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Abstract— In the past, many analytic results for wireless
networks have been reported for the case where the number of
nodes n in the network tends to infinity (large-scale networks).
These include connectivity, coverage, and capacity. These results
have not been extended for small or moderate values of n,
although in many practical networks n is not very large.
In this paper, we first show that previous asymptotic results
provide poor approximations for the finite networks (small-scale
networks). We then aim to develop a framework to analytically
study network properties without assuming that n is large. We
provide a set of differences between small-scale and large-scale
analysis. We consider wireless networks in which the location
of the nodes is random. We study routing algorithms, coverage,
connectivity and capacity of finite wireless networks. We provide
easily computable expressions for different network properties.
With validation from simulations, we show that these analytic
expressions give very good estimates of these quantities for finite
wireless networks. Our investigation suggests that the small-
scale networks posses unique characteristics that require a new
framework for analysis and design.

Index Terms— Wireless Networks, Small-Scale Networks,
Graph theory Connectivity, Coverage, Capacity.

I. INTRODUCTION

In the past, many analytic results on the connectivity, cover-
age, and capacity of wireless ad-hoc and sensor networks have
been obtained. In almost all of the results, it is assumed that
the number of nodes n in the network tends to infinity (large-
scale networks). In other words, these results are asymptotic.
Asymptotic results are very important for two reasons. First,
they give us good estimates for large-scale networks. Second,
they show some fundamental trade-offs in the network. How-
ever, in many practical wireless networks the number of nodes
may be limited to a few hundred (small-scale/finite networks).
As it is shown in this paper, the asymptotic results cease to be
valid for these networks. Thus, it is very crucial from practical
point of view to analyze finite networks. These analytic results
will essentially help us to understand, design, and analyze
practical wireless networks, and also to design more suitable
communication protocols.

To clarify, for example, consider capacity analysis of wire-
less networks which has been studied extensively (e.g., in
[1]–[7]). Today we have good understanding of scaling laws
in capacity of wireless networks. However, suppose we need
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to design a wireless sensor network consisting of a hundred
sensor nodes. Some fundamental question are as follows. What
is the transport capacity? What are the information theoretic
and the MAC layer capacities? How do network parameters
such as number of nodes and their communication radius affect
these capacities? Unfortunately, the available asymptotic re-
sults fail to give answers to these questions. Similar questions
are remained unanswered for other properties of the network
such as connectivity, coverage, etc.

The question that arises here is, can we do small-scale
analysis? We recognize some obstacles as follows. First, in
large-scale networks we can use asymptotic estimates that
make the analysis much simpler. These estimates are not
available in small-scale analysis. Thus, small-scale analysis
is usually more difficult. Second, even if we can perform
the small-scale analysis, we usually obtain very complicated
formulas that are not very useful practically. In this paper,
we want to circumvent these problems and provide guidelines
for small scale-analysis. We assume the reader is, to some
extent, familiar with large-scale (asymptotic) analyses. The
main goal of the paper is to initiate the small-scale analysis
of wireless sensor and ad hoc networks. Such analyses can be
very useful in analyzing and evaluating communication and
security protocols for practical sensor and ad hoc networks
and is completely overlooked in the literature. To the best
of our knowledge, this is the first work to analytically and
systematically study this issue.

The main idea is the following. First, for clarity, by small-
scale (finite) networks we mean networks of size between n =
20 and n = 2000, which includes many practical wireless
sensor and ad hoc networks. The first key point is to aim
at simple and very good approximations instead of trying to
find complicated exact formulas. To do so, we first consider
the asymptotic analysis. In any asymptotic analysis, a set of
asymptotic estimates are used. Some of these estimates are
still good for small-scale networks, while others are not. We
identify those who are not valid and replace them with better
estimates. Specifically, in this paper we list a few important
differences between small-scale and large-scale analysis. Some
of these differences, such as the field-shape effect, are specific
to random geometric graphs while others apply to all finite and
asymptotic systems. Thus, the general method is that we look
at any asymptotic analysis and identify the estimations that
are not valid for finite networks and replace them with more
accurate estimates. However, this must be done carefully, in
order to obtain simple and easily computable formulas at the
end. As it is mentioned above, exact expressions for network
quantities are usually very complicated. Thus, we attempt to
provide easily computable estimates for those quantities.
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In this paper, we consider fundamental network properties
that affect routing algorithms and reliability of the wireless
networks. Specifically, we study coverage, connectivity, ca-
pacity and analysis of routing algorithms. We give several
results pertaining to these properties. For example, as an
important property we want the network to be connected.
More generally we may need k-connectivity. For multi-path
routing using k disjoint paths between different nodes, we
need the network to be k-connected. Moreover, k-connectivity
is related to reliability of networks against node and link
failures and adversaries. K-connectivity is also desirable in
networks with sleeping sensors. In the past, many authors
have studied connectivity and k-connectivity for large-scale
networks. These results are asymptotic and obtained assuming
that the number of nodes tends to infinity. Here we show
that these results are not very useful for finite networks. We
provide a very simple formula for k-connectivity probability
of wireless network and show that the formula is very precise.
Due to the space limitation, lengthy proofs and discussions are
omitted here, and have been included in the longer version of
the paper available at on the first author’s website.

