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Abstract—With the objective of minimizing the total cost, which in-
cludes both sensor and congestion costs, the authors adopted a novel
sampling theorem approach to address the problem of sensor spacing
optimization. This paper presents the analysis and modeling of the power
spectral density of traffic information as a 2-D stochastic signal using
highly detailed field data. The field data were captured by the Next-
Generation SIMulation (NGSIM) program in 2005. To the best knowledge
of the authors, field data with such a level of detail were previously
unavailable. The resulting model enables the derivation of a character-
ization curve that relates sensor error to sensor spacing. The charac-
terization curve, concurring in general with observations of a previous
work, provides much more detail to facilitate sensor deployment. Based
on the characterization curve and a formulation relating sensor error to
congestion cost, the optimal sensor spacing that minimizes the total cost
can be determined.

Index Terms—Sampling theorem, sensor optimization, spectral domain
analysis, traffic congestion, traffic sensing.

I. INTRODUCTION

The United States has 47 000 mi (75 640 km) of Interstate Highways
[1]. If half of the roads were monitored by traffic sensors with one
every one third of a mile, as is typically adopted in practice, approx-
imately 70 000 sensors would be required. Assuming each sensor has
a lifetime cost of $30 000 [2], the total cost will amount to about
$2 billion. If, somehow, one determines that 20% of the sensors
are unnecessary in the sense that their existence does not provide
additional information, a savings of roughly $400 million is expected.

Little research has been conducted on the subject of optimal traffic
sensor deployment or on the potential savings from such optimization.
Current practice is mainly based on rudimentary studies or none at
all. For example, Georgia Navigator [3], which is Georgia’s Intelligent
Transportation System (ITS), chooses to install sensors every one third
of a mile along its major highways. The rationale is that this is the
distance that a vehicle traverses assuming an average traffic speed of
60 mi/h (96.6 km/h) over a data aggregation interval of 20 s.

Therefore, the strategic problem that this paper attempts to address
is traffic sensing optimization, including optimizing sensor deploy-
ment strategies and minimizing the uncertainty of the system of inter-
est. To achieve this goal, we sought an interdisciplinary collaboration
and developed an analytical approach based on the sampling theorem.
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In this approach, traffic information such as flow, speed, and den-
sity is obtained from actual detailed vehicle trajectories collected by
Cambridge Systematics, Inc., under the auspices of the Next-
Generation SIMulation (NGSIM) program [4].

The NGSIM program has collected data sets of vehicle trajectories
from actual live traffic video footages. Advances in technology have
enabled the NGSIM program to capture vehicle trajectories to a
level of detail that was previously impossible. Six sets of data, each
containing detailed vehicle trajectories of actual automobiles traveling
on two different freeways under real-life actual driving conditions
during the morning and evening peak periods, were used in this paper.
The morning and evening peak periods correspond to the times of day
where traffic information is of greatest importance. This paper focuses
on the most important times to traffic management instead of worst-
case scenarios or extreme cases.

Signal processing techniques and the multidimensional sampling
theorem will be used to glean an understanding of traffic information,
which is treated as a 2-D stochastic signal in the space–time domain.
A model of the power spectral density (PSD) of traffic information
as a 2-D stochastic signal will then be derived. Using the derived
model, we attempt to determine a characterization curve that relates
sensor spacing to the error from the sensor. With this relationship, we
determine the optimal sensor spacing.

Our contributions include the following:

1) a novel sampling theorem approach to address the optimal sensor
deployment problem;

2) an analytical model of the PSD of traffic information as a 2-D
stochastic signal;

3) the normalized mean-square error (NMSE) and sensor spacing
characterization curve;

4) procedure and formulation to determine the optimal sensor
spacing that minimizes the total cost.

The next section provides a review of related work. Section III
details the spectral characteristics and the modeling of traffic infor-
mation and presents the NMSE and sensor spacing characterization
curve. Section IV discusses the optimization of sensor spacing. This is
followed by a conclusion.

