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Abstract—This paper first introduces an improved decoding al-
gorithm for low-density parity-check (LDPC) codes over binary-
input–output-symmetric memoryless channels. Then some funda-
mental properties of punctured LDPC codes are presented. It is
proved that for any ensemble of LDPC codes, there exists a punc-
turing threshold. It is then proved that for any rates R1 and R2

satisfying 0 < R1 < R2 < 1, there exists an ensemble of LDPC
codes with the following property. The ensemble can be punctured
from rate R1 to R2 resulting in asymptotically good codes for all
rates R1 � R � R2. Specifically, this implies that rates arbi-
trarily close to one are achievable via puncturing. Bounds on the
performance of punctured LDPC codes are also presented. It is also
shown that punctured LDPC codes are as good as ordinary LDPC
codes. For BEC and arbitrary positive numbers R1 < R2 < 1, the
existence of the sequences of punctured LDPC codes that are ca-
pacity-achieving for all ratesR1 � R � R2 is shown. Based on the
above observations, a method is proposed to design good punctured
LDPC codes over a broad range of rates. Finally, it is shown that
the results of this paper may be used for the proof of the existence
of the capacity-achieving LDPC codes over binary-input–output-
symmetric memoryless channels.

Index Terms—Bipartite graphs, capacity-achieving codes,
erasure channel, improved decoding, low-density parity-check
(LDPC) codes, iterative decoding, punctured codes, rate-adaptive
codes, rate-compatible codes, symmetric channels.

I. INTRODUCTION

WE study some coding schemes using low-density
parity-check (LDPC) codes. We specifically concen-

trate on improved decoding methods and rate-compatible
LDPC codes. One of the most important problems in LDPC
coding is the analysis and design of finite-length codes. Al-
though there has been some results on finite-length analysis
of LDPC codes over the binary erasure channel (BEC) [1],
design of good finite-length LDPC codes is still a research
problem. An alternative way to compensate for this problem is
to improve the decoding of these codes. Some previous work on
improved decoding algorithms can be found in [2] and [3]. In
[4] we introduced an improved decoding algorithm for LDPC
codes over the BEC. We showed that the proposed decoding
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method can decrease the error rate of the code by several
orders of magnitude on BEC with very little extra complexity.
In this paper, we generalize the algorithm for arbitrary bi-
nary-input–output-symmetric memoryless (BIOSM) channels.
For the binary input additive white Gaussian noise channel
and an LDPC code of length 1000, we show that the algorithm
results in.5 dB gain with respect to the belief propagation. We
also show that the proposed method can be made more effective
on nonuniform channels.

We then study punctured LDPC codes and show some fun-
damental properties of these codes. We prove that punctured
LDPC codes have a threshold effect and compute the threshold
for different methods of puncturing. We specifically show that
arbitrary rates are achievable via puncturing. We then discuss
the optimality of punctured LDPC codes. Much stronger results
can be showed for the BEC. For example, using only one en-
coder and decoder we can achieve the capacity of BEC on arbi-
trary set of rates. We discuss design of good puncturing schemes
for LDPC codes and we propose a simple rule for constructing
rate-compatible LDPC codes. The proposed method prevents
the performance degradation for the high rates that was previ-
ously observed in [5]. It is also applicable to finite-length LDPC
codes. Finally we consider capacity achieving sequences for
general BIOSM channels. We prove that if capacity achieving
sequences of LDPC codes exist when the rate of the codes ap-
proaches zero, then capacity achieving LDPC codes exist for all
rates.

Throughout the paper we adopt the following terminology.
By a graph we mean a simple graph, i.e., a graph with no loops
(edges joining a vertex to itself) and no multiple edges (several
edges joining the same two vertices). Let be a subset of the
vertices in the graph . shows the set of neigh-
bors of in . More generally, for , is the set of
vertices in from which there is path of length to a vertex in .
Let be a subgraph of such that its vertex set is . We say
is induced by if contains all edges of that join two vertices
in . For a graph , is the degree of in . If is the
set of vertices in and , then is the number of
neighbors of in . For a random variable , we show its distri-
bution by . If the random variable has a well-defined den-
sity function, we represent the density function by . Sim-
ilar to [6], we define .

II. IMPROVED DECODING ALGORITHMS FOR FINITE-LENGTH

LDPC CODES

The iterative decoding of LDPC codes is very fast especially
for the BEC. Our aim in this section is to improve the error
performance of iterative decoding algorithm while keeping the
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decoding fast. We use the message passing algorithm with some
modifications. Let be the average time required for the
standard iterative decoding (Algorithm A) of an LDPC code of
length when it is used over a BIOSM channel. Let be an
improved decoding method for the same code when used over
the same channel. Let be the time that Algorithm
needs to decode a received word and let be the average
time of the decoding of the code using Algorithm . We want
to have

(1)

(2)

where is a small constant close to zero and is a sufficiently
small constant. For the BEC, our simulations show that the algo-
rithm we propose (Algorithm C) achieves the above inequalities
for and when the length of the code is several
thousands . For the general BIOSM channels, the
proposed algorithm (Algorithm D) satisfies the above inequali-
ties for and . Thus, for the BEC both average
and maximum running time are small enough. For other BIOSM
channels the average running time is still almost the same as
the iterative decoding but the maximum running time can be 40
times the average running time of the standard decoding. How-
ever, for both channels, the proposed algorithms result in con-
siderable reduction of the bit error rate with respect to the stan-
dard iterative decoding. For convenience, we first briefly review
the proposed method for BEC.

A. Binary Erasure Channel (BEC)

In this section we briefly review the improved decoding algo-
rithm for LDPC codes over the BEC [4]. The key idea can be
summarized by the following observation. Consider a BEC with
an erasure probability and an LDPC code of length that has
small enough error probability. If the message passing decoder
fails to decode a received word completely, then there exists a
very small number (usually less than or equal to 3 bits) of unde-
coded bits that by knowing their values, the decoder can finish
the decoding successfully.

The message passing decoding of LDPC codes over the BEC
can be described as follows [7].

• For all unlabeled check nodes do the following. If the
values of all but one of the variable nodes connected to the
check node are known, set the missing variable bit to the
XOR of the other variable nodes and label that check node
“finished.” If all the variable nodes that are connected to
the check node are known label the check node as finished.

• Continue the above procedure until all check nodes are
labeled as finished or the decoding cannot continue further.

We call the above decoding method Algorithm A. We also call
the first improvement to A as Algorithm B. For the erasure pat-
terns that Algorithm A finishes the decoding successfully, both
algorithms are the same. The difference between the two algo-
rithms is when Algorithm A fails to complete the decoding of a
received codeword. In this case Algorithm B chooses one of the
undecoded variable nodes and guesses its value (for example
by setting its value to zero). Then it continues as following.