Here, we consider a wireless network that consists of n
nodes and assume that the nodes are placed on a plane based
on a given probability distribution. For example, in wireless
sensor networks it is usually assumed that the nodes are
randomly and uniformly deployed over a given field [8]. We
assume that each node has a finite and fixed communication
radius. Two nodes are connected (i.e., can communicate with
each other) if they are within communication range of each
other. Throughout the paper, we assume B(R2) is the Borel
σ−algebra on R

2 and m is the Lebesgue measure on B(R2).
Note that we just mention measure theoretic definitions to take
care of technicalities, and it is not necessary for the reader to
be familiar with them. The reader can simply assume that
for a set F in R

2, m(F ) is the area of F . B(X, R) is the
closed ball with radius R centered at X in R

2. S(X, L) is the
closed square with side L centered at X in R

2. In particular
S0 = S(O, 1) is the closed square with unit area centered at
the origin. If u and v are two nodes of a network located
in R

2, then d(u, v) is the Euclidean distance between the
location of the points. For any set F ∈ B(R2) we define
ν(F ) = m(F ∩ S0). Clearly, ν defines a measure on B(R2).
Let εn be an event depending on a parameter n. We say that
εn holds asymptotically almost surely if Pr{εn} tends to 1
as n → ∞.

The remainder of the paper is structured into several parts.
The next section provides an overview of the work related
to our study. Section III establishes the formulation and
preliminaries of the problem we have considered. In Section
IV, we justify the need for small-scale analysis developed in
this paper. In Section V, we investigate the fundamental prop-
erties of small-scale analysis. We study coverage, connectivity,
capacity, and routing algorithms of finite wireless networks.
Finally, Section VI concludes the paper.

II. RELATED WORK

Related problems have been studied in the context of
random graph theory [9], continuum percolation and geometric

probability [10], [11], and the study of wireless network graphs
[2], [12]–[20]. In random graph theory, the model G(n, p)
is extensively studied, in which edges appear in a graph of
n vertices with probability p independent of each other. In
continuum percolation theory, usually infinite graphs on R

d

are studied. Finally, in geometric probability and the study of
graphs of wireless networks, large-scale graphs over the plane
are usually studied.

In [12], the connectivity of large-scale wireless networks
is studied. In [18], [19], and [21], k-connectivity of wireless
networks has been investigated. In [18], k-connectivity was
explored in the context of fault-tolerant networks. In [19]
authors studied the asymptotic critical transmission radius for
k-connectivity and asymptotic critical neighbor number for k-
connectivity in wireless networks. In [21], we extended con-
nectivity and k-connectivity for large-scale sensor networks.
In that paper, we specifically considered the effects of node
and link failures and the distribution function of the nodes on
connectivity properties of sensor networks. The connectivity in
ad hoc and hybrid networks was studied in [22]. In [23], trade-
off between connectivity and capacity of dense networks was
examined. In particular, the effect of the attenuation function
on network properties was considered. Medium access (MAC)
layer capacity of wireless ad hoc networks has been studied
in [1]. The transport and information theoretic capacity has
been investigated extensively, for example see [2]–[7]. In
[20], the general concept of k-coverage was studied. The
grid model for sensor networks has also been investigated.
In particular, connectivity, coverage, and diameter of sensor
grids were studied in [16]. In [20], the k-coverage problem
for sensor grids and other deployment methods was considered
and necessary and sufficient conditions were obtained. In [24],
a different model for grids was examined and its asymptotic
connectivity and lifetime were explored. However, almost all
previous analytical results are asymptotic since they consider
large-scale networks.

