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Abstract—Despite tremendous amount of research on the
design of Low-Density Parity-Check (LDPC) codes with be-
lief propagation decoding over different types of Binary-Input
Output-Symmetric Memoryless (BIOSM) channels, most results
on this topic are based on numerical methods and optimization
which do not provide much insight into the design process.
In particular, systematic design of provably capacity achieving
sequences of LDPC code ensembles over the general class of
BIOSM channels, has remained a fundamental open problem.
For the case of the Binary Erasure channel, explicit construction
of capacity achieving sequences have been proposed based on a
property called the flatness condition. In this paper, we propose
a systematic method to design universally capacity approaching
rate-compatible LDPC code ensemble sequences over BIOSM
channels. This is achieved by interpreting the flatness condition
over the BEC, as a Successive Maximization (SM) principle that
is generalized to other BIOSM channels to design a sequence
of capacity approaching ensembles called the parent sequence.
The SM principle is then applied to each ensemble within the
parent sequence, this time to design rate-compatible puncturing
schemes. As part of our results, we extend the stability condition
which was previously derived for degree-2 variable nodes to other
variable node degrees as well as to the case of rate-compatible
codes. Consequently, we rigorously prove that using the SM
principle, one is able to design universally capacity achieving
rate-compatible LDPC code ensemble sequences over the BEC.
Unlike the previous results on such schemes over the BEC in the
literature, the proposed SM approach is naturally extendable to
other BIOSM channels. The performance of the rate-compatible
schemes designed based on our systematic method is comparable
to those designed by optimization.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes have received

much attention in the past decade. During this period there

have been great achievements in the area of designing LDPC

code ensembles with Belief Propagation (BP) decoding which

exhibit an asymptotic performance practically close to the

capacity over different types of channels, including the gen-

eral class of Binary-Input Output-Symmetric Memoryless

(BIOSM) channels [1]-[10]. In particular, for the Binary Era-

sure Channel (BEC), the performance analysis and code design
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have been addressed in both the asymptotic regime [3]-[8] and

for finite block lengths [1], [2]. In [3], [4], [5], Shokrollahi et

al. proposed a scheme to design sequences of LDPC code

ensembles over the BEC, whose performance is proved to

achieve the capacity for sufficiently large average check and

variable node degrees. A more general category of capacity

achieving sequences over the BEC were proposed in [11], [12],

[13]. Construction and analysis of capacity achieving ensemble

sequences of codes defined on graphs has also been studied in

[6], [7], [8] for the BEC. A sequence of degree distributions

with rate R is said to be capacity achieving over the BEC if

the thresholds of the ensembles can be made arbitrarily close

to 1 − R, the capacity upper bound over the BEC, as the

average check and variable node degrees tend to infinity. For

BIOSM channels, it is easier to consider ensembles for a given

channel parameter instead of a given rate. The results however

are easily extendable to the case of fixed rate ensembles. We

call a sequence of degree distributions capacity achieving over

a BIOSM channel, if the rate of the ensembles within the

sequence can be made arbitrarily close to the channel capacity

while maintaining the reliable communication. The design of

provably capacity achieving sequences over general BIOSM

channels is still an open problem.

Another important problem of interest in LDPC codes is to

design rate-compatible LDPC code schemes. In such a scheme,

starting from a given primary ensemble called the parent code,

we are interested in obtaining a set of codes with higher

transmission rates, which can provide reliable transmission

when the channel condition improves, by puncturing the parent

code. For rate-compatibility, the design should be such that

for two consecutive rates, the code with the higher rate can

be constructed by puncturing the code with the lower rate.

Starting from a parent code with performance close to capacity,

the important challenge in a rate-compatible design is to also

keep the performance of the punctured codes close to the

capacity. More specifically, if the parent code is chosen from

a capacity achieving sequence, all punctured codes have to be

capacity achieving as average check node degree increases. To

formulate the problem mathematically, imagine a parent code

with rate Rn from a capacity achieving sequence which can
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provide reliable transmission over a channel with parameter

θ0. Our aim is to provide reliable transmission over a set of

channels with parameters θj , j = 1, ..., J , while increasing

the rate by puncturing the parent code in a rate-compatible

fashion. For each θj , j = 1, ..., J , we need to choose a

puncturing pattern that maximizes the corresponding reliable

transmission rate Rn,j . Let c(θj) denote the capacity of the

channel with parameter θj , and assume that θi < θj and

c(θi) > c(θj) for i > j. We call a rate-compatible scheme

universally capacity achieving, if limn→∞ Rn,j = c(θj) for

j = 1, .., J . Analysis and design of rate-compatible LDPC

codes have been addressed asymptotically in [14]-[18] and

for finite block lengths in [19]-[22]. It is worth mentioning

here that Raptor codes [23] can also achieve the capacity of

the BEC at several rates but in a different framework than

puncturing.