II. REVIEW OF RELATED WORK

In 1979, the Federal Highway Administration published a guideline
for locating freeway sensors [5] based on empirical studies. The
report concluded the following: 1) that any sensor spacing below
1000 ft (304.8 m) generally produces relatively little or no increase
in effectiveness; 2) that sensor spacing over 2500 ft (762 m) produces
unsatisfactory performance according to the criteria defined in the
report; and 3) that there exists a cost-effectiveness tradeoff for sensor
spacing between 1000 ft (304.8 m) and 2500 ft (762 m). This report is
similar to our research in that both addressed the sensor optimization
problem and led to consistent findings. The differences between the
two are as follows: 1) The report is based on empirical studies, whereas
our approach is analytical; 2) the report employed a different set
of criteria than ours to evaluate sensor deployment strategies; and
3) the report gives categorical recommendations, whereas our ap-
proach yields more details over the whole spectrum of sensor spacing,
which might be of greater interest to practitioners.

A few studies [6]–[9] addressed the sensor location problem in
a traffic system, i.e., the minimum number of sensors and their
associated locations to facilitate the estimation of origin–destination
(O–D) matrices. These studies differ from our research in different
ways. First, the objective of these studies was to estimate O–D
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matrices, whereas that of ours is to optimize sensor spacing and
minimize the uncertainty of the subject system. Second, these studies
employed strong assumptions about sensor locations (e.g., a link
contains at most one sensor or sensors appear at nodes/intersections
only), whereas in our approach, a sensor may appear at any location
as appropriate, and a link with more than one sensor is possible.
Although nodes/intersections are typical sources of traffic congestion,
removing the restriction with regard to sensor location is important
because capacity constraints may apply at midblock locations due
to curves, grades, and accidents. Eisenman et al. [10] provided a
conceptual framework of the sensor location problem and analyzed
the sensitivity of the estimation and prediction quality to the number
and locations of sensors. The major differences between the work of
Eisenman et al. and our work are as follows: First, rather than solving
for optimal sensor locations as we do, Eisenman et al. assume the
given sensor deployment scenarios and evaluate their effects. Second,
from the perspective of O–D estimation, the work of Eisenman et al.
emphasizes high volume links where sensors are desirable, whereas
our work deploys sensors to minimize a more general cost function,
including sensor costs and costs due to the loss of information. It
might be interesting to find out how our work compares to these
efforts. Unfortunately, a meaningful comparison has been very difficult
because their stark differences in objective and approach provide no
common basis for such a comparison.

Fujito et al. [11] investigated the impact of sensor spacing
along freeways on the computation of performance measures.
Sisiopiku et al. [12], Thomas [13], and Oh et al. [14] tried to find
optimal loop detector locations to improve traveler information such
as travel times. Woods [15] identified the need to optimize the spacing
of detectors and monitor stations in high-occupancy-vehicle lane oper-
ations. MacHutchon and Ryan [16] called to optimize sensor locations
for fog detection. Other applications of the sensor location problem
include dilemma zone [17] and actuated signal control [18].

Applications of the sensor location problem are also found in many
engineering areas other than transportation. Goulias [19] studied opti-
mal placement of pavement temperature sensors. Stubbs and Park [20]
applied Shannon’s sampling theorem to reconstruct exact mode shapes
of a structural system from a limited number of sampling points. Shi
et al. [21] developed a method to prioritize sensor locations according
to their ability to localize structural damage. Papadimitriou et al.
[22] presented a statistical methodology to optimally locate sensors
in a structure for structural model updating. Instead of monitoring
structures, Berry et al. [23] studied sensor placement in municipal
water networks, and the model to optimize the placement of sensors
is based on a mixed-integer program. Also, based on a mixed-integer
linear program, Propato et al. [24] proposed a model that identi-
fies optimal sensor locations for water quality monitoring. Ucinski
[25] studied the optimal sensor placement in a distributed system to
maximize the accuracy of parameter identification in a 2-D spatial
domain.

Discussions on the Shannon sampling theorem and related signal
processing concepts can be found in [26]–[29]. Models for 2-D sto-
chastic processes are described in [30], whereas [31] introduced a
family of spectral density–covariance function pairs for 2-D stochastic
processes. We obtained several spectral density functions of demon-
stration models that serve as good candidates for the modeling process
from [31]. Traffic flow fundamentals are covered in [32].

In summary, to our knowledge, there is no existing study that
employed the same approach and accomplished the same goal as
ours. More specifically, our research distinguishes itself from existing
literature by the following: 1) It is an analytical approach based on the
sampling theorem; 2) it not only yields the optimal sensor spacing but
also characterizes the relative merits of the entire spectrum of sensor

spacing; and 3) instead of restricting sensors to be at nodes or one per
link, as done in existing studies, our research allows the sensor to be
anywhere, and the consideration of deploying a sensor is how it helps
reduce the cost function.