• For all unlabeled check nodes do the following. If the
values of all but one of the variable nodes connected to the
check node are known, set the missing variable bit equal
to the XOR of the other variable nodes and label it as a
finished check node. If all the variable nodes connected
to the check node are known then if the check node is
satisfied label that check node “finished.” Otherwise label
it as “contradicted.”

• Continue the above procedure until all check nodes are
labeled or the decoding cannot continue further.

Once the above procedure is finished, if all of the check nodes
are labeled and none of them is labeled contradicted, the de-
coder outputs the resulting word as the decoded word. If all of
the check nodes are labeled but some of them are labeled con-
tradicted, then it changes the value of , the guessed variable
node, and repeats the decoding from there. This time the de-
coding finishes successfully because we have found the actual
value of . But if the decoding stops again (i.e., some of the
check nodes are not labeled) we have to choose another un-
known variable node and guess its value. Again, if some
check nodes are labeled as contradicted, we have to go back
and try other values for and . Algorithm B is efficient
only if the number of guesses is very small. Fortunately, simu-
lation results show that even if we limit the number of guesses
to a very small number, we can decrease the error rate consid-
erably. Thus, in practice we limit the number of guesses to a
maximum value and we claim a decoding failure if the de-
coder requires more guesses. In fact, simulations show that with
the right choices of the variable nodes to guess, usually the de-
coding finishes successfully by one or two guesses. Note that
the above algorithm does not need any computations other than
repeating the iterative decoding. Thus the decoding is very fast.

Algorithm B has two problems. First, the complexity of the
algorithm grows exponentially with the number of guesses. Al-
though the number of guesses is very small, this is undesirable.
In fact, if the complexity of the algorithm increased linearly with
the number of guesses we could increase and decrease the
error probability substantially. Second, it is possible that the al-
gorithm declares a wrong word as the output of the decoding.
However, this can happen only if the maximum-likelihood (ML)
decoder cannot decode the corresponding codeword. Since the
ML decoder has a very low error probability, this happens with
a very small probability.

As it is shown in [4] this algorithm can be significantly im-
proved to get a new algorithm that we called Algorithm C. In Al-
gorithm C, instead of trying different values for the guessed vari-
able nodes, we can find these values efficiently. We showed that
Algorithm C has very low complexity and it avoids the unde-
tected errors. It is also shown in [4] that both Algorithms B and C
result in considerable improvement upon the standard iterative
decoding. It is also shown in [4] that using two-edge-connected
components in the Tanner graph we can decrease the number of
guesses in Algorithms B and C.

In Section II-B, we can generalize Algorithm B for other
BIOSM channels. It seems that generalizing Algorithm C for
other channels is impossible, because Algorithm C takes advan-
tage of the special structure of the BEC. In fact, this explains the
efficiency of Algorithm C.
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B. BIOSM Channels

In this section, we generalize the improved decoding algo-
rithms [4] for other BIOSM channels. Suppose that an LDPC
code is used for error correction over a BIOSM channel.
Let and

be the sets of variable and check nodes in the
Tanner graph of the code, respectively. Moreover, suppose we
use the standard iterative decoding (Algorithm A) to decode the
received words. Assume that Algorithm A has small enough
error probability (for example less than ). The iterative
decoder is initialized by the log likelihood ratio (LLR) of the
variable nodes based on the observation of the channel output.

As we discussed Algorithms B and C in the previous section
were based on the following observation. When the iterative de-
coding fails, knowing the values of a few bits in the stopping set
is sufficient to finish the decoding successfully. We first extend
this observation to arbitrary BIOSM channels.

Suppose a codeword is transmitted
over the channel, where is the code length. We define a func-
tion as

if
if .

(3)

Let be the (LLR) of the corresponding
variable nodes based on the observation of the
channel output. Suppose the iterative decoder fails to decode a
received word. In other words, after the maximum number of
iterations, there are still unsatisfied check nodes in the graph. In
this case there exists a set with a very
small cardinality (usually ) that has the following
property.

Define as

if
if .

(4)

Now, if we initialize the iterative decoder with , it can decode
the received word correctly. We do not have proof for this state-
ment. However, the decoding algorithm that we will introduce
works well in practice.

Based on the above development, we design a decoding algo-
rithm similar to Algorithm B that was presented for the BEC [4].
We call it Algorithm D. Recall that in Algorithm B, we chose
the bits to be guessed from the stopping set after the decoding
failure. For the general case of BIOSM channels, we need to
find a method to choose the variable nodes whose values must
be guessed.

We observed that the following simple method works very
well in practice for choosing the variable nodes to be guessed.
Let be the number of unsatisfied check nodes that are adja-
cent to when the iterative decoding fails. We choose the vari-
able nodes that have the highest ’s. Intuitively, by this method
we find the locations of the graph for which there is a lack of in-
formation. Choosing variable nodes with high , reduces the
number of guesses required for successful decoding. In fact, if
we just select the guessed nodes randomly, some of the guesses
will not be necessary for successful decoding. Since the com-
plexity of the algorithm increases exponentially with respect to

the number of guesses, it is important to have as few guesses as
possible. Note that a variable node that we choose to guess may
have the correct value at the end of the iterative decoding. How-
ever, it is connected to several unsatisfied check nodes. Since we
set the LLR of the guessed variable node to or , this can
help the iterative decoder to correct the values of the other bits
connected to the check nodes. Again, we need to choose a max-
imum value for the number of guesses. Empirical observations
show that choosing the maximum number of guesses as five can
reduce the bit error rate considerably. Note that, similar to the
case of the binary erasure channel (Algorithms B and C), the av-
erage running time of Algorithm D, , is almost the same
as Algorithm A (the standard iterative decoding). However, to
maintain the maximum running time small enough we need to
choose a small value for the maximum number of guesses.

We summarize Algorithm D as follows. For any received
codeword we perform the standard iterative decoding. If all
check nodes are satisfied at the end of decoding, we are done.
Otherwise, we find variable nodes that are connected to
highest number of unsatisfied check nodes at the end of the
decoding and guess their values. We repeat the standard de-
coding but this time we initiate the algorithm with the new
LLRs for the guessed bits ( or ). For other bits, we
use the LLRs found by the channel observation. We repeat the
above procedure until either the decoding finishes successfully
or all values for the guessed variable nodes are tried.