Unlike the BEC for which almost all aspects of conventional

and rate-compatible codes have been analytically investigated,

for the general family of BIOSM channels, the contributions

are mostly based on numerical methods and optimization. This

usually provides little insight into the design method. In this

respect, a fundamental open problem is to prove the existence

of capacity achieving sequences of LDPC codes with BP

decoding over BIOSM channels as well as to systematically

construct such sequences. This can be seen as a sub-problem

as well as a building block for the more general problem

of designing universally capacity achieving rate-compatible

LDPC coding schemes. The analytical results on this topic are

very limited in the literature. In [9], it has been shown that

capacity approaching LDPC codes over BIOSM channels can

be designed using optimization1. Several important analytical

properties including the so-called stability condition have

been proven for BIOSM channels in [9], [10]. It has been

shown in [24] that for an ensemble with a rate close to

capacity, variable node and check node Generalized Extrinsic

Information Transfer (GEXIT) curves have to satisfy a so-

called matching condition. In [25], several bounds have been

derived for LDPC codes that are universally valid over any

BIOSM channel.

It has been shown in [14], [16] that there is an upper bound

on the puncturing ratio of LDPC codes over BIOSM channels,

above which the code can not provide reliable transmission

for any channel parameter. Moreover, it has been shown that

over the BEC, the random puncturing maintains the ratio of

rate to capacity at the same value as that of the parent code.

Several important bounds on the performance of punctured

LDPC codes have been derived in [18]. For the case of

maximum-likelihood decoding, capacity achieving codes have

been designed based on puncturing in [17]. Among important

results on the optimization-based design of rate-compatible

codes over BIOSM channels, we can mention [15] for the

asymptotic regime and [19], [20], [21] for finite block lengths.

In this paper, we systematically design sequences of uni-

1We distinguish between “capacity approaching” and “capacity achieving”
sequences. The former term is used when the performance of the ensemble
sequence can be shown (probably numerically) to approach capacity without
any guarantee to achieve it. The latter term is used if the performance provably
tends to capacity as the average node degrees tend to infinity.

versally capacity approaching rate-compatible LDPC code

ensembles over BIOSM channels. We then provide some evi-

dence suggesting that the designed sequences could in fact be

universally capacity achieving. Starting from the conventional

(unpunctured) case, we extend some of the properties of

capacity achieving sequences over the BEC [11], to BIOSM

channels. Among such properties, only the stability condition

[9] has been shown to be extendable to BIOSM channels other

than the BEC. We will analyze the case where the stability

condition is satisfied with equality, i.e; the fraction of degree

2 edges (λ2) is set equal to its upper bound, and show that this

imposes an upper bound on the fraction of degree 3 edges (λ3).

Using a similar approach for the other degrees, we propose

Successive Maximization (SM) of λi values as a systematic

approach to design a sequence of LDPC code ensembles with

performance approaching the capacity as the average check

node degree increases. We then conjecture that such sequences

might in fact be capacity achieving over BIOSM channels.

For the rate-compatible LDPC codes on BIOSM channels,

we first prove a property similar to the stability condition

[9]. We show that for a given parent code (which provides

reliable transmission over a channel with parameter θ), there

is an upper bound for the fraction of punctured degree-2

variable nodes (Π2) above which the probability of error of the

punctured code is bounded away from zero and below which

the probability of error tends to zero if it is made sufficiently

small. We then consider the special case of the BEC and show

that similar upper bounds can be obtained for variable nodes

of all degrees in addition to degree-2 nodes. Using such upper

bounds, we prove that applying the SM principle results in

a universally capacity achieving rate-compatible scheme over

the BEC. Moreover, for such a scheme, if puncturing fractions

Πn,j
i are used to puncture the parent sequence (λn, ρn) over

the channel with parameter θj , where i is the variable node

degree, the values of Πn,j
i are independent of n. This result

is consistent with the one obtained in [16], [14] based on

a completely different approach. We then extend a weaker

version of the results on the BEC to general BIOSM channels.

Assuming that similar upper bounds on the puncturing ratios

of other variable nodes (in addition to the upper bound on

Π2) exist, we show that the SM principle can be applied to

puncturing fractions of variable nodes to systematically design

a coding scheme whose performance universally approaches

the capacity in a rate-compatible fashion. This proposes a

significantly different approach than the existing optimization-

based methods in the literature. Our numerical results indicate

that if the parent ensemble is chosen from the capacity

approaching sequences designed based on the SM principle,

the performance of the resulting rate-compatible schemes is

similar to that of the existing optimization-based results in the

literature. Moreover, we show that for a sequence of parent

code ensembles (λn, ρn) designed based on the SM principle,

the values of puncturing fractions Πn,j
i for degree 2 variable

nodes (i = 2) are independent from the parent ensemble (n)

and only depend on the original channel parameter (θ0) and

the one for which the puncturing pattern is designed (θj). Our

numerical results suggest that this property may in fact hold

for other values of i. The importance of this property is that
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for a given channel parameter θj , the computed values of Πi

can universally be applied to any ensemble designed based on

the SM method for a given original channel parameter θ0 with

an arbitrary check node distribution.

