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Abstract—In this paper we propose a framework to study the
asymptotical capacity of Vehicular Ad Hoc Networks (VANET)s
when nodes are expected to communicate only when they
reside in a certain distance of each other. This is quite a
favorable scenario for VANETs when they are utilized for ac-
cident avoidance and safety applications. Moreover we develop
formulations to predict the behavior of VANETs with specific
geometrical shapes like the single road and grid topologies.
Also, the capacity scaling behavior of VANETs when a node
needs to transmit to all its neighbors within a certain range,
is studied. Results are obtained by combining geometrical
analysis, network flow arguments, and probabilistic study of
VANETs.

Index Terms—VANET, DSRC, Vehicle Infrastructure Inte-
gration (VII).

I. INTRODUCTION

The emergence of the evolving field of VANETs has
attracted much attention in recent years. The main driving
force behind the ever increasing desire towards VANET de-
ployment is their direct influence on road accident downfall.
This is of great importance as road accidents are believed to
be one of the main reasons of mortality, worldwide. Along
with safety purposes, traffic monitoring and route-finding
and wireless on board Internet access are other examples of
VANET utilization. The fundamental structure of a VANET
consists of On Board Units (OBU)s mounted on vehicles and
also base stations known as Road Side Units (RSU)s which
are deployed at predetermined locations along the roadside
(see Figure 1). Therefore in its most general case we have a
hybrid network of mobile nodes within a rigid backbone of
RSU infrastructure. Each vehicle, gathers data on its current
location through a GPS and then updates nearby RSUs or
other neighboring OBUs on its current status. The inter
vehicle and vehicle-roadside communications are carried out
through Dedicated Short Range Communications (DSRC)
which has recently been assigned a 75 MHz bandwidth in
the 5.9 GHz frequency band. The RSUs may be connected
to each other through wired connections or through high
capacity wireless backhaul. The data analysis in the RSUs is
performed in one of the following ways. For delay sensitive
safety applications, data gathered from nearby vehicles is
locally analyzed at the RSU and appropriate alarm messages

are disseminated accordingly. For applications such as long
term traffic monitoring, data of all RSUs are backhauled
and gathered in a central management unit where they are
summarized and the results are rendered to vehicles through
the Internet.

 

 

Fig. 1. A generic VANET.

Despite the increasing amount of research on VANETs, a
rigorous mathematical framework to study their fundamental
limits and scaling laws is still in its infancy. There exists a
considerable literature on the fundamental limits of wireless
networks and some papers address MANETs. However, our
results show that VANETs have some unique characteristics
and thus their scaling laws differ significantly from other
wireless networks.

As Shown in [1], We observed that the road geometry
plays a significant role in the fundamental properties of
VANETs. As it will be seen, even a single isolated road
(e.g. rural area) can potentially have every possible capacity
scaling just based on its path geometry. For example the
capacity of an inter-state single road resembles that of a line
network, whereas the capacity of a more turned and twisted
urban area street can be as large as a wireless network with
random node placement. (Figure 2)

Another issue is that a unique mobility paradigm exists
in VANETs. There is some interesting literature on the



effects of mobility on the capacity of wireless networks
[2-8]. In these analyses it is usually assumed that there
is high delay tolerance, nodes have huge buffer sizes, and
the network topology changes over time-scale of packet
delivery. Indeed none of the assumptions hold in VANETs.
For example, emergency and safety-related messages are
extremely delay sensitive in VANETs. More importantly, a
very common assumption in the literature is that the nodes
move independently of each other. This assumption by no
means holds in VANETs. In fact our results suggests unlike
the existing literature, mobility does not improve capacity
scaling in VANETs. This is in contrast with the previous
conception on mobility and capacity.

Finally, new capacity and throughput metrics should be
defined for VANETs. In the study of transport capacity it
is usually assumed that each node has a random destination
chosen uniformly from the available nodes in the network.
In VANETs, different applications give rise to the need
for diversified capacity declarations. For example, as stated
before, in safety applications vehicles need to communicate
with vehicles that are in their vicinities other than just
picking a destination at random. This significantly affects
the scaling laws for throughput.

 

 

Fig. 2. A single isolated highly sparse road (right) and a less sparse
topology of an isolated road leading to more capacity (left).