Analysis of wireless networks with modest number of
nodes, which does not involve asymptotic results, has gen-
erated a lot of interest in the recent past [25]–[29]. In [25],
the authors investigated the problem of connectivity in ad hoc
networks of finite size. The probability of connectivity was
analyzed for one-dimensional networks (line networks), and
the result was extended to find bounds for the networks in
two dimensions. The authors considered a network consisting
of nodes uniformly distributed in the deployment area (a line
network), where the locations of the nodes are independent
of each other. Using probabilistic methods, they obtained
the exact formulation for the probability of connectivity. As
expected, they observed that in finite-scale networks, the
probability of connectivity does not exhibit threshold effects,
unlike in the asymptotic case. The author of [26] presented
corrections and extensions to [25]. It is noted that both of the
above cases considered a line network, and the extension to
two-dimensional networks was achieved by obtaining a loose
bound using the results from the former case. In [29], the
authors also consider the line network and obtain connectivity
results for the one-dimensional networks. It should be noted
that, as it will be clear from the next discussions, the main
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challenges in finite analysis arise in two dimensional case. In
[27], mobility and more realistic models were examined. The
authors obtained an analysis of connectivity for both finite and
asymptotic cases. They obtained a mobility model based on
a stationary AR-1 process. One step conditional connectivity
probability was found first, and an extension to the k-step case
was made. Further, the author also obtained the probability
mass function of the first passage disconnectivity time given
that the network is initially connected. In [28], some simple
local network characteristics such as link probability and aver-
age node degrees are studied. the paper also obtains formulas
for average covered area. In this paper, we are interested in
global properties such as connectivity, coverage probability,
capacity, throughput, and lifetime. These properties are much
more difficult to analyze than the properties studied in [28],
and are also more relevant to the practical performance of
wireless networks.

Though all the above works provide the necessary insight
into analysis of finite-scale networks, the results presented,
unlike the compact closed-form results in large-scale scenar-
ios such as in [11] or [30], involve complicated series and
products. This implies that one cannot get a fair insight into
the dependency of network properties on design parameters
(scaling laws in finite domain). Further, there exist a number
of works in literature which are independent of the size of the
network, but use algorithmic and simulation approach to solve
such problems.

III. PRELIMINARIES

Wireless networks are sometimes modeled with the prob-
ability space of graphs that we represent with g(n, r) =
g(n, r(n)). In this model, it is assumed that n nodes are
uniformly and randomly distributed over S0 = S(O, 1). If
two nodes u and v satisfy d(u, v) ≤ r(n), then the edge
{u, v} belongs to edges of the graph. A more general model is
the model g(n, r, p), in which two nodes are connected with
probability 0 < p � 1 if their distance is less than r. In
this model p models link failures that are common in wireless
networks. Asymptotic properties of g(n, r) have been studied
extensively. Here we are interested in these properties when n
is not necessarily large. It is worth noting that the assumption
that the nodes are distributed on S0 is made for simplicity.
These arguments can easily be generalized to other models
for the deployment region.

Another generalization is given by g(n, r(n), fXY ), which
is defined as follows. Let X and Y be absolutely continu-
ous random variables with continuous joint density function
fXY (x, y) satisfying fXY (x, y) > 0 for all (x, y) ∈ S0 =
S(O, 1), and fXY (x, y) = 0 otherwise. A graph in g(n, r, f)
has n nodes and is generated as follows. For any node v, its lo-
cation (X,Y ) is chosen according to fXY (x, y) independently
from other nodes. If two nodes u and v satisfy d(u, v) ≤ r(n),
then the edge {u, v} belongs to edges of the graph. Here for
simplicity, we restrict ourselves to the model g(n, r(n)) and
g(n, r, p) (i.e., when fXY (x, y) = 1{(x,y)∈S0}, the uniform
distribution of nodes). Again, all the arguments can be easily
extended to a general density function fXY (x, y). For the
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Fig. 1. The field S0 and its subdivisions S1,S2, and S3.

purpose of analysis, we divide the square S0 to different parts
shown in Fig.1.

Finally, we consider the following definition for Poisson
processes. For a point process χ on R

2 and a Borel set A, let
χ(A) be the number of points of the process in A. The point
process χλ is said to be a Poisson process with density λ > 0
if [11]

• For mutually disjoint Borel sets A1, A2, ..., Ak, the ran-
dom variables χ(A1), ..., χ(Ak) are mutually indepen-
dent.

• For any bounded Borel set A ∈ B(R2) and for every
k ≥ 0, we have

Pr{χ(A) = k} = e−λm(A) λk(m(A))k

k!
. (1)

IV. MOTIVATION FOR SMALL-SCALE ANALYSIS

In this section, we present some evidence to show that previ-
ous asymptotic results diverge significantly from actual values
for finite networks. To show this, we consider connectivity.
We first provide the asymptotic probability of disconnectivity
for g(n, r, p) and compare it to simulation results. Using this,
we conclude that the asymptotic results fail to provide an
acceptable estimate of real probability of disconnectivity for
small-scale networks. The following result is proved in [12],
where a slightly different model is considered. However, the
results can be trivially extended to g(n, r).

