ

multiple paths for robust routing and networking schemes.

It is also a desirable property for networks with sleeping

sensors because it suggests that only a small penalty may

be paid if the first shortest path is not used for packet

transmission due to sleeping nodes (Fig. 9).

6.5 Giant component within networks

In some instances, it may be acceptable to not have full

connectivity with all nodes. Instead, a certain proportion of
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Fig. 8 Pdisc versus r for n = 5000
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Fig. 9 Average Shortest path for k = {1, 2, 3, 4, 5}, n = 5000,

r = .05
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the nodes may be connected and be able to function ade-

quately. In this simulation, we look to the presence of a

giant component within these networks, the largest subset

of the active nodes that is connected. We have considered

this problem in the case where unreliable nodes exist by

considering different values of the number of active nodes

in the network by varying psf(n) in a network of size n

= 10,000 with communication radius r(n) = .025.

In the Theorem 12, the threshold for the network to

possess a giant component defined

psf nr2 ¼ kc ffi 1:44) psf ffi :2304 ð45Þ

Therefore the size of the giant component will decrease

sharply as psf(n) decreases below .2304. We have identified

this characteristic to be important in the potentially

capability of sensor networks. Certainly, it is not

desirable for large portions of the network not to be able

to communicate with the majority of the nodes. This affects

the ability of the nodes to relay information back to the

base station.

Figure 10 shows the size of the giant component and the

number of active sensors as a function of psf(n). The solid

line represents the average number of active sensors in the

network for the specified value of the probability that a

node is active, psf(n), and the dashed lines with boxes is the

average size of the giant component in the network. This

additionally provides justification of the threshold effect of

wireless networks that we have described in this work. The

giant component has a threshold effect along with the

connectivity.

Collectively, in this section simulation results have

verified the theoretical exposition in the preceding sections.

We have considered connectivity properties of large-scale

networks of varying size. These simulations have con-

firmed the theoretical developments of unreliable networks

with sensor failures and link failures. We have also shown

that these claims are valid for other distributions of nodes.

Additionally, we have shown that the first shortest paths,

on average, are not drastically different in length for the k-

connected networks.

7 Possible applications

We now explore application to which this work may be

applied. The graph theoretic derivations and simulations

were completed independent of the consideration of spe-

cific routing protocols. This work addresses general con-

nectivity properties of large-scale sensor networks. The

results of this work would be practically useful to study

sensor networks with unreliable links and sensor nodes.

However, applying the concepts of connectivity that are

studied in this paper may provide further insight into the

resiliency of the multi-path elements of particular routing

algorithms or sleeping sensor networks. We present pre-

liminary analysis of several routing algorithms and how

this work may be extended to these specific cases. Three

algorithms have been selected, one from each of the three

classifications that was noted in [2].

(1) Directed diffusion [27] is a routing algorithm that

establishes a multi-hop network where the base

station broadcasts interests to the sensor network,

and the sensor nodes forward and respond to the

interests, forming interest gradients so that the flow of

information is established. Several paths from nodes

to the base stations, and based on a positive and

negative reinforcement scheme paths are utilized

according to their quality.

The reinforcement scheme benefits from the analysis

provided in this work. The number of hops in the k

paths from the nodes to the base stations is one

component in determining path quality. This work,

particularly the average shortest path of the k paths,

offers an indication of the lengths (number of hops) in

each of the possible paths. Therefore, it is possible to

measure the effects of having one or more paths in the

interest gradient to undergo negative reinforcement

and to determine the number and quality of the

remaining paths. There is a large potential of analysis

with Directed Diffusion and its k-connectivity prop-

erties. Generally, the data-centric routing protocols

may benefit greatly from the study of the k-connec-

tivity in large-scale sensor networks.

2) Low-energy adaptive clustering hierarchy (LEACH)

[34] is a hierarchical routing protocol that establishes

clusters of nodes based who send their information to a

local clusterhead, which is chosen by received signal
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Fig. 10 The size of the giant component and the number of active

nodes versus psf(n), the probability that a node is active
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strength and available energy. Each node rotates on a

random round schedule to become a clusterhead. In

this way, the network is partitioned into clusters,

where the clusterheads in each cluster communicate

directly with the base station.