II. FORMULATION AND PRELIMINARIES

To provide a rigorous analysis of VANETs, we provide
some definitions. We show a lane on a road by a parameter-
ized smooth continuous curve Xn(s) = (xn(s), yn(s)), s ∈
[0, 1] on the plane, see Figure 2. The length of each section
of the curve is obtained using the Hausdorff one-dimensional
measure [9]. The subscript n shows the number of vehicles
on the road and can be dropped for simplicity, if it is clear
from the context. The curve shows the trajectory of the road.
Xn(0) is the beginning of the lane and Xn(1) shows the end.
It is assumed a road can intersect itself only a finite number
of times. Multi-lane roads are indicated by several parallel
curves. A transportation network is usually consisted of
several roads. The geometry of the roads plays an important

role in the performance of the corresponding VANET. It is
assumed that the movements of vehicles on the roads follow
a stationary stochastic process. In particular, the density,
kn(s), of a road is defined by the average number of vehicles
per unit length at point Xn(s). At any part of the road, the
density of cars is assumed to be a bounded positive number
as in reality the density is limited by the physical size of
cars. In this paper, for simplicity we assume kn(s) = k, for
all s ∈ [0, 1] in all proofs. However, the results are easily
extendable to the general case. For transportation networks
consisting of several roads, the values of densities are chosen
in a way that the flow conservation principle is satisfied at
the intersections.

The mobility model for vehicles is an important factor in
vehicular ad hoc networks. Note that in VANETs, the vehi-
cles do not move independently from each other. However, it
has been observed that at any time t, the positions of vehicles
can be modeled based on a Poisson process on the road,
thus the spacing between them has exponential distribution
[10-11]. In this paper we follow this assumption, however, it
can be shown that the results hold for more general mobility
models that satisfy some specific conditions. To define our
model rigorously, we extend the lane Xn(s) from both ends
to infinity. Then, we place a Poisson point process with
density k on the extended curve. Any point of the process
will correspond to a vehicle. At time t = 0, all vehicles on
the same lane will choose a common speed v ∈ [0, vmax]
uniformly at random. It is assumed that vmax is a fixed and
bounded real number. It is assumed that the vehicles do not
change their speed. Thus, at any time t, the positions of
vehicles is still a Poisson process. Since we assume Poisson
distribution and are interested in scaling laws, we can often
combine parallel lanes to obtain one curve whose density is
given by the summation of densities, i.e, k = k1+k2+...+kl

to simplify the analysis. However, it is important to note that
this is possible only when we are providing macroscopic
analysis, otherwise we need to consider each lane separately
and account for the interactions between lanes. We assume
B(X, r) is the closed ball with radius r centered at X in
R2. Also, C(X, r) is the circle with radius r centered at X .
We consider transportation networks that consist of n cars
equipped with OBUs. We are interested in the fundamental
limits of these networks as n grows large. Since the density
of cars is a bounded positive number, to have a large number
of nodes, the total lengths of the roads are assumed to be
large, L = n

k = Θ(n). We also make the assumption that
the roads are not highly dense on the plane. We call this
the sparseness condition. To make this rigorous, for any
point Y ∈ R2, let l(Y, r) be the Hausdorff one-dimensional
measure (combined length) of the sections of the roads inside
B(Y, r). It is assumed that l(Y, αrt) = O(rt) for all Y ∈ R2

and any constant α > 0. For any point X on a road let n(X)
be the number of times that C(X, rt) intersects with the road



curves. It is assumed that n(X) is bounded. Let Art
be the

sections of the roads consisting of points with n(X) > 2. We
say that the road system is sparse if the combined length of
Art is o(L). If n(X) ≤ 2 for all points on the roads, then the
system is said to be highly sparse. At any intersection, it is
assumed that only a bounded number of roads can intersect
with each other. In Figure 2, the road depicted on the right
is a highly sparse road, whereas the other one has n(X) > 2
in some points.

III. RESULTS AND DISCUSSIONS

A. Distance-Limited Capacity

In [1] we have focused on the transport capacity of
VANETs, in which it is assumed that every node com-
municates with a randomly chosen node in the network.
In many applications of VANETs, nodes usually need to
communicate to nodes that are within a certain distance d
from them. For example, in accident warning systems, a
car would need to exchange messages with cars that are in
its vicinity. To study the performance of VANETs for these
scenarios, we define Distance-Limited Capacity, Λd(n), as
the highest achievable throughput, when the cars are limited
to communicate with cars that are within a distance d from
them. The following Theorem provides the distance-limited
capacity of VANETs for isolated roads and grids.

Theorem 1. Assume the sparseness condition is satisfied.
• If d(n) ≥ rt(n), the distance-limited capacity of a

single road X(s), s ∈ [0, 1], is given by Λd(n) = Θ( 1
d ).

If d(n) ≤ rt(n), Λd(n) = Θ( 1
rt(n) ).

• If d(n) ≥ rt(n), the distance-limited capacity of the
Grid(m) is given by Θ( 1

d(n) ), and d(n) = O( n
m ). If

d(n) ≤ rt(n), Λd(n) = Θ( 1
rt(n) ).