Theorem 1: (Gupta and Kumar 1998) Let cn = nπr2 −
log(n), then g(n, r) is connected with high probability if
lim

n→∞ cn = ∞. On the other hand, if lim
n→∞ cn = c < ∞ then

for large n, g(n, r) is disconnected with a strictly positive
probability 1 − pasymp(c).
This theorem states that if lim

n→∞ cn = c < ∞, the network
connectivity probability will be bounded away from one. In
fact, pasymp(c) is the limit for the probability that the network
is connected when n goes to infinity. Although, there is vast
literature on the asymptotic analysis of connectivity properties
of wireless networks, we were unable to find a reference that
actually gives a formula for pasymp(c). Thus, here we compute
pasymp(c).

75

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 13, 2008 at 14:04 from IEEE Xplore.  Restrictions apply.



Theorem 2: Let cn = npπr2 − log(n), and lim
n→∞ cn =

c < ∞, then the probability that g(n, r, p) is connected ,
pasymp(c), satisfies

pasymp(c) = lim
n→∞ pasymp(c, n) = e−e−c

. (2)
Proof: For proof, please see the longer version of the

paper available at http://www.ecs.umass.edu/ece/pishro/.
Therefore, asymptotically, the probability that g(n, r, p) is

connected is given by pasymp = e−ne−npπr2

. We now show
that the above asymptotic connectivity formula results in a
very bad estimate of disconnectivity probability for small-scale
networks. However, in the next sections, we will confirm that
our small-scale analysis gives a very good estimate for this
quantity.

In Figure 2, we compare the probability of having a
disconnected graph for n = 100 and p = 1 derived by
exhaustive simulations and the asymptotic result. In the figure,
the probability of disconnectivity is shown as a function
of r, the communication radius. The experiment shows that
these results may differ by 10 orders of magnitude. This
illustrates that the asymptotic method fails to provide a good
approximation for small- scale networks.
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−15

10
−10

10
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10
0

Asymptotic Results
Simulation Results

Fig. 2. Comparison of asymptotic results with the small scale simulation
results for the probability of disconnectivity of g(n = 100, r).

So far we showed that the asymptotic analysis may fail
badly for finite networks. Now if we ought to use finite-
scale analysis, what kind of formulation would be helpful?
To answer, let us now elaborate on the important requirement
we mentioned earlier. Namely, in small-scale analysis we
need to find simple and easily computable formulas. The
rationale behind this is as follows. First, in analytic results we
usually need formulas that help us to understand the effects
of different parameters. A complicated formula usually reveals
little about those effects. Second, sometimes, exact formulas
are computationally infeasible. To show this, let us again
consider connectivity.

For n points X1,X2, ...,Xn on the plane, let the graph
g(X1,X2, ...,Xn, r) be obtained as follows. The graph
consists of n nodes v1, v2, ..., vn, such that vi is located
at Xi. Two nodes vi and vj are connected by an edge
if their distance from each other is less than r. Let
Con(X1,X2, ...,Xn, r) = 1 if the graph g(X1, X2, ..., Xn, r)
is connected and Con(X1,X2, ...,Xn, r) = 0 otherwise.
Then the probability that g(n, r) is connected is exactly given
by

∫
(S0)n

Con(X1,X2, ...,Xn)dm(X1,X2, ...,Xn).

Although, it may not be very obvious, this formula is
computationally infeasible. Thus, unless for very small values
of n, such as n = 2, 3, it is practically useless. Moreover, this
formula does not reveal anything about the interplay between
different network parameters such as r and n and network
properties. This example shows that obtaining exact formulas
is not usually enough. Instead, we need to find meaningful
and easily computable formulas.

Finally, we note that for some network quantities such as
connectivity probability, it is possible to perform exhaustive
simulations to estimate the quantity. Nevertheless, it is still
very important to analytically study the network properties.
First, analytic study helps us to understand the network
behavior and see the effects of different parameters on the
network properties. Thus, analytic results are very valuable in
the design and evaluation of wireless networks. Second, there
are many other network quantities that may not be evaluated
by exhaustive simulations. For example, in this paper, we ana-
lytically study the capacity of wireless networks. It is not clear,
if it is possible to set up simulations to estimate the network
capacity. 1 Third, quantities such as connectivity probability
are usually used in the analysis of more complicated network
properties such as capacity analysis. Thus, it is important to
analytically study them. Here is a simple analogy. In circuit
design, we can always use the specialized computer packages
to analyze a circuit. However, it is still very important to
understand the behavior of different components of a circuit.
A circuit designer must have access to analytic formulas
and basic understanding of the circuit design methodology to
design a circuit. Later computer simulations, can be helpful in
validating the design, obtaining more exact evaluations, and
making final adjustments.