The paper organization is as follows. The next section is

devoted to notations and some definitions. In Section III,

after a short review on the construction methods of capacity

achieving sequences over the BEC, we explain our approach

(Successive Maximization) to devise capacity approaching

sequences for other channels. In Section IV, we focuss on

the puncturing of a given ensemble within a sequence that is

designed based on the methodology of previous sections. We

also provide some properties of rate-compatible codes for the

BEC and BIOSM channels. Moreover, we show that a similar

SM principle to that of Sections III can be used to devise a

universally capacity approaching rate-compatible scheme. In

Section V, we show examples of our designs and Section VI

concludes the paper. The proof of theorems have not been

presented due to lack of space and can be found in [26].

II. DEFINITIONS AND NOTATIONS

In this section we present some definitions and properties

which will be frequently used throughout the paper. We mainly

follow the notations and definitions of [10], [16]. As our

focus is on symmetric channels and a BP decoder, throughout

the paper, without loss of generality, we assume that the all-

one code word is transmitted. Moreover, we assume that the

messages in the BP algorithm are in the log-likelihood ratio

domain. We represent a (λ, ρ) LDPC code ensemble with

its edge-based check and variable node degree distributions

as ρ(x) =
∑Dc

i=2 ρix
i−1 and λ(x) =

∑Dv

i=2 λix
i−1, with

constraints

Dc∑

i=2

ρi = 1 and

Dv∑

i=2

λi = 1, (1)

where the coefficient of xi represents the fraction of edges

connected to the nodes of degree i + 1, and Dv and Dc

represent the maximum variable node degree and the maxi-

mum check node degree, respectively. Average check node and

variable node degrees are given by: dc = 1/(
∑Dc

i=2 ρi/i) and

dv = 1/(
∑Dv

i=2 λi/i), respectively. The code rate R satisfies

R = 1 − dv/dc. (2)

We also define node-based degree distributions as ρ(x) =∑Dc

i=2 ρix
i−1 and λ(x) =

∑Dv

i=2 λix
i−1, with constraints

Dc∑

i=2

ρi = 1 and

Dv∑

i=2

λi = 1, (3)

where the coefficient of xi represents the fraction of nodes

having degree i + 1. We represent a BIOSM channel with

parameter θ by C(θ) and define c(θ) as the Shannon capacity

of that channel. We also assume that the channel is physically

degraded when θ increases. For a sequence of degree distribu-

tions (λn(x), ρn(x)), λn
i and ρn

i indicate the ith coefficient of

the nth member of the sequence for variable node and check

node degree distributions, respectively. Similar to [5], we limit

ourselves to check node degree distributions for which Ti’s, the

Taylor series expansion coefficients of 1− ρ−1(1−x) around

x = 0, are positive. For example, check regular ensembles

exhibit such a property.

Consider now the density evolution in the belief propagation

algorithm for the channel C(θ) where we track the evolution

of the initial channel density P0 throughout iterations. Based

on [9], [10], Ql, the outgoing density from check nodes at

iteration l can be written as

Ql = Γ−1ρ(Γ(Pl−1)), (4)

where Pl−1 is the density from iteration l − 1 entering the

check nodes and Γ is the check node operator defined in [9],

[10]. Also, Pl the outgoing density from variable nodes at

iteration l can be written as

Pl = P0 ⊗ λ(Ql), (5)

where ⊗ is the convolution operation, and the power of a

density in variable node and check node degree distributions

has been defined in [10]. Note that there is a one-to-one

mapping between density P0 and parameter θ. We now review

the following important definitions and theorems from [9],

[10]. Let P be a symmetric density (as defined in [9]). For

such a density we define P(P ) and P(P ) as:

P(P ) = 0.5

∫ ∞

−∞

P (x)e−(|x/2|+x/2)dx, (6)

and

P(P ) =

∫ ∞

−∞

P (x)e−(x/2)dx. (7)

The first integral is the probability that the corresponding

random variable is negative. The unusual form of the integral

makes it possible to take care of the impulse densities at zero.

The second integral is the Bhattacharyya constant. For any

given density P , the Bhattacharyya constant tends to zero if

and only if (iff) P(P ) tends to zero. Let pl = P(Pl) and

ql = P(Ql). Corresponding to (4) and (5), we then have the

following relationships [10]:

ql ≤ 1 − ρ(1 − pl−1), (8)

pl = P(P0)λ(ql). (9)

From (8) and (9) we can see that:

pl ≤ P(P0)λ(1 − ρ(1 − pl−1)). (10)

It is important to note that for the BEC, (8) and (10) are

satisfied with equality. Moreover, P(P0) is equal to the

average erasure probability for the BEC.

The stability of an ensemble is defined as follows [9]. A

given degree distribution (λ, ρ) is stable iff there exists ξ > 0
such that if P(Pl) < ξ then liml→∞ P(Pl) = 0. In that

respect, it is proven in [9], [10] that if λ′(0)ρ′(1) > 1/P(P0)
then P(Pl) is bounded away from zero for every l and if

λ′(0)ρ′(1) < 1/P(P0), then the ensemble is stable.