Proof: First we consider the case where d(n) ≥ rt(n)
in a single road. The following lemma is utilized in our
proof:

Lemma 1. Consider a transportation network that consists
of u single roads with finite lengths l1, l2, ..., lu. Suppose
that we divide the roads to sections of lengths βrt, where β
is a constant. We can place these sections into a bounded
finite number of non-interfering groups.

This lemma states that we can schedule parallel transmis-
sions in the network as long as the transmissions belong to
different groups. This is a standard method used to obtain
a lower bound on the capacity of wireless networks. The
lemma can be proved using graph coloring which is omitted
here due to simplicity.

It’s important to note that in the case of a single road,
mobility does not guarantee capacity increase. For example,
imagine a multi-lane road where a fraction of the vehicles
reside in the highest speed lane. If we assume all the

vehicles keep their constant speed and follow each other
continuously, the distance between the source and target
vehicles does not change in time, this means that the capacity
of the system cannot grow faster than the capacity of a static
system with the same parameters.

Note that because we assume that the road is highly
sparse, all transmissions have to occur along the road. That
is, all transmissions consume at least Θ(rt) length on the
road, where rt is the range of transmission and is dependent
on n, the number of nodes. Also, due to the distance limited
communications, two randomly chosen cars are O(d) away
from each other. Thus we can use the method in [12] to
obtain an upper bound on the achievable throughput. Specif-
ically, if the throughput Λd(n) is achieved, we need at least
nΛd(n)d

r concurrent transmissions. However, the number
of concurrent transmissions is limited by O(L

r ). Replacing
L = O(n) in the latter, we would have: Λd(n) = O( 1

d ).
To show that Θ( 1

d ) is achievable we provide a routing
strategy. Since the topology of the network changes much
more slowly than the packet delivery rate, we can have
dynamic routing protocols, in which the routes need to be
slowly adjusted as the vehicles move. Choose rt = 2 ln n

k .
Divide the road into sections of length rt

2 . Due to the
properties of the Poisson process, in each section, there
exists at least one node.

P (no car exists in a specific section) = e−
rt
2 k

=
1
n

Also, as the number of sections of the road is O( n
log(n) ),

utilizing the union bound, it’s quite obvious that the prob-
ability that there is a section without a car in it tends to
zero as n goes to infinity. Hence the connectivity of the
network is preserved. Now, divide the sections into a finite
number of non-interfering groups. This is possible based on
Lemma 1. Route the messages along the road through the
sections. Each section has to support at most Θ(d) routes,
thus Λd(n) = Θ( 1

d ) is achievable.
For the case of a single road case, when we have d(n) ≤

rt(n), there is no need for multi-hop routing. We divide the
road into sections of length 2rt as in Figure 3 to ensure
that each transmission opportunity falls within at least one
section, so it’s guaranteed a time unit for transmission. First
we show that Λd(n) = O( 1

rt(n) ). Exploiting the method
introduced in [13] for the single-hop case, leads to the
constraint:

n× Λd(n)× 1 ≤ n

r
→ Λd(n) = O(

1
rt(n)

)

Now we examine the achievability of Λd(n) = Θ( 1
rt(n) ).

Since the length of the sections is Θ(rt(n)), we can divide
the sections into a finite number of non-interfering groups by



Lemma 1. Also it is easy to see that all sections have Θ(rt)
nodes with high probability. Thus, we can schedule each
link within Θ(rt(n)) unit times. Also, ω( 1

rt(n) ) throughput is
not achievable because that would need ω( n

rt(n) ) concurrent
transmissions.

Fig. 3. Divisions of a single road to be used for routing when d(n) ≤ rt(n).

We now consider a more realistic transportation topology
which is the grid model. To make the argument rigorous,
we define a transportation grid of order m, as a set of m
parallel streets intersected with another set of m parallel
streets of length l each. We assume that the two sets of roads
are orthogonal to each other, see Figure 4. We refer to this
structure as Grid(m). Note that due to the intersections, it
is virtually impossible to have a highly sparse grid structure.
Yet to obtain a sparse grid topology, the transmission range
of vehicles has to be much less than the distance between
two parallel roads. i.e: rt(n) = o(∆) = o( l

m ); Again we
investigate the distance limited capacity of VANETs for both
the cases d(t) ≥ rt(n) and d(t) ≤ rt(n), this time for the
grid structure.