To evaluate the performance of Algorithm D we chose an
LDPC code of length with the following degree distribu-
tion:

(5)

We used the expurgated ensemble. That is, we generate a code
from the ensemble, and if the minimum distance of the code is
small, we do not use the code and pick another code at random.
Since the ensemble has asymptotically linear minimum distance
[8], [9], after a few tries we will find a code with large minimum
distance. We obtained the bit error rate performance for both Al-
gorithms A (the standard iterative decoding) and D. For Algo-
rithm D, we chose the number of guesses . Fig. 1 shows
the performance of the decoders. We observe that Algorithm D
has 35 dB gain with respect to Algorithm A at the bit error rate
of . The gain increases to.5 dB at the bit error rate of .
The figure also shows the performance of a randomly chosen
code of length 1000 from the ensemble of regular codes,
which is known to have the best performance among the regular
LDPC code ensembles. We observe that using Algorithm D for
decoding the above irregular code results in 1 dB gain over the

regular code in low bit error rates.
Now we present some experimental results concerning the

running time of Algorithm D. We give the results for the code
of length 1000 from the ensemble . We decoded
bits over the binary-input additive white Gaussian noise (BI-
AWGN) channel and measured the average and the maximum
running time for the decoding of received blocks. Let
and show the average time of decoding of the LDPC
code of length from the given ensemble using Algorithms
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Fig. 1. Comparisons of the bit error rates of Algorithms A and D for an irregular code of length n = 10 and the (3; 6) regular code decoded by Algorithm A
over the BIAWGN channel.

A and D, respectively. Our simulations suggest that the esti-
mate of is equal to . This implies that the average
running time of Algorithms A and D are almost the same. Re-
call that we defined as the time that Algorithm
needs to decode a received word . Let denote the max-
imum value of over all the received blocks. We define

. Our simulations show that ,
approximately. In other words, in the worst case the time that
Algorithm D needs to decode a received word can be 38.4 times
the average running time of Algorithm A. In [4] we have esti-
mated that , for the BEC and a half-rate code with
length .

III. NON-UNIFORM CHANNELS

In [10] and [11] we investigated the application of LDPC
codes for nonuniform channels. We introduced a scheme for
designing LDPC codes over these channels. We also showed
that the punctured codes can be viewed as a special case of
nonuniform channels. In this section we study some properties
of LDPC codes on nonuniform channels and show that the im-
proved decoding algorithm proposed in this paper is more effec-
tive on these channels if used properly. Specifically, we study
the effect of the algorithm on punctured LDPC codes.

A nonuniform channel can be considered as several parallel
independent subchannels as it is shown in Fig. 2. We assume
that we use one LDPC code over the set of subchannels. Thus,

Fig. 2. Several parallel channels.

different bits in a codeword may be transmitted over different
subchannels. Some practical examples of nonuniform channels
are volume holographic memory (VHM) systems, orthogonal
division frequency multiplexing (OFDM) systems, and multi-
level coding.

In VHM systems, the information is recorded and retrieved in
the form of two-dimensional data pages, i.e., two-dimensional
patterns of bits. These bits are subject to different sources of
noise. The SNR decreases as we move from the center to the
corner of the page. Typically, raw bit error rate might vary by
two or three orders of magnitude over a page. As we explained
in [11] we can divide a VHM page to regions such that bits
of the same region have almost the same raw error probability.
Any region in the page corresponds to one of the subchannels in
Fig. 2. A similar situation exists in OFDM systems that consist
of several parallel channels with different SNRs.
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Suppose we use a code of length . We transmit every code-
word such that bits from each codeword are transmitted
over the th channel. In [11] we defined an ensemble
of LDPC codes. We showed that they have some good proper-
ties. For convenience, we repeat the definition of the ensemble
here. The main point is that in the ensemble , bits of dif-
ferent types may have different degree distributions. Formally,
let be a codeword. Let also be the set of
bits from the codeword that are transmitted over the th channel
(type j bits). Thus we have , where denotes the
cardinality of the set. For example, in the VHM system, is
the set of bits in the th region (i.e., ).
Now we define the ensemble of bipartite graphs that we
propose for nonuniform error protection. Let be the set of
edges in the graph and let be the set of edges that are inci-
dent with a variable node of type . Also let be the set of
edges adjacent to the variable nodes of type and degree . We
define

(6)

where

(7)

Let . Let also
be as defined in [6]. We define the ensemble as the en-
semble of bipartite graphs with the degree distributions given by

and .
Now we give some properties of the densities of the messages

in the belief propagation algorithms on the ensemble .
These properties are specifically useful for applying the im-
proved decoding algorithm. Let denote the message that
is sent from a variable node of type (i.e., ) to its in-
cident check node in the ’th iteration of the message passing
algorithm. Let also denote the message that the check node

sends to its incident variable node. Let and denote the
average asymptotic distributions of random variables
and , respectively.

Consider a BIOSM channel with parameter , where
and . For example,

for the BIAWGN channel, can be considered as the variance
of the noise. Let be a class of channels with parameter . Thus,
any channel in in is uniquely determined by its variable .
A channel in with parameter is called . The capacity
of the channel is shown by . Similar to [12], we con-
sider physically degraded channels. For clarity of exposition we
assume that if , then is physically degraded with
respect to .

Consider the case that in Fig. 2 all subchannels are the same
type but have different channel parameter. Moreover, all sub-
channels belong to a class of physically degraded channels as
explained above. Suppose we use an LDPC code from the en-
semble over these channels. Assume the variable nodes
of type are transmitted through the channel . Then we have
the following theorem:

Theorem 1: If and , then for any

we have .
Proof: This theorem can be proved using similar discus-

sions as in [12]. Let be a variable node of type in the Tanner
graph of the code. Thus, receives observation from the output
of the channel . Let

(8)

be the neighborhood of of depth . Let be the graph in-
duced by the vertices in . In the graph , the variable node

receives information from the channel , and other variable
nodes receive observation from possibly different channels. Let

be the observation of and let be the set of observations
of the other variable nodes in . Now, assuming that is a
tree, is the error probability of the ML decoder based

on the observations of the variable nodes in (i.e., ).
Now, in the above graph, if we just replace the variable node

with the variable node that receives observation from the

channel , again is the error probability of the ML
decoder based on the observations of the variable nodes in
(i.e., ). Since is physically degraded with respect
to , we can consider as the result of passing through
another channel . Since given , the observation is in-

dependent of the value of the transmitted bit, is the
error probability of the ML decoder based on the observations

. Thus for the given

. Since , any structure of the neighborhood
(the graph and the channels from which the bits receive in-
formation) has the same probability of occurrence for and .

Thus we conclude that .

Theorem 1 states that, under certain conditions, the bits that
have higher error probability before the decoding, have higher
error probability after the decoding as well. We have the fol-
lowing corollary.

Corollary 1: In a regular ensemble, the variable nodes that
receive information from channels with lower capacity, have
higher error probability after the decoding.

In the following, we study applications of improved decoding
(Algorithm D) on nonuniform channels. In the guessing process
we choose a variable node to be guessed. As we mentioned, it is
better to choose the variable node from the parts in the graph that
there is a lack of information. Since the likelihood of the error
for the nodes that receive information from the channels with
smaller capacity is higher, one simple method in the guessing
process is to give priority to these nodes. Fortunately, our simu-
lations show that this simple method works very well and con-
siderably improves the decoding performance.