We call an ensemble (λ, ρ) convergent over C(θ), if starting

from the initial density P0, liml→∞ P(Pl) = 0. The threshold
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of an ensemble over C(θ) is the supremum value of θ for

which the ensemble is convergent.

Consider now the (k+2)-tuple (λ2, λ3, ...., λk, Dv, ρ(x); θ)
which corresponds to a degree distribution (λ(x), ρ(x)) =
(
∑k

i=2 λix
i−1 +(1−

∑k
i=2 λi)x

Dv−1, ρ(x)) over C(θ) where

Dv > k, and 0 ≤ λi < 1,∀i ∈ {2, ..., k,Dv}. We call this

setting a code-channel pair. With slight negligence, we call

a code-channel pair convergent if the ensemble is convergent

over the channel.

III. CAPACITY ACHIEVING SEQUENCES

For the moment, consider the case of the BEC. We first

recall that any ensemble sequence designed in [3], [4], [5]

consists of a set of ensembles with a fixed rate R. Then it is

proven that the thresholds associated to such ensembles can be

made arbitrarily close to θ = c−1(R). In this paper for the sake

of simplicity, we consider a slightly different case where the

channel parameter θ is fixed and we design ensembles to have

a variable rate Rn which can be made arbitrarily close to c(θ).
Consequently, the definition of capacity achieving sequences

can be extended to the case of fixed θ. More specifically, a

sequence of degree distributions (λn, ρn) is called capacity

achieving over a BIOSM channel C(θ), if the corresponding

ensembles are convergent over C(θ) and if their rates Rn, can

be made arbitrarily close to c(θ) for sufficiently large average

check node degrees as n tends to infinity. Concentrating again

on the BEC, note that the channel parameter θ is the same as

the channel probability of erasure.

The derivation of capacity achieving sequences for the BEC

proposed in [3], [4], [5] is based on the flatness condition.

Based on [3], if a sequence of LDPC code ensembles satisfies

the conditions below, it can be proved to be capacity achieving.

di

dxi
[θλn(1 − ρn(1 − x)) − x]|x=0 = 0, 1 ≤ i ≤ Dv − 2, (11)

where Dv , the maximum variable node degree, is determined

by θ and ρ(x) such that (see [11], [12]):

Dv−1∑

i=2

Ti ≤ θ <

Dv∑

i=2

Ti. (12)

If we apply the flatness condition, we have:

λn
i = Ti/θ = λn∗

i , 2 ≤ i ≤ Dv − 1, (13)

where we define2

λn∗
i , Ti/P(P0). (14)

One can easily verify that λn∗
2 = 1/(P(P0)ρ

′(1)). In other

words, the value of λn
2 has been set to its maximum value

dictated by the stability condition. In [11], [12], [13], we

presented an alternate approach for the design of capacity

achieving sequences over the BEC. In this method, the values

of λn
i are computed based on the following principle: Starting

from i = 2, set the value of λn
i to a maximum value λ̃n

i such

that the ensemble remains convergent for sufficiently large Dv .

2Note that the definition of (14) will be used for any type of BIOSM channel
throughout the paper.

It is shown in [12] that the values of λn
i computed based on

this principle are the same as those derived based on (11).

In other words, for the BEC, we have λ̃n
i = λn∗

i . To have

an intuition of why such a process results in good ensembles

whose rates achieve the capacity in the limit, note that based

on (2), maximizing the rate is equivalent to maximizing dv
−1

.

Based on the definition of dv
−1

, this implies that we should

assign higher percentages to the lower degree coefficients

as far as the constructed ensemble remains convergent. We

remind the reader that the structure of the ensembles proposed

by Shokrollahi is in such a way that all variable node degrees

from 2 to Dv have to be present. In [11] a super-set of such

sequences has been proposed which includes Shokrollahi’s

sequences as a special case. It is shown in [11] that if each

ensemble within the sequence only contains all variable node

degrees from degree 2 to k < Dv and degree Dv , where k is a

strictly increasing function of Dv (and ultimately a function of

ρ(x) and θ), the sequence comprising such ensembles is also

capacity achieving3. In this paper, we deal with such sequences

which are more general.