V. FUNDAMENTALS OF SMALL-SCALE ANALYSIS

In this section, we try to establish a framework for analysis
of finite networks. We list some important differences between
small-scale and large-scale networks. In each subsection we
first introduce the main idea, and then pick one or two
network properties and show how to analyze those properties
for small-scale networks. We try to choose simple examples
that best show the difference between small-scale and large-
scale analysis. In most cases, for simplicity, we only consider
g(n, r); while occasionally we give the results for the more
general model g(n, r, p). Nevertheless, it is not usually very
difficult to extend the given results for g(n, r), to g(n, r, p).

A. Boundary Effects

One important phenomenon in asymptotic analysis is that
boundary effects can be neglected. Loosely speaking, the anal-

1Note that we can estimate the average throughput for a given network
with a specific protocol and data traffic model using exhaustive simulations.
However, here by capacity we mean the highest possible achievable capacity,
not the one achieved using a specific communication and routing protocol.
Such capacity measure can be used to determine the efficiency of different
protocols.
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ysis of the network properties is usually dominated by what
happens in region S1 in Figure 1. In fact, we saw an example
of this phenomenon in the asymptotic analysis of connectivity
in Theorem 2. This can considerably simplify the analysis
and results in simple and closed-form formulas for network
properties. However, in small-scale networks boundary effects
cannot be neglected. In other words, nodes in the corners of
the field can play an important role in some of the network
properties. To clarify this, let us consider a simple example.
Suppose we want to find the average coverage in a wireless
sensor network defined by g(n, r). In other words, we want to
find the average percentage area that is covered. For simplicity,
suppose the sensing radius is also equal to r, that is, each node
covers a circle of radius r centered at the node location. The
probability that the point X in S0 in not covered is given by(

1 − ν(B(X, r))
)n

. (3)

Thus, if PCnotcov is the average percentage of the uncovered
area, then

PCnotcov =
∫
S0

(
1 − ν(B(X, r))

)n

dm(X). (4)

Thus, PCnotcov can be obtained easily and the equation (4) is
valid for all values of n, small and large. However, if we are
doing asymptotic analysis, and we assume that lim

n→∞ r(n) = 0
(this assumption is almost always true for large-scale analysis),
then using (4) we obtain

PCnotcov = m(S1)
(

1 − πr2

)n

+
∫

S0\S1

(
1 − ν(B(X, r))

)n

dm(X)

= (1 − o(1))(1 − πr2)n. (5)

Therefore, asymptotically, PCnotcov = (1 − πr2)n. Note that
in this case the only difference between the exact (formula (4))
and asymptotic expressions comes from the edge effect. Figure
3 compares the two results. We observe that the two results
differ considerably. This example clearly shows the importance
of boundary effects in small-scale networks. This example is
unique in the sense that the exact analysis is very simple.
However, we are not usually so lucky. For instance, as we will
see, exact analysis of other properties can be very complicated.
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Fig. 3. Comparison of asymptotic results with the exact values for average
percentage of uncovered area in g(20, r).

Small-Scale Analysis for Connectivity Properties of g(n,r,p):
Before discussing other differences between large-scale and

small-scale analysis, we provide a small-scale analysis for
connectivity properties of g(n, r, p). This is a good example to
illustrate our methodology for small-scale analysis. Since the
exact analysis is usually very difficult or at least results in very
complicated formulas, a good approach is to find simple lower
and upper bounds. Therefore, in this section we find lower and
upper bounds for the probability that g(n, r, p) is disconnected,
pdisc(n, r, p). As we will see the two bounds almost coincide
with each other. Thus, they give a very good estimate for
pdisc(n, r, p). Indeed, the two bounds completely agree with
the simulation results. Let plow(n, r, p) and pupp(n, r, p) be
the lower and upper bounds on pdisc(n, r, p), respectively.
Here we consider the case where pdisc(n, r, p) is small, i.e.,
pdisc(n, r, p) < .1. In practice, this is usually the range that is
important, since we want that the network is connected with
high enough probability.

Theorem 3: Consider a wireless network with the model
g(n, r, p). Then we have

pdisc(n, r, p) ≥ n

∫
S0

(
1 − ν(B(X, r))p

)n−1

dm(X) −
(

n

2

) ∫
S0

∫
S0

(
1 − ν(B(X, r))p − ν(B(X, r))p +

ν(B(X, r) ∩B(Y , r))p2

)n−2

dm(X) × m(Y ). (6)

Proof: For proof, please see the longer version of the
paper available at http://www.ecs.umass.edu/ece/pishro/.