Punctured codes can be considered as a special case of
nonuniform channels in which the punctured bits are trans-
mitted through a channel with zero capacity. In Section V we
study this special case of nonuniform channels in greater detail.
To observe the performance of Algorithm D on nonuniform
channels, we chose a regular LDPC code of length .
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Fig. 3. Comparisons of the bit error rates of Algorithms A and D for the (3; 6)-regular LDPC code over the BIAWGN channel.

We randomly chose 37.5% of the variable nodes (i.e., vari-
able nodes) and designate them as punctured variable nodes.
Thus the resulting code has the rate . We then evaluate the
performance of Algorithms A and D for this code. As discussed
above, in choosing the variable nodes to guess, the punctured
bits were given priority. Fig. 3 shows the performance of the
algorithms. We observe that improvements close to 1 dB is
gained at low bit error rates using Algorithm D.

IV. APPLICATION OF PSEUDO-CODEWORDS TO THE ANALYSIS

OF ALGORITHM D

Simulation results given in previous sections suggest that
we can considerably improve the performance of LDPC codes
using Algorithm D. However, so far our results are totally
based on simulations. In this section, we provide some dis-
cussions based on pseudocodewords [13], [14], [15] that help
us understand Algorithm D. We first briefly provide some
definitions and results from [15]. For more details, readers are
referred to [15]. Let be a graph with vertex set

and edge set . Finite covers
are defined in [15] in the following way.

Definition 1: A finite degree cover of is a
graph with vertex set , where each set

contains vertices. The edge set of
is chosen as a subset of

such that for each vertex , we have
, and . Moreover,

contains exactly one vertex for all for which
.

In simple terms, the graph is obtained by replicating every
vertex in times and introducing edges so that the local
adjacency relationships between replicated nodes are preserved.

Let be a Tanner graph of an LDPC code . Let also
and

be the sets of variable and check nodes in the Tanner graph of
the code, respectively. For simplicity, suppose we use the code

over a BIAWGN channel. Let be a finite cover of and
be the corresponding code. For any codeword a vector

is defined in [15], which is called a pseudocodeword
of . The fundamental cone of the graph , denoted by ,
is defined in [15] and is related to the set of pseudocodewords

taken over all covers of of all degrees .
Let , be the set of received LLRs from

the channel. Assuming that all-one word was transmitted, it is
shown in [15] that the decoding is successful if and only if for
all , we have .

Using the concept of pseudocodewords we can deter-
mine a necessary and sufficient condition for the success of
Algorithm D. Assume be the LLR vector
received from a BIAWGN channel. Moreover, assume that the
standard iterative decoding has failed. Define

(9)

The following simple Lemmas give necessary and suf-
ficient conditions for the success of Algorithm D. Let
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is guessed be the set of indices of the guessed
variable nodes in Algorithm D. Let be the new LLRs imposed
by Algorithm D (i.e., by replacing the LLR of the guessed bits
by or ).

Lemma 1: Algorithm succeeds only if for all ,
there exists , such that .

Proof: Suppose there exists , such that for all
, we have . Then, , . Thus the

iterative decoding fails independent of the values of the guessed
bits.

We now show that the condition of Lemma 2, is actually a
sufficient condition for Algorithm D to converge to the ML de-
coding.

Lemma 2: If for all , there exists , such that
, then Algorithm D can find the ML decoded codeword.

Proof: Assume the all-one codeword is transmitted. Since
we check all possible values for the guessed bits, at some point
we will guess the correct value for all the guessed bits. That
is the LLRs for all the guessed bits become . Since for all

, there exists , such that , we conclude
that for all , . Thus the decoding is
successful.

Therefore, when the guesses are correct the decoding is suc-
cessful. On the other hand it is possible that the algorithm con-
verges to a wrong codeword for some other guessed values. In
fact, for good LDPC codes, this is very unlikely. However, in
these situations at the end of decoding we will have more than
one decoded valid codewords. Since the number of these code-
words is small a simple ML test will give us the result of ML
decoding.

Using the above result one may try to analyze the perfor-
mance of Algorithm D. In fact, this is one of the future directions
of our research.

V. PUNCTURED LDPC CODES

A. Introduction

In the previous section, we showed using the proposed de-
coding algorithm presented in this paper we can considerably
improve the performance of punctured LDPC codes. In this sec-
tion, we study some fundamental properties of punctured LDPC
codes. Puncturing is one of the most common methods to con-
struct rate-compatible codes. In this method, to change the rate
of a code to a higher rate, we puncture (delete) a subset of the
codeword bits. We first study the puncturing capacity of LDPC
code ensembles. Particularly, we prove that any LDPC code en-
semble has a puncturing threshold . If the puncturing frac-
tion is smaller than , then the punctured code is asymptot-
ically good. In other words, a code from the ensemble can be
used to achieve arbitrarily small error probability over a noisy
channel while the code rate is bounded away from zero. On the
other hand, if , error probability is bounded away from
zero, independent of the communication channel. The punc-
turing thresholds can be easily computed for both randomly and
intentionally punctured LDPC codes. We also show that punc-
turing is a lossless process in the sense that for any ensemble

of LDPC codes of rate , there exists a punctured LDPC code
ensemble of an arbitrary rate with the same threshold
under the message passing decoding algorithms. We then show
that for any rates and satisfying ,
there exists an LDPC code that can be punctured from rate
to such that the resulting code is asymptotically good for all
rates , . Specifically, this shows that rates arbi-
trarily close to one are achievable using puncturing. For BEC,
we show that using only one encoder and decoder and a proper
puncturing scheme, we can achieve the capacity for an arbitrary
set of positive rates. We then propose a method to design good
punctured LDPC codes over a broad range of rates. The method
is very simple and does not need any optimization process. Ad-
ditionally, it avoids performance degradation at high rates. It is
also applicable to finite-length LDPC codes. Finally, we show
the possible application of punctured LDPC codes for proving
the existence of capacity achieving sequences for BIOSM chan-
nels.

We consider the following scheme. We take an LDPC code of
rate , where and are the length of the information
blocks and the codewords, respectively. To generate a code with
a new rate, we puncture a subset of bits in the codeword and
send the unpunctured bits to the receiver. It is assumed that the
decoder knows the position of punctured bits in the codeword.
To start the decoding, we need to compute LLRs in the decoder.
The LLRs for the punctured bits are zero.

Ha and McLaughlin studied optimal puncturing of LDPC
codes [5]. They studied two methods for puncturing LDPC
codes. In the first method, the authors chose the punctured
bits randomly (i.e., if the puncturing fraction is , they chose
a subset of the bits in the codeword with cardinality at
random and puncture the bits in the subset). This method is
called random puncturing. In the second method, the intentional
puncturing, they optimized the puncturing distribution. The
authors set up the intentional puncturing as follows. First, vari-
able nodes of the bipartite graph were grouped in accordance
with their degrees. Then, they randomly punctured a fraction

of the nodes in , where is the set of variable nodes of
degree .