We first deal with the achievability of the given bound
when d(n) ≥ rt(n). Choose rt(n) = 2ml

n lnn. Each street
is divided into sections of length rt(n)

2 . In the intersections,
the sections consist of four parts of length rt(n)

8 . The sections
are divided to a finite number of non-interfering groups
using Lemma 1. The algorithm is as follows. Assume a
car located at point Xs wants to transmit to a car located
at Xd. The information is transferred through the closest
vertical street to Xs, and the closest horizontal road to
Xd. The packets are transferred from each section to the
neighboring sections until they reach the destination. To find
the achievable capacity, we need to obtain the amount of
traffic passed through each section. Indeed, when studying
non distance limited communications, it can be easily seen
that the number of information paths traveling through each
section is (like the one colored in red in Figure (4))O( n

m ).
This is because- due to the previously described routing

strategy- the data of all the vehicles that reside on the
black portion of the grid, will pass through the specified
red section, if its destination is chosen on the opposite
side. In the same way, if we are studying distance limited
communications, then at most the data of d(n) vehicles will
pass through the desired section, where d(n) = O( n

m ).
Hence a distance limited capacity of Λd(n) = 1

d(n) is
achievable. Note that due to the spareness condition, we
have assumed that we can neglect the interference caused by
the transmission of vehicles in other roads, hence the bound
obtained for M in a single-road scenario is also applicable
here.

 

Fig. 4. A grid with m parallel lines of length l each.

We now show that throughput higher than Θ(m
n ) is

not achievable. Again, the maximum number of concurrent
transmissions is limited by Θ(L

r ). Due to the distance limited
nature of communications, two randomly chosen points have
distance O(d). Thus, from a sender to its destination, the
packets should go through O(d

r ) hops. Thus

nΛd(n)O(
d(n)

r
) ≤ Θ(

L

r
) ≤ Θ(

n

r
)

Thus we cannot achieve throughput higher than Λd(n) =
Θ( 1

d(n) ).
Now we turn to the case where d(t) ≤ rt(n) for grid

topologies. In this case, grid lines are divided in the same
way as in Figure 3 which was initially developed for the
single road case. The same arguments as for the single road
case are true for grid topology, leading to a distance limited
capacity of Λd(n) = Θ( 1

rt(n) ).

B. Cooperative Distance-Limited Capacity

We now consider the case in which each node has to
communicate with all the nodes that are within distance
d(n) from it. This corresponds to the situations in which
all vehicles that are located close to each other try
to cooperatively accomplish a task, such as accident



avoidance. The highest achievable rate is called the
cooperative distance-limited capacity and is shown by
∆d(n). The following Theorem provides the distance-
limited capacity of VANETs for isolated roads and grids.

Theorem 2. Assume the sparseness condition is satisfied.
• If d(n) ≥ rt(n), the cooperative distance-limited ca-

pacity of a single road X(s), s ∈ [0, 1], is given by
∆d(n) = Θ( 1

d(n)2 ). If d(n) ≤ rt(n), then ∆d(n) =
Θ( 1

rt(n)d(n) )
• If d(n) ≥ rt(n), the cooperative distance-limited ca-

pacity of the Grid(m) is given by ∆d(n) = Θ( 1
d3(n) ),

and d(n) = O( n
m ). If d(n) ≤ rt(n), then ∆d(n) =

Θ( 1
rt(n)d2(n) ).

As expected, the achievable per node communication
rate here is much smaller than that of the distance limited
capacity.

Proof: The ideas of proof here are similar to the
distance-limited capacity case. Thus we just highlight the
differences. The main difference is that for example in the
case where d(n) ≤ rt(n) for a single road, after applying
a division like the one given in Figure 3, it is easy to
see that all sections have Θ(rt) nodes with high probabil-
ity. Thus, we can schedule each link within Θ(rt(n)d(n))
unit times. This is because in each section each vehicle
needs to communicate with d(n) other vehicles. For the
case d(n) ≥ rt(n), following the same lines as the one
in Theorem 1 and also taking in mind the definition of
cooperative distance-limited capacity, we would easily come
up with ∆d(n) = Θ( 1

d(n)2 ) . For the grid, we must note
that any node needs to communicate with O(d2) nodes. The
proof is simple and omitted here due to the lack of space.

IV. CONCLUSION

In this paper we introduced a novel capacity definition,
specially developed for safety applications in VANETs. That
is, VANET nodes which are vehicles riding along roads,
mainly need to communicate with other parties which are
within a distance d(n) of their vicinity. We studied the
capacity of the VANET when there is this limitation on node
transmissions and we called it Distance-Limited Capacity.
Also we rendered capacity scaling laws as the number of
users increases. Moreover specific analysis was carried out
for two famous transportation topologies, which are the
single road and grid geometries. Also for specific emergency
applications, a vehicle needs to send high priority data to all
other vehicles in its vicinity. We’ve also derived formulas
to study the VANET capacity under those circumstances.
We have shown that the VANET capacity results differ
significantly from the known capacity results obtained for

MANETs. In particular, it is observed that the road geometry
plays an important role in the capacity of VANETs. This
paper opens up an important direction for future research on
understanding VANETs. Indeed, several simplifying assump-
tions regarding the mobility models, geometric properties,
communication models, and capacity definitions are adopted
in this paper. Future work will consider developing and
analyzing more realistic models.
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