III. SPECTRAL CHARACTERISTICS AND

MODELING OF TRAFFIC INFORMATION

A. Theory and Spectral Characteristics of Traffic Information

Theoretical derivations based on [32]–[35] indicate that there
exists a strong correlation between density values of neighboring
points in the space–time domain. This gives a theoretical basis for
the sampling theorem approach. Analysis of field data using def-
initions and techniques in [36] further verifies the validity of this
approach.

Central to this discussion is the Shannon sampling theorem [26],
which states that for a function f(t) that contains no frequencies higher
than W cycles per second, it is completely determined by giving its
ordinates at a series of points spaced 1/(2W ) seconds apart. The
theorem can be extended to multidimensional signals.

In the context of the 2-D traffic information signal, sampling is
carried out in both the time and space domains. In the time domain, the
sampling rate translates to the intervals over which traffic information
is aggregated. In the space domain, the sampling rate relates to the
spacing between two adjacent sensors, i.e., how closely the sensors are
placed apart decides how close each sample of the signal is taken to
the next.

In our analysis using the NGSIM data sets, we arbitrarily set the
sampling rate for both time and space at fs,0 = 1/20. This corre-
sponds to a data aggregation interval of 20 s and a sensor spacing of
20 ft, which is equal to 6.096 m. It is a common practice to use a
data aggregation interval of 20 s. Too short a data aggregation interval
may give rise to noisy peaky readings, whereas long data aggregation
intervals may lead to inaccurate readings. A sensor spacing of 20 ft
(6.096 m), which corresponds to the average length of a car, is
inconceivable in practice but is chosen as such to sample the signal
at a high frequency to capture the high-frequency components.

To obtain the PSD of traffic information, we first determine its 2-D
autocorrelation. The signal can be considered stationary since the
data were collected over relatively short periods of time during the
peak period, and the freeway condition did not change, i.e., there
were no facilities like on/off ramps. The Fourier transform of the 2-D
autocorrelation function gives the PSD of the signal.

Magnitude plots of the PSD reveals that the 2-D traffic information
signal has a high concentration of power in the low-frequency contents.
This implies that most of the spectral content can be captured using a
relatively lower sampling rate, which corresponds to a larger sensor
spacing.

From the PSD, it is possible to derive the NMSE associated with
a particular sampling rate. The NMSE, which takes a value between
zero and one, is given by

NMSE =

Nt∑
i=1

Nx∑
j=1

(Xi,j − X̂i,j)
2

Nt∑
i=1

Nx∑
j=1

(Xi,j)2
(1)

where
Nt, Nx maximum index for time and space indexes, respectively,

in the frequency domain;
Xi,j PSD magnitude at time index i and space index j;
X̂i,j magnitude of the truncated PSD due to a lower sampling

rate at i and j.
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In this case, the NMSE is a measure of the power loss due to the
spectral content not captured by the sampling, i.e., the spectral content
that is greater than half the sampling rate.

The information carried by a signal is commensurate with power,
and any loss of power can be related to information loss. By converting
the sampling rate into sensor spacing, we have the means to relate the
NMSE to sensor spacing. A suitable model for the PSD remains to be
developed to have a continuous characterization curve that relates the
NMSE to sensor spacing.

B. Modeling the PSD

We desire a model with a closed-form defining equation to rig-
orously and completely characterize the relationship between the
NMSE and sensor spacing. Several demonstration models are found
in [31], of which the simplest model has a spectral density function
defined by

S(n1, n2) =
1

(n2
1 + n2

2 + 1)
(2)

where n1 and n2 are frequency-domain variables. Plotting the spectral
density function given by (2) gives a plot that has a shape similar
to that given by the magnitude plot of the PSD obtained from the
field data.

For the purpose of modeling, we introduce a parameter c and rewrite
(2) as

S(χ, τ, c) =
c

(χ2 + τ2 + c)
(3)

where χ and τ are frequency-domain variables that correspond to the
space and time variables in the space–time domain, respectively, and c
is a real constant.

The presence of c in the numerator serves to normalize the model
to facilitate the modeling process. By varying c, we attempt to find
a model that best fits the PSD points obtained from the NGSIM data
sets. The value of c that gives the minimum root-mean-square error
(RMSE) was determined for each of the six NGSIM freeway data sets.
We found that c ranged between 1.944 and 2.01 with a mean value of
c̄ = 1.981.