As we mentioned, a punctured code can be modeled as a code
that is used over two parallel channels as Fig. 2. In this model,
punctured bits are transmitted over the second channel that has
zero capacity. Let us define

(10)

where is the fraction of degree- variable nodes in the graph.
Thus if we let , an inten-
tional puncturing distribution for a code from ensemble
can be represented by the pair in which shows the punc-
turing fraction and determines the puncturing structure. A
valid puncturing pattern is obtained when we have ,
for .

It is worth noting that asymptotically random puncturing is a
special case of intentional puncturing, as stated in the following.

Fact 1: A randomly punctured ensemble of LDPC codes with
a puncturing fraction has the same threshold as the intention-
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Fig. 4. Model that describes puncturing over a binary channel.

ally punctured code with puncturing distribution , for
.

Proof: The proof is simple and can be done by evaluating
the density evolution formulas for the punctured codes given in
[11]. The proof alternatively follows from Strong Law of Large
Numbers (as , both of the distributions become the
same almost surely), and using continuity of the density evo-
lution over space of distributions.

Fact 1 implies that any asymptotic result that is valid for in-
tentionally punctured codes is usually valid for randomly punc-
tured codes. Thus, whenever we are concerned with asymptotic
properties, we only give the result for intentional puncturing. As
we mentioned in [11] a punctured LDPC code can be modeled
as Fig. 4. In this figure the punctured bits are transmitted through
a channel with zero capacity. The actual channel, is a BIOSM
channel with the parameter . When decreases, i.e., when the
channel improves, we increase the puncturing fraction. Thus we
can consider the puncturing process as a change in the channel
not in the code rate.

B. Puncturing Threshold of LDPC Codes

In this section, we compute the puncturing threshold of
LDPC code ensembles. Consider an MBIOS channel with pa-
rameter , where and

. For example, for the BIAWGN channel, can
be considered as the variance of the noise. Let be a class
of channels with parameter . Thus, any channel in in is
uniquely determined by its variable . A channel in with pa-
rameter is called . The capacity of the channel is
shown by . For simplicity, we assume that is a continuous
function of . Similar to [12], we consider physically degraded
channels. For clarity of exposition we assume that if ,
then is physically degraded with respect to . For the
channel assuming the all-one code word has been sent, we
define the random variable as

(11)

where and are the input and output of the channel, respec-
tively. Assume that if , then is physically degraded
with respect to . For simplicity, we assume that is
a continuous function of and we have .

Equivalently we can say that as tends to , tends to in-
finity in probability [6] and thus the probability density function
of , , converges to [6], [12]. Furthermore, we may as-
sume that if , then . Note that almost
all practical MBIOS channels such as BIAWGN channel, BSC,
and BEC satisfy these properties.

We say an ensemble of LDPC codes of positive rate is
asymptotically good if there exists a such that

and a randomly chosen code from the ensemble
can be used to achieve arbitrary small error rate over for all

. On the other hand, if we need for
achieving arbitrarily small error rate, the ensemble is said to be
asymptotically bad. For a punctured ensemble we
define

(12)

We also define the following sequence:

(13)

Theorem 2: (Puncturing threshold of LDPC codes) Consider
the ensemble of LDPC codes defined by the pair that are
intentionally punctured by the puncturing pattern . As-
sume a randomly chosen code from the punctured ensemble is
used over the channel , with . Let be supremum
value of the puncturing fraction such that in (13), we have

(14)

If , then the decoding error probability is bounded away
from zero independent of the communication channel. On the
other hand, if , then there exists such that if
the channel parameter is smaller than , then

(15)

The above result, proved in Appendix I, shows that is
the threshold of punctured LDPC codes. Using Theorem 2, we
can find the puncturing threshold of randomly and intentionally
punctured LDPC code ensembles. The cutoff rate of the code

is obtained by

(16)

where is the rate of the parent code. For example, since
the regular ensemble has puncturing threshold (for reg-
ular codes the random and intentional puncturing are the same)

, it has the cut off rate . Thus using the
regular ensemble as the parent code ensemble, we cannot

obtain the rates higher than .

C. Achieving Arbitrary Rates Via Puncturing

In [5], authors evaluated the performance of several punc-
tured LDPC codes and optimized the puncturing pattern to get
the best performance. However, their simulations show that for
high rates the performance of LDPC codes degrades and we
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TABLE I
THE CUTOFF RATES OF SOME LDPC CODE ENSEMBLES (RANDOM

PUNCTURING)

need to pay a big penalty for using punctured codes. This phe-
nomenon can be completely explained by the threshold effect of
punctured codes discussed in the previous section.

In [5], authors used three ensembles of LDPC codes for punc-
turing. These ensembles are

The cut off rates of these ensembles are shown in Table I.
From Table I, we can easily explain the degradation in the per-

formance of the above ensembles at high rates. By examining
the simulation results in [5], we observe that all of the above en-
sembles show considerable degradation for the rates above .
The degradation seems to have a very high slope for the rates
above . This is because at these rates we are approaching the
cut off rate.

Using the results of the previous section, by suitably choosing
the ensemble, rates arbitrarily close to 1 can be obtained via
puncturing. In fact, this is achieved by using good codes for
the BEC as the parent code and randomly puncturing them (off
course intentional puncturing works, as well). Since capacity
achieving sequences of LDPC codes over the BEC are known
[7], [16], [17] and [18], we can find codes with cut off rates
arbitrarily close to 1. Moreover, the parent code can have any
rate. Thus we have the following theorem.

Theorem 3: For any rates and that
there exists an ensemble of LDPC codes with the following
property. The ensemble can be punctured from rate to re-
sulting in asymptotically good codes for all rates .

Theorem 3 assures that we can have a punctured LDPC codes
that is asymptotically good (in the sense defined in this paper)
on arbitrary set of rates; However, it does not give any clue how
close to capacity the performance of such code will be. Here
we give a lower bound on the achievable rates as the channel
parameter changes.

Theorem 4: For any and MBIOS channel parame-
terized by , and , ,

there exists an ensemble of LDPC codes with the fol-
lowing properties. The ensemble can be punctured in a rate-
compatible way to produce all rates . Moreover,
for all it can be used to reliably transmit data over

satisfying

(17)

where is defined by (11).
Note that for any fixed rate, we can conclude the existence of

an ordinary LDPC code ensemble that satisfies the above lower
bound from [19]; however, the importance of Theorem 4 is in the
fact that we can have only one code that simultaneously satisfies
the bound for all rates.