For the case of BIOSM channels, the flatness condition can

not be defined similar to the BEC case as the density evolution

equation is not in polynomial form anymore. We, however,

expect that applying the new interpretation of flatness condi-

tion, i.e., obtaining a sequence of upper bounds λ̃n
i and setting

λn
i = λ̃n

i , may result in a systematic approach for devising

capacity achieving sequences for other BIOSM channels. Note

that such upper bounds have to fulfill a threshold property

similar to that of λn∗
i over the BEC as follows: If we set

λn
i = λ̃n

i for i < k, the value of λ̃n
k has to be in such a way that

while the probability of error is bounded away from zero for

any ensemble with λn
k > λ̃n

k , for any ensemble with λn
k < λ̃n

k ,

the probability of error has to tend to zero as the number

of iterations tends to infinity, if it is made sufficiently small,

regardless of the value of other λn
i ’s (i > k). Unlike the BEC

case, there is no proof that such upper bounds exist for other

BIOSM channels (with the exception of the bound on λ2), and

even if they do exist, their values may not be easily obtained

analytically (except for i = 2, where we have λ̃n
2 = λn∗

2 ). In

the next section, we prove the existence of a positive upper

bound on λ3 that fulfils the aforementioned properties and

conjecture that similar upper bounds exist for other λi values.

This makes it possible to apply the SM principle as a design

tool for ensemble sequences. Numerical evidence presented in

Section V confirms that the resulting sequences are at least

capacity approaching and may in fact be capacity achieving.

Recall that the stability condition theorem in [9], [10]

remains silent about the case where λ′(0)ρ′(1) is exactly

equal to 1/P(P0). Here, we show that when this is

the case, a similar upper bound exists for λ3, i.e., if

λ2 = 1/(P(P0)ρ
′(1)), there exists a threshold value for λ3

below which the ensemble is convergent and above which it

is not.

Theorem 1: Consider the code-channel pair

(λ∗
2, λ3, Dv, ρ(x); θ) where Dv can be arbitrarily large

3Shokrollahi’s sequences correspond to those of [11] with k(Dv) = Dv −
1.
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and let λU
3 = 3/(dc(1 − c(θ))) − (3/2)λ2. There exists

a threshold value λ̃3 in the interval [λ∗
3 , λU

3 ] such that if

λ3 < λ̃3, the ensemble is convergent for sufficiently large

value of Dv and if λ3 > λ̃3, the probability of error is

bounded away from zero regardless of the value of Dv .

We expect the result of Theorem 1 to be generalized to

λk, k > 3, if λi = λ̃i, 2 ≤ i ≤ k − 1. This, however, remains

to be proved.

IV. UNIVERSALLY CAPACITY APPROACHING

RATE-COMPATIBLE LDPC CODES

In previous sections, we considered sequences of degree

distributions (λn, ρn) and our intention was to design them

such that their rates approach the capacity as n tends to infinity.

In this section, we consider the problem of puncturing a degree

distribution for a given n. For simplicity, we sometime drop

the index n and refer to the ensemble as the parent ensemble.

We use the notations (λp, ρ) and Rp for the parent ensemble

and its rate, respectively. We show the fraction of the punctured

bits (variable nodes) by Π. The resulting code rate in this

case is equal to Rp/(1 − Π). If the puncturing is performed

randomly, we refer to it as random puncturing. Otherwise, the

puncturing is called intentional [15]. In intentional puncturing,

variable nodes of degree i can potentially have different

puncturing fractions Πi. The overall puncturing fraction Π can

then be expressed as

Π =
Dv∑

2

Πiλ
p

i (15)

where {λi
p
} is the node-based degree distribution of variable

nodes for the parent ensemble.

In many situations, it is necessary to obtain more than one

rate by puncturing. In this case, for a simple implementation,

the puncturing pattern should be in such a way that for

2 consecutive rates, the punctured code with a higher rate

can be constructed by puncturing the code with the lower

rate. A puncturing pattern with this property is called rate-

compatible. Let the set of channel parameters θj be ordered

reversely by channel degradation (i.e., θ0 is for the worst

channel condition which corresponds to the parent code). For

any C(θj), consider the set Φj = {Πj
i , 2 ≤ i ≤ Dv}.4 For

a rate-compatible scheme, we must have Πm
i ≤ Πn

i for any

m < n and any i. In the rest of the paper, with slight abuse

of language, we call a puncturing scheme rate-compatible if

these conditions are satisfied.

To analyze the asymptotic behavior of a punctured ensem-

ble, we model the puncturing of LDPC codes over a channel

C(θ) as the transmission of the unpunctured bits over C(θ)
while sending the punctured bits on an erasure channel with

erasure probability of 1. Let E be the set of all edges in the

graph. Also let Epunc
i be the set of edges in the graph which

are connected to the variable nodes of degree i which are

punctured. Also let Epunc be the union of sets Epunc
i . Similarly

define Eun and Eun
i for unpunctured edges. We define

λpunc(x) =
∑

λpunc
i xi−1,

4For λi = 0, we assume Πi = 0.

where

λpunc
i =

|Epunc
i |

|Epunc|
.

Notation |.| denotes the cardinality of the set. We also define

ϕpunc as the fraction of punctured edges:

ϕpunc =
|Epunc|

|E|
.

The polynomial λun(x) and ϕun can be defined similarly for

unpunctured edges.