Note that this lower bound for pdisc(n, r, p) may seem to
be too complicated and thus may not satisfy the simplicity
requirement. However, as we will see, this lower bound is
almost the same as a simple upper bound that we find shortly.
Thus, the simple upper bound can be used in estimating
pdisc(n, r, p). The lower bound is useful in the sense that it
assures us that our estimate is very close to the real value for
pdisc(n, r, p).

We now find an upper bound for pdisc(n, r, p). By definition,
a connected component of a graph g is a connected subgraph
that is isolated from the rest of g. Thus, pdisc(n, r, p) is equal
to the probability that g(n, r, p) has at least one component
of size less than n/2. For U ⊆ {v1, v2, ..., vn}, let pcomp(U)
be the probability that the vertices in U construct a connected
component in g(n, r, p). Then, we have

pdisc(n, r, p) ≤
n/2∑
k=1

(
n

k

)
pcomp({v1, v2, ..., vk}) =

n/2∑
k=1

ak.

(7)
Note that although pupp(n, r, p) =

∑n/2
k=1 ak is a valid

upper bound for pdisc(n, r, p), it does not satisfy the simplicity
requirement. In fact, except the first few terms, computing
ak’s is computationally infeasible. We now try to simplify this
upper bound. Note that so far all the results about the lower
and upper bounds have been exact and rigorous. However,
we now use a simple approximation for simplifying the upper
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Fig. 4. Comparison of a1 and a2 in (7).
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Fig. 5. Disconnectivity probability of g(100, r, .5): lower bound, upper
bound, and the simulation results.

bound. Nevertheless, the approximation is completely backed
by numerical and analytical arguments. We remember our
assumption that pdisc(n, r, p) is not very large, specifically
we assume pdisc(n, r, p) < .1. An important observation here
is that, by this assumption, the ak’s decay very fast and the
pupp(n, r, p) =

∑n/2
k=1 ak, is dominated by a1. This can be

seen by both numerical simulations and intuitive analytical
arguments. To see this let us examine a1 and a2. Figure 4
compares a1 and a2 for g(n = 100, r, p = .5). As we see a2

is at least one order of magnitude lower than a1. Note that
this is a crucial observation that simplifies the upper bound
significantly.

The fact that ak’s decay very fast, can also be de-
scribed in the following way. For a subset of vertices U =
{u1, u2, ..., ut} ⊆ {v1, v2, ..., vn}, let A(U) be the area of
the unions of circles with radii r centered at ui’s. Then the
probability that the vertices in U are isolated from the rest of
the graph is given by(

1 − A(u)
)n−t � e−nA(u). (8)

This shows that pcomp({v1, v2, ..., vk}) in (7), decays expo-
nentially fast with the number of vertices, k. Thus, ak’s decay
very fast. This is of course consistent with our observation in
Fig. 4. Therefore, we conclude

pupp(n, r, p) � a1 = n

∫
S0

(
1 − ν(B(X, r))p

)n−1

dm(X).

(9)
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Fig. 6. Disconnectivity probability of g(100, r, 1) using (10) and simulation
results.
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Fig. 7. Disconnectivity probability of g(30, r, 1) using (10) and simulation
results.

Figure 5 shows the upper bound, lower bound, and the
simulation result for the probability of disconnectivity of
g(n, r, p), for n = 100, and p = .5. As we see the three
almost coincide. As we will see shortly, similar results are
achieved if we use different choices of parameters. Thus, we
conclude

pdisc(n, r, p) � n

∫
S0

(
1 − ν(B(X, r))p

)n−1

dm(X). (10)

Note that (10) suggests that pdisc(n, r, p) is dominated by
the probability of having an isolated vertex. We recall from
Theorem 2 that the asymptotic probability of disconnectivity,
1 − pasymp(c), is also dominated by the isolated vertices.
However, a crucial difference between these two is that the
boundary effects are insignificant in asymptotic analysis. This
causes that the asymptotic formula differs from the correct
values by several orders of magnitude when used for small or
moderate values of n as shown in Fig. 2. However, our small-
scale formula is almost identical to the correct values because
it considers the boundary effects. Note that (10) gives us a
very simple and easily computable formula for disconnectivity
probability.

Figures 6, 7, and 8 compares the disconnectivity probabil-
ities obtained by (10) and simulations for different values of
n and p. We confirm that in all the cases the given formula
matches the simulation results.
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Fig. 8. Disconnectivity probability of g(500, r, 1) using (10) and simulation
results.
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Fig. 9. Probability that g(100, r, 1) is not two-connected, using (10) and
simulation results.