Proof: Choose an LDPC code or rate whose threshold
over the BEC, , satisfies

(18)

We use this code as parent code and use random puncturing to
obtain all rates , . Now if

, using Fig. 4, we can assume we still have a code of rate
, because as it was mentioned previously, puncturing can be

considered as a change in the channel instead of the code rate.
Now if we apply [19, Theorem 4.2] to this system, we conclude
the following. If

(19)

then the threshold of the punctured code, satisfies
. Thus the punctured code can be used for reliable commu-

nication over . However using [18], [19], and
we conclude

(20)

Fig. 5 shows the ratio of the achievable rate and the channel
capacity for BSC. Fig. 6 shows the gap from the capacity for BI-
AWGN channel. As we see the gap is always less than 1.6 dB.
The bound of Theorem 4 is interesting because it gives an ana-
lytical result; however, in practice we can find punctured LDPC
codes that have better performance.

D. Optimality of Punctured LDPC Codes

In this section we show that by using punctured codes we
do not lose performance. In other words, we show that for any
LDPC ensemble of rate and any number satisfying

, there exists an ensemble of punctured LDPC
code of rate and parent rate with the same performance.
We also propose a method to construct the punctured code with
the same performance as a given code. Although these punc-
tured codes have the same asymptotic performance as the un-
punctured ones, they can have better finite-length performance.

Consider the parity check equation

(21)
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Fig. 5. The ratio of the achievable rate and the capacity for an ensemble of punctured LDPC codes over BSC.

Fig. 6. The gap from the capacity for an ensemble of punctured LDPC codes over BIAWGN channel.
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Fig. 7. Splitting a parity check equation.

By splitting the above parity-check equation, we get

(22)

where we refer to as an augmented variable node. Fig. 7 shows
the effect of the parity-check splitting on the Tanner graph of the
code. Note that this is different from the splitting operation in-
troduced in [20]. Now consider an LDPC code in which some
of the parity-check nodes have been split. This code can be con-
sidered as a punctured code. For example, the variable node is
a punctured variable node in Fig. 7. By splitting, we can make a
graph correspond to a lower-rate code. When we puncture this
code, we get a code with the same rate as the original code. Note
that the splitting can be performed repeatedly and a check node
that is obtained by splitting can itself be split into more check
nodes. Therefore, we can have arbitrarily small rates. However,
we assume that any check node is split only a finite number of
times.

Consider an ensemble of LDPC codes of rate . Let
be the ensemble of codes obtained by splitting some

of the check nodes of a code from the ensemble such that
the rate of the code is decreased to . Note that is the rate
of the unpunctured codes. Obviously, puncturing the augmented
variable nodes from a code in the ensemble results
a code of rate . For a graph in the ensemble , we
define the graph to be the corresponding graph in .
For a check node in a graph from the ensemble , we
define as follows. If is not split in then .
Otherwise is defined to be the set of check nodes in
obtained by splitting . For instance, in the above example we
have . Similarly, for a set of check nodes ,
we define

(23)

Lemma 3: If we puncture all the augmented bits from the
ensemble , then the resulting ensemble has the same
threshold as the ensemble under message passing de-
coding algorithm.

Proof: Let be a variable node in a graph from the en-
semble . Let also be the probability that the estimate
of the variable node in the ’th iteration of the message passing
algorithm be wrong. Define to be the corresponding prob-
ability when the decoding is performed on . Let and

be respectively the sets of check nodes and variable nodes
in the neighborhood of that affect . Define the sets
and accordingly.

As it is shown in [12], with high probability the neighbor-
hood of (of constant depth) is tree-like. Therefore, is
equal to the error probability of the ML estimation of given
the check nodes in and initial LLRs of the variable nodes
in . It is easy to show that the neighborhood of in
is tree-like as well. Choose large enough such that

and . Therefore,
is equivalent to the error probability of the ML-estimator of
given more information than what is provided by and .
Hence, . Thus, if the average error probability
under the message passing decoding on the graph tends to
zero as goes to infinity, the same thing should be true for .
Conversely, it can be shown that if the average error probability
under the message passing decoding on the graph tends to
zero as goes to infinity, the same thing should happen for .
Thus, we conclude that the thresholds of the two ensembles are
the same.

An immediate result of Lemma 3 is the following theorem.

Theorem 5: For any ensemble of LDPC codes of rate
, and any number satisfying , there ex-

ists an ensemble of punctured LDPC code of rate with parent
rate having the same threshold under the belief propagation
algorithm.

Theorem 5 implies that if we design the codes properly, punc-
tured codes are as good as ordinary LDPC codes. It also shows
how to construct a punctured code with the same performance
as the unpunctured code.

It is worth noting that although Lemma 3 states that the graphs
and have the same asymptotic thresholds, the two codes

can have different finite-length performance. In fact, by a suit-
able choice of the punctured variable nodes, we may be able
to alleviate the destructive effect of short cycles in the Tanner
graph. When the code length is short, the short cycles of the
graph deteriorate the performance. Using splitting, we can in-
crease the cycle lengths and this can improve the performance
of the finite-length codes.

E. Puncturing Over the Binary Erasure Channel

For the erasure channel stronger results can be obtained. For
example, using only one encoder and decoder we can achieve
the capacity of BEC on arbitrary set of rates. As another ex-
ample, a stronger result than Lemma 3 is valid. Note that Lemma
3 holds only for the asymptotic threshold of the codes. We now
show that for any graph , the error probability of the codes
corresponding to and are the same even for finite-length
codes. Let us define the merging of two check nodes that are
connected to a punctured node of degree two as the reverse op-
eration of splitting. For instance, in the above example if we re-
place the two check nodes and by and delete the vertex

from the graph, we say we have merged and .

Lemma 4: Let be a bipartite graph with bipartition
and , the set of variable nodes and check nodes, respec-
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tively. Let also be a bipartite graph obtained by splitting
some check nodes in . Define as the set of variable
nodes in . We write , where
and is the set of augmented variable nodes. A set
is a stopping set in if and only if there exists a set
such that is a stopping set in .

Proof: Let be a stopping set in . Let be
the set of neighbors of in (i.e., the set of parity-check nodes
in that are connected to some variable nodes in ). If for
any we have then is a stopping set
in , as well. Otherwise, there exists a parity-check equation

with . Since is a stopping set in ,
must have been split from a check node in . Suppose has

been split to . Since is a stopping set in , at least
one of the check nodes has a neighbor in . Suppose

is connected to the variable node in . Thus, there is a path
in which

are augmented nodes of degree two. Thus
is a stopping set in .

Now suppose the sets and be such
that the set is a stopping set in . Let be the set of
check nodes in that have a neighbor in . We merge
these check nodes to the original check nodes in . For instance,
suppose we merge the check nodes to get a new
check node . We now show that has at least two neighbors
in . Let be the graph induced by the nodes in and
their neighbors in . Since had been split to the check nodes

, there is a path
in where are the augmented nodes of degree
two. However, the degrees of ’s are at least two in the graph

. Therefore, both and must have neighbors in . Thus,
the check node must have at least two neighbors in . Thus
we conclude that is a stopping set in .