We can now derive the density evolution equations for

our setting. Similar to the previous section, let Ql be the

probability density function of outgoing message of the check

nodes at iteration l. We define P punc
l and Pun

l as the density

at the output of the punctured and unpunctured variable nodes,

respectively. We then have

P punc
l = P punc

o ⊗ λpunc(Ql),

Pun
l = Pun

o ⊗ λun(Ql), (16)

P ′
l = ϕpuncP punc

l + ϕunPun
l ,

Ql = Γ−1(ρ(Γ(P ′
l−1))),

in which P punc
0 = ∆0 where ∆x is the Dirac delta function at

x [10]. A punctured scheme is convergent if the probability of

error tends to zero as the number of iterations tends to infinity.

Consider a sequence of degree distributions (λn(x), ρn(x)).
Consider also a set of channels with parameters θj , j =
0, 1, ..., J , ordered increasingly by their quality. Now assume

that the parent ensemble sequence (λn(x), ρn(x)) is punctured

by the set φn,j = {Πn,j
i , 2 ≤ i ≤ Dv} to create higher rate

ensemble sequences that are convergent over the correspond-

ing channels. This scheme is universally capacity achieving

if limn→∞ Rn,j = c(θj) for all values of j. A universally

capacity achieving scheme is called rate-compatible if the

puncturing patterns φn,j are rate-compatible for every value

of n.

We now prove an important theorem in puncturing a given

degree distribution. Consider a parent ensemble (λp, ρ) with

threshold equal to θ0. The code-channel pair (λp, ρ; θ) is

convergent for any θ ≤ θ0. Let P0 be the channel density

associated with θ. We define parameter Π̃2, corresponding to

the parent code-channel pair, as:

Π̃2 =
[1 − P(P0)ρ

′(1)λp
2]

[1 − P(P0)]ρ′(1)λp
2

. (17)

Note that if the pair is stable, Π̃2 ≥ 0.

Theorem 2: Let (λp, ρ) be a parent code convergent

over C(θ) with λp
2 6= 0. Suppose that this code is punctured

based on the set Φ = {Πi; i = 2, ..Dv} (note that C(θ)
is uniquely associated with the channel density P0). There

exists a threshold value Π̃2, given by (17), such that if

Π2 > Π̃2, then for any l, P(P punc
l ) and P(Pun

l ) are bounded

away from zero and if Π2 < Π̃2, there exists a strictly

positive constant ξ such that if P(P punc
l ), P(Pun

l ) < ξ for

some l, then liml→∞ P(P punc
l ) = 0 and liml→∞ P(Pun

l ) = 0.
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This property is similar to the stability condition [9] for

conventional LDPC codes which provides an upper bound on

the fraction of degree 2 variable nodes.

Corollary 1 (Independency of Π2 from n for puncturing

schemes with Π2 = Π̃2): Consider a sequence of ensembles

(λn(x), ρn(x)) which are convergent over C(θ0) and let

P 0
0 be the associated channel density. Now consider an

improved channel C(θj), j > 0 and let P j
0 be the associated

channel density. If for any ensemble within the sequence,

the value of λ2 satisfies the stability condition corresponding

to θ0 with equality, i.e., if λn
2 = λn∗

2 , then the value of the

upper bound Π̃2 corresponding to θj obtained in Theorem

2, is independent of n (in fact independent from the parent

ensemble sequence (λn, ρn)).

Corollary 2 (Rate-compatibility of Π2 for puncturing

schemes with Π2 = Π̃2): Consider a sequence of ensembles

(λn(x), ρn(x)) which are convergent over C(θ0) and let P 0
0

be the associated channel density. Now consider an improved

channel C(θj), j ≥ 0 and let P j
0 be the associated channel

density. If for any ensemble within the sequence, the value of

λ2 satisfies the stability condition corresponding to θ0 with

equality, i.e., if λn
2 = λn∗

2 , then the value of the upper bound

Π̃2 is a decreasing function of θj .

Now recall from Section III that over the BEC, similar

upper bounds to that of stability condition were obtained for

other variable node degrees. In the following, we show a

similar behavior for the case of rate-compatible codes over

the BEC.

Proposition 1: Let (λp, ρ) be a convergent parent code

over the BEC with channel parameter ε0. Suppose that

the parent code is punctured to be used over a channel

with parameter εj < ε0. Let pun
0 be the Bhattacharyya

constant for this channel, i.e., pun
0 = εj . Also assume that

λp
i 6= 0, 2 ≤ i ≤ n ≤ Dv . Define

Π∗
i =

1 − pun
0 λp

i /Ti

(1 − pun
0 )λp

i /Ti
. (18)

Then if Πi = Π∗
i for 2 ≤ i < n, there exists an upper

bound Π∗
n =

1−pun

0
λp

n
/Tn

(1−pun

0
)λp

n/Tn

on Πn above which the resulting

punctured ensemble is not convergent over C(εj) and below

which the ensemble is convergent over C(εj) if the probability

of erasure can be made sufficiently small.