The model defined by S(χ, τ, c̄) is then used to characterize the
variation of the NMSE with sensor spacing. The complete characteri-
zation is depicted in Fig. 1. Data points from the data sets, as well as the
upper and lower limits of the characterization curve, are also presented.
The upper and lower limits that correspond to the models are given by
S(χ, τ, c), where c = 1.944 sets the upper limit, and c = 2.01 sets the
lower limit.

Fig. 1 shows a good fit between the model and NGSIM data. In
particular, the narrow band bounded by the upper and lower limits
closely follows the curve. While it is possible that other models may
fit the data equally well or even better, we opt to stay with the current
model and leave the search for other, possibly better, models as a future
research topic.

IV. SENSOR OPTIMIZATION

A. Discussion

With reference to Fig. 1, we observe that for any sensor spacing
equal to or less than 1000 ft (304.8 m), the NMSE is less than
0.05. The stretch between 1000 ft (304.8 m) and 2500 ft (762 m)
is almost linear and corresponds to the reported cost-effectiveness
tradeoff region. With a sensor spacing greater than 2500 ft (762 m),

Fig. 1. NMSE as a function of sensor spacing based on the PSD model.

the characterization curve reveals an NMSE of approximately one
third. Thus, the sampling theorem helps us examine and explain the
performance of sensors as a function of sensor spacing.

Although [5] adopted an empirical approach and used a different
set of criteria, it allows a cross-comparison between findings of that
study and ours. Noticeably, our research provides many more details
over the whole spacing spectrum and is more practically appealing to
practitioners.

B. Optimization

The report [5] also included a discussion on cost-effectiveness
analysis to help practitioners decide on the most cost-effective sensor
spacing. To this end, we offer a scientific and analytical approach
based on the sampling theorem to determine the optimal sensor
spacing.

The objective of our approach is to minimize the total cost t(d),
which includes the cost to install, operate, and maintain sensors and
the cost incurred by motorists who are caught in congestion. Hence,
the objective function is given by

Minimize t(d) = s(d) + c(d) (4)

where
d sensor spacing;
c(d) annual cost of congestion due to sensor deficiency, as will be

explained later;
s(d) annual cost of sensors, which includes both capital and

operating costs (s(d) = nsC);
sC annual cost per sensor;
n number of sensors involved (n = (L/d) + 1, where L is

the length of the road section monitored by sensors, and
“1” accounts for the extra sensor needed to close the road
section).

Therefore, s(d) can be expressed as

s(d) = sC

(
L

d
+ 1

)
. (5)

The authors are not aware of any formulation that relates the NMSE
to the cost incurred by motorists due to congestion. As such, a for-
mulation based on the traffic flow theory was developed to define the
function c(d). The formulation assumes that the freeway is managed
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Fig. 2. Flow during peak periods with shaded area representing vehicles caught in congestion due to the sensor error.

by a traffic management center (TMC) that will not allow the level of
service (LOS) [38] provided by the freeway lane to degrade beyond
LOS D. To achieve this objective, the TMC monitors the real-time
condition of the freeway using the sensors placed d distance apart and
diverts traffic to alternative routes once the freeway operates at LOS D.
In this formulation, congestion arises when the error from the sensors
causes the TMC to activate the diversion measures too late. It is also
assumed that congestion occurs only during peak periods and traffic
operates at LOS A at other times. During a peak period, the traffic
may build up toward the conditions that define LOS D. To formulate
the congestion cost and for the sake of simplicity, it is assumed that
traffic linearly builds up toward the peak, as is depicted in Fig. 2,
which presents the variation of flow q with the time of day, where the
service volume at LOS X is denoted by qX . The linear model, while
simplifying the formulation, captures the dominant characteristic of
traffic flow during peak periods, i.e., a buildup toward a peak value.
Other models that reasonably represent peak traffic behavior will also
be valid. The value of the service volume or traffic flow at each LOS
is obtained from [38].

The formulation of c(d) accounts for the cost due to congestion
arising from the error from the system of sensors. The error can cause
the system of sensors to either overreport or underreport the actual flow
of the traffic. Overreporting refers to the situation where the system of
sensors gives a reading higher than the actual value. This does not
cause any congestion. On the other hand, underreporting occurs when
the system gives a lower reading than the actual value, i.e., qreading =
(1 − e(d))qactual. Note that the error e(d) takes a value between
0 and 1. This results in traffic congestion. Due to underreporting,
congestion occurs at (1 − e(d))qD . It is assumed that the sensor
system is equally likely to over- or underreport. Ignoring other effects
for simplicity, the shaded triangles in Fig. 2 represent the vehicles that
are caught in congestion due to the underreporting of the sensors. The
area of the shaded triangles gives the number of vehicles caught in
congestion.