The immediate result of Lemma 4 is the following theorem.

Theorem 6: Let be a bipartite graph and be a bipartite
graph obtained by splitting some check nodes in . Now suppose
we puncture all the augmented variable nodes from the graph

. The resulting code has the same bit error probability as
the code that corresponds to over the erasure channel under
standard iterative decoding. The bit error rate is assumed to be
calculated for only unpunctured bits.

In the previous section, we stated a general result regarding
puncturing in Theorem 3. Here, we show stronger results for
the BEC. For example, random puncturing of a code over BEC
results in no performance loss. Using this fact we can show that
for any , , it is possible to design a code of rate
with the following property. The code is capacity achieving if it
is randomly punctured to any rate .

Lemma 5: Let be an LDPC code of rate and length
. Let be the bit error rate of the standard iterative decoding

of the code when used over a BEC with erasure probability .
Consider the ensemble of LDPC codes that is obtained
by randomly puncturing the code with puncturing fraction

. Choose such that

(24)

where is the rate of the ensemble . Let be
the average bit error rate of a randomly chosen code from the
ensemble over a BEC with erasure probability . Then
we have

(25)

Proof: This lemma is a special case of [11, Th. 3].

It is also easy to show that the bit error rate of a randomly
chosen code from the ensemble is highly concentrated
about the average value using the same arguments as in [7] and
[12]. Now we can state the following theorem.

Theorem 7: Let with and be any pos-

itive constant. Then, there exists an ensemble of LDPC
codes with the following property. The ensemble can be
punctured randomly to get an ensemble of the arbitrary rate

such that

(26)

Here, and is the threshold of the punc-
tured ensemble of rate under the standard iterative decoding.

Proof: Let and let be a sequence

of capacity achieving degree distributions of rate [7], [16],
[17] and [18]. Choose large enough such that

. Since

for all , by Lemma 5 we conclude the proof.

In other words, when we have a capacity achieving sequence
of LDPC codes of rate , the ensemble remains capacity
achieving when it is punctured to a higher rate. Thus, we can
design only one encoder and decoder and obtain arbitrary
many rates. Moreover, the code is capacity achieving for all the
desired rates over the BEC.

F. Design of Good Punctured LDPC Codes

In this section we discuss the design of good rate-compatible
LDPC codes using puncturing. As it was shown in the previous
section, design of punctured LDPC codes over the BEC is very
simple. We just need to use a good degree distribution for the
parent code and the punctured code performs very well for all
higher rates. On the other hand, it is not obvious how to design
good puncturing schemes for other channels.

We first note that if the desired range of rates is short, then we
can choose a good code for the smallest rate and randomly punc-
ture it to get codes of higher rates. Simulations shows that this
simple structure is practically efficient. Our experience shows
that increasing the code rate by an amount less than forty per-
cent is usually obtained by a very small performance loss. As
an example, the diagrams in [5], suggest that when the rate in-
crease is less than forty percent, the performance loss is less than
0.2 dB for the BIAWGN channel. This is true even when we are
using random puncturing. Thus we may focus on the cases that
a broad range of rates is needed, specifically when rates close to

are needed.
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Fig. 8. The gap from capacity for a randomly punctured LDPC code of length 10 chosen from the ensemble (� ; � ) at the bit error rate of 10 .

A necessary condition is to choose a code with high enough
puncturing threshold. That is, if and are the highest de-
sired rate and the parent code rate, respectively, and is the
puncturing threshold of the parent code, we must have

. Here we propose a technique that works well in prac-
tice.

As we mentioned previously a punctured code can be viewed
as Fig. 4. Hence, we can consider the puncturing process as a
variation in the channel not a variation in the code rate. From
the previous section we know that the highest rate that we need
plays an important role in the performance of the punctured
code. When the puncturing fraction is maximum, the channel
is close to a BEC. For the random puncturing, the resulting bi-
nary erasure channel is assumed to be uniform but for the in-
tentional puncturing, the BEC is assumed to be nonuniform. A
simple method is to choose the parent code to be a good code
for BEC. By this choice, we expect to get good performance
at the highest rates. However, as it is discussed in [21], with a
little care, the code that is optimized over BEC is also optimal
over other BIOSM channels. Thus we expect to get good per-
formance even at very low rates. In fact, our experience shows
that the most destructive problem of the punctured codes is the
threshold effect. If the gap between the highest rate and the cut
off rate is not enough, large performance degradation occurs at
high rates. In order to examine the above methodology we chose
a good ensemble of half-rate LDPC codes in [22] with the fol-
lowing degree distribution:

(27)

The ensemble has the cut off rate of . We generate
an LDPC code of length from this ensemble. To compare
our results with [5], we measured the gap to Shannon limit of
this code at the bit error rate of . Fig. 8 shows the simulation
results for this code when it is randomly punctured to generate
the rates at the range of to . We note that for all rates
the gap from the capacity is less than 0.7 dB. To compare the
performance of this code to the codes given in [5], we examine
the performance of two half-rates codes in [5] that are punctured
to higher rates. We note that both codes show about 1.8 dB gap
to the capacity at rate . Even with optimized intentional
puncturing the codes have 1 dB gap to capacity at this rate. We
also note that our code has a smaller length than those in [5].

It is worth noting that random puncturing is more suitable
than intentional puncturing for rate-compatible coding. This is
because we choose a fraction of the variable nodes at random
for the first rate. For the next rate, we choose more bits at random
from the unpunctured bits and so on. Thus, we do not need opti-
mization for puncturing, reduce the degradation at higher rates,
and do the puncturing in a rate-compatible way.

An important property of the above scheme is that it is ex-
tendable to finite-length codes. Using recent breakthrough in the
design and analysis of finite-length LDPC codes over the BEC
[1], [23], and [24] we can find good LDPC codes over the BEC
and design efficient punctured LDPC codes.

VI. CAPACITY ACHIEVING SEQUENCES FOR BIOSM
CHANNELS USING PUNCTURED CODES

It has been conjectured that for any BIOSM channel there ex-
ists a sequence of capacity achieving LDPC codes with iterative

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 13, 2008 at 14:00 from IEEE Xplore.  Restrictions apply.



612 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 2, FEBRUARY 2007

decoding, see for example [6]. Although this has been one of
the most important open problems in coding theory, it has been
proven only for the BEC. In this section we show that punctured
LDPC codes may be helpful to verify the conjecture. We show
that if the conjecture is proved for the rates approaching zero,
then it will be valid for all rates.