We now would like to prove that the construction of

universally capacity achieving rate-compatible LDPC codes

over the BEC can be achieved by applying the SM principle

to the values of Πi’s, i.e., starting from a parent sequence and

for each ensemble member of the sequence, we maximize

Π2 as far as the ensemble remains convergent and continue

this procedure successively for other Πi values. This will be

performed for each of the J target channel parameters and

we demonstrate that the resulting puncturing patterns are in

fact rate-compatible. We also show that if the original parent

sequence is capacity achieving, so will be all the J sequences

of punctured ensembles.

Theorem 3: Let the parent ensemble sequence (λn, ρn),
constructed based on the method of [11], be capacity

achieving over the BEC with parameter ε0. For the set of

channel erasure values εj (ε1 > ε2 > ... > εJ ), we puncture

each ensemble within the parent sequence based on the SM

principle. The resulting scheme is then universally capacity

achieving rate-compatible.

This result is consistent with the one obtained in [16]

stating that random puncturing of a parent ensemble over

the BEC, preserves the distance to capacity. The approach

taken in [16] is, however, different and is based on the fact

that one can model the puncturing of an ensemble over the

BEC, as the concatenation of the original BEC channel with

another BEC channel with erasure rate equal to puncturing.

Similar to the flatness condition, the approach of [16] is not

extendable to other BIOSM channels. The importance of our

approach is that in principle, it may be extendable to other

BIOSM channels where we can expect that applying the

SM principle to compute Πi values, might also result in (a

scheme performing close to) a universally capacity achieving

rate-compatible scheme. Unlike the BEC case, however, the

upper bounds on Πi have to be estimated numerically (similar

to the procedure we use to compute the upper bounds of

λi; i > 2, for the unpunctured case) except for Π2 whose

upper bound is given by Theorem 2. Applying this procedure

to the capacity approaching ensembles designed based on

the method of Section III as parent ensembles, we have

in-fact been able to design universally capacity approaching

rate-compatible ensembles over other BIOSM channels.

It is important to note that the values of Πj,n
i in Theorem 3

do not depend on i and n. While independency of i is a special

property for the BEC, based on Corollary 1 these values are

independent from n for i = 2 over any BIOSM channel. Our

numerical results show that for a given i > 2, i 6= Dv and

j, the values of Πj,n
i are very close for different values of n,

suggesting a general independency from n.

V. DESIGN EXAMPLES

We consider check regular sequence with ρ(x) = xDc−1

for channel parameter σ = .9557. Let k be the number of

constituent variable node degrees. We start with Dc = 5 and

k = 3, and for Dc > 5, we set k = 2Dc−6 + 2. This means

that the number of constituent variable node degrees for an

ensemble with check node degree Dc is roughly twice that

of an ensemble with check node degree Dc − 1. As can be

seen in Table I, the performance of the ensembles consistently

improves as the average check node degree increases. For the

rate-compatible codes, we consider the sequence of Table I and

puncture the first three ensembles for a set of four channels

with noise powers smaller than that of the parent ensemble.

The details are provided in Table II, where we define the

puncturing polynomial Π(x) =
∑Dv

i=2 Πix
i−1 to represent the

puncturing fractions. In Fig. 1, we have plotted the distance

to capacity (Rj/c(θj)) of the ensembles of Table II versus
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TABLE I
PERFORMANCE OF A CHECK REGULAR SEQUENCE DESIGNED BASED ON

THE SM METHOD OVER A BIAWGN CHANNEL WITH σ = .9557.

Dc RAWGN/c(.9557) ℵ

5 .8902 3

6 .9386 3

7 .9520 4

8 .9653 6

9 .9756 10

10 .9884 18

TABLE II
THE VALUES OF Πi USED TO PUNCTURE THE FIRST 3 ENSEMBLES OF THE

SEQUENCE OF TABLE I.

dc 5 6 7

Parent λ(x) = .4322x λ(x) = .3457x λ(x) = .2881x
ensemble +.3534x2+ +.2974x2+ +.2556x2+

.2144x5 .3569x6 .0380x3 + .4183x9

σ = Π(x) = .2948x Π(x) = .2948x Π(x) = .2948x
0.7410 +.2037x2+ +.2124x2+ +.1921x2+

.2231x5 .2357x6 .3240x3 + .2862x9

σ = Π(x) = .4115x Π(x) = .4115x Π(x) = .4115x
0.6300 +.2697x2+ +.2755x2+ +.2590x2+

.3473x5 .3483x6 .4472x3 + .3638x9

σ = Π(x) = .4703x Π(x) = .4703x Π(x) = .4703x
0.5609 +.2949x2+ +.2997x2+ +.2862x2+

.4676x5 .4142x5 .5063x3 + .4094x9

σ = Π(x) = .5308x Π(x) = .5308x Π(x) = .5308x
0.4675 +.3026x2+ +.3065x2+ +.2997x2+

.7460x5 .5015x5 .5772x3 + .5950x9

the channel noise standard deviations (σ). As can be seen,

the performance of the punctured codes for a given parent

ensemble is similar to or better than the parent ensemble. In

fact, we expect the punctured ensemble to perform almost the

same as the parent ensemble, similar to the case of the BEC.