LEACH does not employ a multi-hop strategy, and it

is apparent that this study does not offer analytical

insight into the general classification of hierarchical

routing protocols. However, it may be possible to

relate the study of k-connectivity to the approximate

neighborhood density of each node. With a k-con-

nected network this provides a lower bound on the

number of neighbors of each potential clusterhead.

However, this is not a direct application of the results

of this study.

3) Greedy perimeter stateless routing (GPSR) [30] is a

location-based routing protocol where knowledge of

the location of the sensors is available to sensor nodes;

therefore, the flow of information is done by forward-

ing packets to nodes that are closer to the intended

destination. For instances where there does not exist

such a node, a perimeter routing scheme is employed.

This routing protocol may benefit from a study on k-

connectivity. For this protocol, a planar graph is

required. In this way, a larger communication radius

would be required since potential links would not be

established to preserve the planar property of the

graph. Additionally, the study of the average path

length offers an idea of the increase in path length for

the paths which include the perimeter routing. Other,

location-based routing protocols figure to benefit from

similar analyses.

8 Conclusion

We studied several properties of large-scale sensor net-

works. We have investigated different graph theoretic

properties of sensor networks such as k-connectivity, giant

component and disjoint paths. We considered a model for

these networks that includes node and link failures. We

proved a general result connecting reliable and unreliable

networks. For any positive integer k, we derived the nec-

essary and sufficient conditions for k-connectivity of the

sensor network. If k = 1, the corresponding condition is

the necessary and sufficient condition for connectivity

which is clearly an important property of the network.

Moreover, k-connectivity is investigated for potential

application in multi-path routing or networks with sleeping

sensors. The giant component is also studied. We also

verified our results by simulation. In particular, we showed

that multiple disjoint paths can be found with length very

close to the length of the shortest path in a k-connected

sensor network. This shows the potential efficiency of

multi-path routing in large-scale sensor networks.
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Appendix

Proofs

Proof of Theorem 2

Proof Define xðnÞ :¼ npr2ðnÞpeðnÞ � lnðnÞ; thus

pr2ðnÞ ¼ ln nþxðnÞ
npeðnÞ : Let S1 ¼ SðO; 1� 2rðnÞÞ: We now

obtain

EZn ¼ n

Z
S0

1� mðBðX; rðnÞÞÞpeðnÞ
� �n�1

dmðXÞ

� n

Z
S1

1� mðBðX; rðnÞÞÞpeðnÞ
� �n�1

dmðXÞ

¼ n

Z
S1

1� ln nþ xðnÞ
n

� �n�1

dmðXÞ

¼ n 1� ln nþ xðnÞ
n

� �n�1

mðS1Þ

¼ e�xðnÞð1þ oð1ÞÞ: ð46Þ

Therefore, we conclude that lim
n!1

EZnðrðnÞÞ ¼ 1 if lim
n!1

xðnÞ ¼ �1: Moreover, lim
n!1

EZnðrðnÞÞ[ 0 if lim
n!1

xðnÞ
�1: Now assume that lim

n!1
xðnÞ[ �1: Let Y3,n be the

number of isolated vertices in S3. Then we get

EY3;n� nr2ðnÞ 1� pr2ðnÞ
4

peðnÞ
� �n�1

� nr2ðnÞe�
pr2ðnÞ

4
peðnÞðn�1Þ:

ð47Þ

Using peðnÞ� c
ln n and pr2ðnÞ ¼ ln nþxðnÞ

npeðnÞ ; we conclude

EY3;n ¼ O
ln nðln nþ xðnÞÞe�xðnÞ=4

n
1
4

� �
¼ oð1Þ: ð48Þ

Therefore, there is no isolated vertex in S3 with high

probability. Next, let Y2,n be the number of isolated vertices

in S2. Then

EY2;n ¼ n

Z
S2

1� mðBðX; rðnÞÞÞpeðnÞ
� �n�1

dmðXÞ ð49Þ
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Using the Laplace method for integrals and Lemma 1, it

can be shown that

EY2;n ¼ O
e�

xðnÞ
2

rðnÞpeðnÞ
ffiffiffi
n
p

 !
ð50Þ

Using peðnÞ� c
ln n and pr2ðnÞ ¼ ln nþxðnÞ

npeðnÞ ; we conclude

EY2;n ¼ O
e�

xðnÞ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ cxðnÞ
lnðnÞ

� �r
0
BB@

1
CCA: ð51Þ

Thus if lim
n!1

xðnÞ ¼ 1 then Y2,n = 0 asymptotically

almost surely. Moreover, if 0� lim
n!1

xðnÞ�1 then Y2,n is

finite asymptotically almost surely. Combining with (46)

we conclude the theorem. h

Proof of Theorem 3

Proof By Theorem 2, when lim
n!1

�
npr2ðnÞpeðnÞ � lnðnÞ

�
¼ 1; we have lim

n!1
EZnðrðnÞÞ ¼ 0: Thus, by Markov’s

inequality there is no isolated vertex with high probability.

Then, by Theorem 1 the graph is connected asymptotically

almost surely. Hence, we focus on the proof of the other

direction. That is if 0\ lim
n!1

�
npr2ðnÞpeðnÞ � lnðnÞ

�
\1

(or equivalently 0\ lim
n!1

EZnðrðnÞÞ\1), then there exists

d[ 0 such that lim inf
n!1

pdisc
n [ d [ 0; where pdisc

n is the

probability that gn is disconnected. The proof is as follows.

Let An,j be the event that the vertex vj is isolated. Then we

want to prove

lim sup
n!1

Pr
\n
i¼1

An;i

( )
� 1: ð52Þ

To prove the above, we use Lemma 2. Let Dn ¼Pn
i¼1

P
j6¼i

PrfAn;i \ An;jg: We show that under the condition

0� l\1; we have lim
n!1

Dn ¼ D\1: Thus by applying

Lemma 2 we conclude the theorem. It remains to prove

D\?. We note that

Dn�nðn� 1Þ
Z

S0�S0

1� mðBðX; rðnÞÞÞpeðnÞ
�

� mðBðX; rðnÞÞÞpeðnÞ
þ mðBðX; rðnÞÞÞ \BðY; rðnÞÞÞp2

eðnÞÞ
n�2dmðXÞ�mðYÞ

ð53Þ

We have S0� S0 ¼ ðS1� S1Þ [ ðS0� S0 n S1� S1Þ: It

suffices to show that the integral over the set S1� S1 and

S0� S0 n S1� S1 is finite. Let D1
n and D2

n be the two

integrals respectively. For example, for S1 9 S1 we have

D1
n¼nðn�1Þ

Z
S1�S1

1�mðBðX;rðnÞÞÞpeðnÞ
�

� mðBðX;rðnÞÞÞpeðnÞ

þmðBðX;rðnÞÞÞ\BðY;rðnÞÞÞp2
eðnÞ

�n�1
dðm�mÞ

¼ nðn�1Þ
Z

S1�S1

1� lnnþxðnÞ
n

�

�lnnþxðnÞ
n

þmðBðX;rðnÞÞÞ\BðY ;rðnÞÞÞp2
eðnÞ

�n�1

dðm�mÞ�e�2xðnÞ
Z

S1�S1

emðBðX;rðnÞÞÞ\BðY ;rðnÞÞÞp2
eðnÞðn�1Þ

dðm�mÞ¼e�2xðnÞ
Z
S1

emðBðO;rðnÞÞÞ\BðY ;rðnÞÞÞp2
eðnÞðn�1ÞdmðYÞ

¼e�2xðnÞ
Z

S1n BðO;2rðnÞÞ

emðBðO;rðnÞÞÞ\BðY ;rðnÞÞÞp2
eðnÞðn�1ÞdmðYÞ

þe�2xðnÞ
Z

BðO;2rðnÞÞ

emðBðO;rðnÞÞÞ\BðY ;rðnÞÞÞp2
eðnÞðn�1ÞdmðYÞ

¼e�2xðnÞ

þe�2xðnÞ
Z

BðO;2rðnÞÞ

emðBðO;rðnÞÞÞ\BðY ;rðnÞÞÞp2
eðnÞðn�1ÞdmðYÞ:

ð54Þ

Using the Laplace method for integrals and Lemma 1 we

obtain

D1
n ¼ e�2xðnÞ þ O

e�ð2�peðnÞÞxðnÞ

nð2�peðnÞÞpeðnÞ4r2ðnÞ

 !
ð55Þ

Using peðnÞ� c
ln n and 0\ lim

n!1
xðnÞ\1; we conclude

lim
n!1

D1
n\1: ð56Þ

Similarly, we can show lim
n!1

D2
n\1: Therefore, lim

n!1
Dn ¼

D\1; which concludes the theorem. h

Proof of Theorem 6

By a simple coupling argument, we find that the probability

of having at least one isolated vertex is a decreasing

function of r(n). If a\ 1, then for any constant c and large

enough n, we have

rðnÞ\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nþ c

pnpeðnÞ

s
: ð57Þ

Thus, by Theorem 4, the probability that g = g(n, r, pe)

has at least one isolated vertex is asymptotically greater
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than or equal to e�e�c
for any real number c. Thus, if a\ 1,

the graph g = g(n, r, pe) has an isolated vertex with high

probability, and thus it is not k-connected for any positive

integer k.

Now, by Theorem 1, it suffices to prove that if a[ 1, for

any fixed k 2 f0; 1; 2; . . .g;g(n, r, pe) does not have any

vertices of degree k with high probability. Let a[ 1 and

Yj,k,n be the number of vertices of degree k in Sj, for j = 1,

2, 3. It suffices to show Yj,k,n = 0 asymptotically almost

surely for j = 1, 2, 3.

We first consider Y1,k,n. We have

EY1;k;n ¼ n

Z
S1

nk½mðBðX; rðnÞÞÞpeðnÞ�k

� 1� mðBðX; rðnÞÞÞpeðnÞ
� �n�k�1

dmðXÞ: ð58Þ

But for X 2 S1; we have mðBðX; rðnÞÞÞ ¼ pr2ðnÞ: Thus

EY1;k;n ¼ O
ðln nÞk

na�1

 !
¼ oð1Þ: ð59Þ

Therefore, Y1,k,n = 0 asymptotically almost surely. We

now consider Y2,k,n. We have

EY2;k;n ¼ n

Z
S2

nk½mðBðX; rðnÞÞÞpeðnÞ�k

� 1� mðBðX; rðnÞÞÞpeðnÞ
� �n�k�1

dmðXÞ:

ð60Þ

Using the Laplace method for integrals, Lemma 1, and

peðnÞ� c
ln n we can write

EY2;k;n ¼ O
ðln nÞ2kþ1

n
a
2
�1

2
�oð1Þ

 !
¼ oð1Þ ð61Þ

This implies Y2,k,n = 0 asymptotically almost surely. We now

prove Y3,k,n = 0 asymptotically almost surely. We note that

EY3;k;n� nr2ðnÞnkðpr2ðnÞpeðnÞÞk 1� pr2ðnÞ
4

peðnÞ
� �n�k�1

� nkþ1r2kþ2ðnÞpeðnÞe�
pr2ðnÞ

4
peðnÞðn�k�1Þ: ð62Þ

Using peðnÞ� c
ln n and lim

n!1
npr2ðnÞpeðnÞ

ln n

� �
¼ a; we conclude

EY3;k;n ¼ O
ðln nÞkþ2

n
1
4
�oð1Þ

 !
¼ oð1Þ ð63Þ

This implies that Y3,k,n = 0 asymptotically almost surely.h
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