It is worth noting that the methodology used here can
be used to study k-connectivity which is more general than
connectivity. As it was mentioned earlier, k-connectivity is
important for multi-path routing, reliability, and security in
networks. By definition, a network is k-connected if there does
not exist a set of k − 1 vertices whose removal disconnects
the graph. In particular, 1-connectivity (k = 1) is equivalent
to connectivity. Using similar arguments, we find that the
probability that g(n, r) is not k-connected, pk,disc(n, r) is
dominated by the probability that there exists at least one
vertex in the network with degree less than k. In summary,
we find the following approximation of the probability that
g(n, r) is not k-connected

pk,disc(n, r) �
k−1∑
j=0

n

(
n

j

) ∫
S0

[ν(B(X, r(n)))]j ×

(
1 − ν(B(X, r(n)))

)n−j−1

dm(X). (11)

Figure 9, validates this expression for k = 2. Again we
verify that the formula matches the simulation results. Our
simulations for larger values of k consistently confirms the
validity of (11). Here, due to the space limitations we omit
these results.

B. Effect of Constant Factors

So far, we have seen the importance of boundary effects
in the analysis of finite networks. We now discuss another
important issue. In asymptotic analysis, we usually neglect
constant factors. However, in small-scale analysis, we must
consider them. This is in fact, a difference between any
finite analysis and asymptotic analysis and is not specific to
geometric graphs. To show the importance of constant factors
in the geometric graphs of wireless networks, we consider
the medium access (MAC) layer capacity. Asymptotic MAC-
layer capacity of ad hoc wireless networks is studied in [1].
The MAC-layer capacity is defined in [1] as the maximum
possible number of concurrent transmissions at the media
access layer. It is shown in [1] that for a wide class of MAC
protocols including IEEE 802.11, the MAC-layer capacity can
be modeled as a maximum Distance-2 matching (D2EMIS)
problem in the underlying wireless network. That is, given a
graph G(V, E), find a maximum set of edges E′ ⊆ E such
that no two edges in E′ are connected by another edge in E.
It is shown in [1] that for g(n, r), the MAC-layer capacity is
optimized at r = Θ( 1√

n
) and is given by Θ(n). Although this

is an important and valuable result, it has very limited value
when we consider finite networks. For example, suppose we
have a network consisting of 100 sensors and we want to
choose the communication radius such that the MAC-layer
capacity is optimized. The asymptotic result does not tell us
what the value of r should be. Moreover, we do not know what
the optimum MAC-layer capacity would be. This example
clearly shows the importance of constant factors in small-scale
analysis. In the next section we analyze the average MAC-
layer capacity for finite networks and obtain simple lower
and upper bounds. Using these bounds, we try to answer the
above question about the MAC-layer capacity of a finite sensor
network.

Small-Scale Analysis of MAC-Layer Capacity of g(n, r):
In this section we analyze the average MAC-layer capacity

of g(n, r), i.e the maximum number of possible concurrent
transmissions which is available on average in g(n, r). As it
was mentioned, we find simple upper and lower bounds and by
which we find the optimum value of r and the corresponding
average MAC-layer capacity. We now prove the following
lower bound. Let MAC(n, r) be the average MAC-layer
capacity of g(n, r).

Theorem 4: Define

s =
∫
S0

ν(B(X, 2r))dm(X), (12)

t =
1 − (1 − s)n

s
. (13)

Then, the average MAC-layer capacity satisfies

MAC(n, r) ≥ t

(
1 − (1 − πr2)n−t

)
. (14)

Proof: For proof, please refer to the longer version of the
paper available at http://www.ecs.umass.edu/ece/pishro/. The
proof is constructive. That is, we use an algorithm to find
a set of m concurrent transmissions in g(n, r) such that on
average m satisfies the lower bound given by the theorem.

We now obtain a simple upper bound on the average MAC-
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layer capacity.
Theorem 5: Consider a wireless network graph g(n, r).

Define

n1 = n

∫
S0

(1 − ν(B(X, r)))n−1dm(X). (15)

Then, the average MAC-layer capacity satisfies

MAC(n, r) ≤ n − n1

2 + 1.37r2n
. (16)

Proof: For proof, please see the longer version of the
paper available at http://www.ecs.umass.edu/ece/pishro/.

Figure 10 shows the upper and lower bounds on the MAC-
layer capacity of g(100, r). The lower bound is maximized at
r = .06, while the upper bound is maximized at r = .08. Thus,
to optimize the MAC-layer capacity we can choose .06 < r <
.08. We also note that the maximum achievable MAC-layer
capacity is between 15 and 30. An interesting open problem
is to tighten the bounds to obtain a more accurate estimate of
MAC-layer capacity.
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Fig. 10. Upper and lower bounds on the average MAC-layer capacity of
g(100, r).