Consider the class of BIOSM channels parameterized by a
parameter with capacity . If the threshold of an ensemble of
codes under the message passing decoding is , we say that
the capacity of the ensemble is . We say that a sequence
of degree distributions with rate is capacity
achieving if for any positive constant , there exists an integer

such that if , then . Here
is the capacity of the ensemble . We now suggest the
following research problem.

Research Problem 1: For any class of BIOSM channels, there
exists a sequence of degree distributions
such that

(28)

where , and is the capacity of the

ensemble .
We now show that if the above research problem is proved,

then capacity achieving LDPC codes of all rates exist. The im-
portant point is that it might be easier to prove the existence
of the capacity achieving sequences for the case where the rate
of the code is approaching zero. This is because, for this case,
the channel is approaching a channel with zero capacity and all
different BIOSM channels may become somewhat similar. For
example, one approach to solving the research problem could
be using the capacity achieving sequences for the BEC as their
rates approach zero.

Theorem 8: If the statement of Research Problem 1 is true,
then there exists a capacity achieving sequence of LDPC codes
for any BIOSM channel.

Proof: Let be a BIOSM channel with capacity and let
be any positive constant. Consider the channel in Fig. 4.

The capacity of is equal to , where is the
puncturing fraction. Suppose we are using random puncturing.
The channel can be considered as a BIOSM channel
with the parameter . When approaches one the capacity of

tends to zero. Thus, by Research Problem 1, there exists
a sequence of degree distributions such
that

(29)

This code can be used for reliable communication over .
Thus for large enough and , we have an ensemble of LDPC
codes of rate . This ensemble can be con-
sidered as a punctured ensemble with effective rate

. Therefore, we have

(30)

This implies that the punctured code with rate
can be used for reliable communication over .

Note that Theorem 8 is quite general and can be applied to any
code ensemble. In fact, the proof does not require to consider
LDPC codes.

VII. CONCLUSION

We first presented improved decoding algorithms for LDPC
codes over BIOSM channels. The algorithms have a consider-
ably smaller bit error rate than the standard iterative decoding
algorithm. For the BEC, both the average running time and the
maximum running time of the proposed algorithm (Algorithm
C) are small. For other BIOSM channels, the average running
time of the proposed algorithm (Algorithm D) is almost the
same as the standard iterative decoder. However, the maximum
running time of the algorithm can be as large as 40 times the
average running time of the iterative decoder. We showed that
if the algorithm applied properly, it can be more effective on
nonuniform channels.

We then studied some fundamental properties of punctured
LDPC codes. The threshold effect and the optimality of punc-
tured LDPC codes were discussed. We showed that for any en-
semble of LDPC codes, there exists a cut off rate which is the
maximum achievable rate using puncturing. We proved the exis-
tence of asymptotically good punctured LDPC codes for an arbi-
trary range of rates. For the binary erasure channel, we find that
using only one encoder and decoder, we can achieve the capacity
of the channel over an arbitrary set of rates. We also proposed a
simple method for designing rate-compatible LDPC codes that
has several advantages over the previous methods. First, it re-
duces the performance degradation at high rates. Second, it is
applicable to finite-length codes. Third, there is no need for op-
timizing the puncturing pattern. Fourth, the puncturing can be
done in a rate-compatible way. Finally, we showed that punc-
tured LDPC codes might be useful in solving an important open
research problem on the capacity-achieving LDPC codes over
BIOSM channels.

APPENDIX

PROOF OF THEOREM 2

For simplicity we prove the theorem for random puncturing.
The random puncturing scheme can be modeled as transmitting
over a channel as shown in Fig. 4 with the following de-
scription. Assume a bit is transmitted through . Then, with
probability , this bit will be transmitted over a channel with
zero capacity and with probability it will be transmitted
over the channel . Now, using similar discussion to the proof
of Theorem 1, we can show that if in the above model we replace

with the channel , which is a channel of capacity one,
the overall error probability decreases. On the other hand, re-
placing with the channel in Fig. 4, the channel be-
comes equivalent to a BEC with erasure probability . This
is because every bit is either transmitted through the channel
with zero capacity (with probability ) or through the noise-
less channel . This proves a lower bound on the error
probability that results in the upper bound on the puncturing
threshold.
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Examining the above discussion indicates that the theorem
applies when the error rate is averaged over all bits, i.e., both
punctured and unpunctured bits. A more realistic case is to con-
sider the error rate of only unpunctured bits. By a similar ar-
gument to [11, Lemma 1], for , if the error rate of
punctured bits is bounded away from zero, then the error rate of
unpunctured bits is bounded away from zero as well. This im-
plies the following corollary.

Corollary 2: Consider the ensemble of LDPC codes de-
fined by the pair . Let be the ensemble of LDPC
codes that are generated by randomly puncturing of the en-
semble by the puncturing fraction . Assume a randomly
chosen code from the ensemble is used over the channel

, with . Let be the threshold of the ensemble
for BEC under the iterative decoding. If , then

the error probability of decoding the punctured code is bounded
away from zero independent of the communication channel.

The above discussion gives upper bounds on the puncturing
fraction of LDPC codes. We will now show that these upper
bounds are actually the puncturing threshold of LDPC codes in
the sense that if the puncturing fraction is less than the upper
bounds then the punctured LDPC code is an asymptotically
good code. We first prove a lemma.

Lemma 6: Consider the ensemble of LDPC codes defined
by the pair that are randomly punctured by the puncturing
fraction where is the upper bound given
by Corollary 2. Then there exists a such that if the
channel parameter is smaller than , then the punctured en-
semble satisfies the stability condition.

Proof: By the assumption of the lemma, a randomly chosen
code from the ensemble can be used to obtain arbitrarily
small bit error rate over a BEC with erasure probability .
Thus, using the stability condition [6], we have

(31)

Now consider the ensemble of LDPC codes defined by
that are randomly punctured by a puncturing fraction . Suppose
a code from the punctured ensemble is used over a channel with
the parameter . Then, assuming the all-one codeword has been
sent, the density of the LLRs from the channel is equal to

(32)

We need to show that for suitably chosen we have

(33)

Since as goes to , converges to (in the
sense defined in [6]). By choosing small we can make
the integral arbitrarily small. Thus,
using (31) and (32) we conclude that there exists a for
which we have for .

Now we show under the conditions of Lemma 6, there exists
a such that if the channel parameter is smaller than

, then

(34)

For the given ensemble, the probability density function
can be written as

(35)

where satisfies

(36)

By the conditions of the theorem

(37)

Moreover, for a fix value of , we have

(38)

Now, by Lemma 6, the stability condition is satisfied, for
. Thus, by the stability theorem in [6], there exists a constant

such that if , for some , then
converges to zero as tends to infinity. Choose large enough
such that . Now fix and choose such
that . Thus for , the stability
condition is satisfied and we have

(39)

Therefore, converges to zero as tends to infinity.
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