With this formulation, the annual cost of congestion due to the
sensor error is given by

c(d) = NY NP pcV LDP

(
q2

D

2(qD − qA)

)
(e(d))2 (6)

where
NY number of days in a year;
NP number of peak periods in a day;
DP duration of peak periods (in hours);
p probability of underreporting;
cV cost of congestion per vehicle mile;
qX service volume at LOS X , where X = A or D.

Fig. 3. Total cost t(d) as a function of sensor spacing d defined by (7).

For any deployment of sensors, denoting the random variables of the
actual flow value and the sensor reading using Q and Q′, respectively,
we can write

E [|Q − Q′|] ≤ (E [|Q − Q′|])0.5
=

√
NMSE

(
E[Q2]

)0.5
.

Based on the congestion cost formulation, in the case of underre-
porting when Q = qD (a degenerate random variable)

E [|qD − Q′|] ≤ √
NMSE

(
E

[
q2

D

])0.5

=⇒ E[Q′] ≥ (1 −√
NMSE)qD.

This gives a lower bound on the value of sensor reading when
the actual flow value is qD . In other words, e(d) ≤ √

NMSE. For
brevity, we write NMSE instead of NMSE(d) while bearing in mind
that NMSE is also a function of d. The practitioner can choose to
use e(d) =

√
NMSE for the most conservative result. Alternatively,

investigating a suitable function that relates e(d) and
√

NMSE is a
good future research topic.

For illustrative purposes, we assume that e(d) = NMSE ≤√
NMSE. The inequality NMSE ≤ √

NMSE is true since
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0 ≤ NMSE ≤ 1. Hence, (4) can be rewritten as

Minimize : t(d)=sC

(
L

d
+1

)
+NY NP pcV LDP

×
(

q2
D

2(qD−qA)

)
(NMSE)2. (7)

An illustrative example where actual values are substituted into (7)
can be the following. The annual cost of a traffic sensor sC is estimated
as $1600 based on [37]. The cost of congestion per vehicle cV is
estimated as $0.26 based on [39]. The probability of underreporting
is assumed to be 0.5. The number of days can be taken as 365,
and there are two peaks in a day. Each peak lasts for 3 h. The
service volumes at LOS A, i.e., qA, and LOS D, i.e., qD , are 700
and 1850, respectively, according to [38]. A road length of 1 mi is
assumed.

Fig. 3 presents the variation in the total cost t(d) as a function
of sensor spacing d based on (7) using the aforementioned values.
The optimal sensor spacing is found to be 1086 ft (331 m). The
dotted curves in Fig. 3 are the upper and lower limits of the con-
gestion cost, which are derived in the same way as those limits in
Fig. 1.

In [5], a cost-effectiveness tradeoff for sensor spacing is reported.
In the proposed approach, the optimal sensor spacing for a given cost
function s(d) is provided instead. This difference in output hinders
any numerical comparison between the two methods. In addition, close
to three decades of technological advancement and economic changes
that separate the current work and [5] further makes any comparison
between the two less purposeful.

V. CONCLUSION

Based on the sampling theorem, we analyzed the spectral
characteristics of traffic information and modeled its PSD. Using the
obtained model, a characterization curve that relates the NMSE to
sensor spacing was obtained. Using a formulation that relates sensor
spacing d to the cost incurred by motorists due to congestion, the
optimal sensor spacing that minimizes the total cost was determined.
Although the analysis presented in this paper is based on traffic data
collected by existing sensors, the findings provide valuable insights
into new deployment of traffic sensors.

The superiority of the proposed approach over an empirical method,
such as that employed in [5], partly lies in its extensibility. Using
tunable parameters, different models for different circumstances, e.g.,
lower speed limit, road curvature, etc., can be developed without
the need for fresh new data for each circumstance. In addition, the
current approach can be used with any type of sensor technology
as long as a cost function can be determined. The possibility or
ease with which an empirical method can be extended to account
for the changing circumstances or new sensor technology is not
obvious.
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