C. Lack of Concentration

In asymptotic analyses, usually random variables concen-
trate on their average values. Thus, it usually suffices to only
determine the expected value. However, in small-scale analysis
this is not the case. Thus, knowing the expected value is
not usually enough. To clarify this, it is useful to consider
geometric routing algorithms. A survey on routing protocols
for wireless sensor networks can be found in [31]. Suppose
nodes A and B are two fixed nodes on the plane that are located
at the unit distance away from each other. In geometric routing
when node A wants to send the data to node B, the information
is usually sent hop by hop to B. Each node passes the data to
another node which is somewhat closer to the destination, node
B. An example of such routing algorithms is GPSR [32]. Since
in these algorithms the next hop is typically determined locally,
when the density of nodes is large, by a martingale argument
we can usually prove that the path length (the number of
hops) is concentrated around its average with high probability.
Thus, determining the average path length would be sufficient.
On the other hand, for small-scale networks, the number of
hops can considerably deviate from the average. Thus, analysis
of geometric routing protocols for small-scale networks can
be very important. To show this, we now analyze a simple

geometric routing algorithm. We should note that the algorithm
is not optimal in terms of energy, delay, etc. However, it is
good enough to show the distinct characteristics of small-scale
networks.

W A B

Fig. 11. Illustration of a simple geometric routing.

Consider the following scenario. As shown in Figure 11,
let us assume that node A wants to send some information to
node B. Suppose the nodes are distributed on the plane based
on a Poisson distribution with density λ. Assume the distance
between A and B is d(A,B) = 1. We connect A and B by a
virtual line and also consider a virtual rectangle shown in Fig.
11 with width w. The routing path consists of all the nodes in
the rectangle, from left to right. In this routing scenario, we
assume that the packets travel from a node to its right neighbor
node with the shortest horizontal distance. Assume that A is
located at (0, 0), and B at (1, 0), and the ith node in the rout
is located at (Xi, Yi). Then, Xi+1 − Xi has an exponential
distribution with parameter λw. Thus, if H is the number of
hops from A to B, we have

Prob{H = h} =

Gamcdf (1, h − 1,
1

wλ
) − Gamcdf(1, h,

1
wλ

),

where Gamcdf(x, h, η) is the value of the Gamma distribution
function with parameters h and η at point x. By considering
the Gamma distribution, we can show that for small η = λw,
the distribution is very wide (refer to the longer version of
the paper available at http://www.ecs.umass.edu/ece/pishro/).
However for larger η, the distribution concentrates around
its average, EH = η + 1. This shows that although in the
asymptotic case the average value can suffice for the analysis,
the whole distribution should be known in the finite density.

As an application of this, let us consider the energy issue.
In wireless sensor networks, energy is arguably the most
important constraint. Thus, we would like to minimize the
energy consumption. We assume that the energy needed for a
direct transmission from a node to a neighbor at distance d is
proportional to d2. Here, we assume that every sensor adjusts
its transmission power according to its distance from the recip-
ient node. Then, using the distribution of the random variables
involved in our simple geometric routing, we conclude that the
average total energy consumption in communication between
A and B is proportional to

Avg.Energy ∝ (λw + 1)
(

2
λ2w2

+
w2

12

)
. (17)

Thus, for a given λ, we can find the value of w that minimizes
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the average energy. It is very important to note that the
geometric algorithm used here is not the best possible, and
the assumption of the energy adjustment in the sender node
may not be realistic in some scenarios. However, almost all
geometric routings have similar properties. Specifically, in all
geometric algorithms, when the density of nodes tends to
infinity, the number of hops converges to the average value,
while when the network is not very dense the number of hops
can deviate considerably.

VI. CONCLUSION

In this paper, we provided a methodology for analysis
of wireless networks in finite regime. We provided some
compelling evidence to show that asymptotic results are not
suitable for analyzing practical finite networks. We consid-
ered connectivity, coverage, MAC-layer capacity and routing
algorithms of finite networks. We obtained a very simple
formula for connectivity of wireless networks and verified
it by simulation results. The formula was then extended to
include k-connectivity. We studied MAC-layer capacity and
obtained simple lower and upper bounds. Using these bounds
we estimated the optimum value for achieving the high-
est capacity. Finally, we studied geometric routings. Using,
these examples we confirmed that finite-scale networks posses
unique characteristics that require a new framework distinct
from asymptotic approaches.

This paper opens up many research possibilities that offer
potential for further research. In the past, many other important
properties of wireless networks have been studied for large-
scale networks. It is an important task to extend these results
for networks with practical sizes, i.e., small-scale networks.
For example, there are several other measures for network
capacity such as transport capacity, information theoretic ca-
pacity, and capacity of cooperative nodes. Asymptotic analysis
of these definitions has been studied extensively. It is very
useful to extend these results to small-scale networks. Finite
analysis can reveal the effects of network parameters on
networks characteristics.
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