To justify the improvement resulting from puncturing, we

note that although the parent ensembles have been constructed

based on the SM method, for finite values of Dc, they are

not necessarily optimal in that they may not provide the best

possible rate for the given channel parameter. This leaves the

door open for further improvement with puncturing. From Fig.

1, it is also observed that for any given channel parameter, the

performance of punctured ensembles approaches the capacity

as the average check node degree increases. Based on Table

II, the designed sequence also fulfills the rate-compatibility

property. Note however that unlike, for example the approach

of [15], we did not impose any constraint to guarantee rate-

compatibility and our empirical results suggest that this prop-

erty is inherent in the proposed method. For the case of Π2,

we analytically proved this fact in Corollary 2. To compare

the performance of the schemes designed based on the SM

principle and those obtained by optimization, we consider

the ensemble used in [15] as a reference. This ensemble (C)

has been optimized for the rate one half and has a threshold

of σ = .9557. We can assume that ensemble C has been

optimized for the highest rate when the channel parameter σ
is set to .9557. The degree distribution of C is:

λC(x) = .25105x + .30094x2 + .00104x3 + .43853x9

ρC(x) = .63676x6 + .36324x7
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R
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D
c
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D
c
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D
c
= 5

Fig. 1. The ratio of rate to capacity (R/C) for the rate-compatible ensemble
sequence of Table II.

TABLE III
THE VALUES OF Πi’S USED TO PUNCTURE THE ENSEMBLE CSM .

σ = 0.7410 Π(x) = 0.2948x + .1921x2 + .3376x3 + .2222x9

σ = 0.6300 Π(x) = 0.4114x + .2600x2 + .4462x3 + .3470x9

σ = 0.5609 Π(x) = 0.4703x + .2871x2 + .5063x3 + .3628x9

σ = 0.4675 Π(x) = 0.5308x + .3007x2 + .5820x3 + .4200x9

Keeping the check node degree distribution of ensemble C
intact, we design an ensemble CSM with the same number of

constituent variable nodes using the SM method:

λSM (x) = .2717x + .2442x2 + .0371x3 + .4471x9.

We then apply the SM method again, this time to puncture

CSM . The puncturing polynomials for the same four channels

considered in Table II are given in Table III. The distance

to capacity (R/C) for the parent ensemble and its punctured

versions is reported in Fig. 2. As can be seen in Fig. 2,

the scheme performs very closely to the scheme obtained

by optimization-based puncturing of the ensemble C. In fact,

the proposed scheme even slightly outperforms the scheme

of [15] on channels with σ = .6300 and σ = .7410. The

proposed scheme performs inferior only on the best channel

parameter (σ = .4675) and even for this channel parameter,

the performance gap is less than .08 dB.5 We have also

demonstrated the performance of random puncturing of the

ensemble C for comparison. Also note again that unlike

[15], we did not impose any constraint to guarantee rate-

compatibility. This reduces the design complexity significantly.

It is interesting to see that based on Tables II and III,

except for i = Dv , the values of Πi are almost independent

(for Π2 provably independent based on Corollary 1) of the

parent ensembles and only depend on the channel parameter

for which the puncturing is applied. In other words, for a

given channel parameter θj , the computed values of Πi can

universally be applied to any ensemble designed based on the

SM method for a given original channel parameter θ0.

5Note that our parent code itself performs close to .1dB worse than C and
the gap in performance is always less than this gap for different puncturing
rates.
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Fig. 2. Performance comparison of schemes constructed based on the
proposed SM method and those constructed based on optimization method
of [15].

VI. CONCLUSION

In this paper, we proposed the concept of successive max-

imization for the systematic design of universally capacity

approaching rate-compatible LDPC code ensemble sequences.

This was achieved by interpreting the flatness condition over

the BEC as a Successive Maximization principle that was

generalized to other BIOSM channels to design a sequence

of capacity approaching parent ensembles. The SM principle

was then applied to each parent ensemble, this time to design

rate-compatible puncturing schemes. As part of our results,

we were able to extend the stability condition which was pre-

viously derived for degree-2 variable nodes to other variable

node degrees as well as to the case of rate-compatible codes.

Consequently, we rigorously proved that using the SM princi-

ple, one is able to design universally capacity achieving rate-

compatible LDPC code ensemble sequences over the BEC.

Unlike the previous results on such schemes over the BEC

in the literature, the proposed SM approach can be naturally

extended to other BIOSM channels. Using such an extension,

we designed rate-compatible codes over BIAWGN channels

whose performance universally approaches the capacity as the

average check node degree increases. We demonstrated that

for finite values of Dc, the performance of the ensembles

designed by our method is comparable to those designed based

on optimization. One major step in the continuation of this

work is to analytically compute the values of λ̃i. This can

pave the road toward the analytical proof that the proposed

sequences can in fact achieve the capacity of BIOSM channels.
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