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Abstract—It is generally believed harmful to have transmis-
sion errors in the wireless communications. The high decoding
complexity of dense parity check codes is unfavorable. This
paper proposes to apply these two ”negative” facts to enable
the secrecy sharing with the information theoretical security.
We claim that the secrecy sharing is always possible if the
wiretap channel is not error-free, regardless of the main channel
performance. Particularly, the proposed secrecy sharing protocol
can provide provable and testable security using the existing
wireless technologies.

Index Terms—wireless security, parity check code, wiretap
channel model, information theoretical security

I. INTRODUCTION

A. Motivation

A fundamental problem in the security research is: when
only the public communication channel is available, how to
share some secrecy between the legitimate users. The vast
deployment of wireless applications brings more challenges to
us. The broadcasting nature enables almost zero-cost eaves-
dropping. The mobility makes it difficult to pre-configure
for the secret key cryptography. In practice, the public key
cryptography (PKC) is used to establish a computationally
secure channel for the initial secret key exchange, then other
secret key based cryptography protocols could be functional.
However, if the privacy is only guarded by the computational
barrier, the adversary always can ”save” the cipher text and
wait for the advancement of computing technology, the novel
reverse algorithms or the reveal of protocol implementation
flaws.

Hence, a secrecy sharing protocol which can provide the
provable security would be highly desirable for the wireless
communications. A general purpose, theoretically beautiful
solution might be very difficult because it had been proved
that given an unrestricted adversary full control of the com-
munication channel, a robust secrecy sharing protocol is not
possible [1].

By restricting the adversary’s storage capacity, Maurer
proposed the bounded storage model (BSM) which provides
provable unconditional security [2]. This model is very elegant
but hard to implement mainly because the storage technology
advancement makes it is infeasible to generate and transmit
such a huge amount of random bits. By defining the channel
with quantum effects and using single photon sources, the
quantum key distribution (QKD) offers information theoretical

security. It is not implemented in most wireless environments
because of high cost on wireless quantum transceivers and
the unrealistically short applicable range when channel noise
presents.

The previous research motivates us to seek a method by
restricting some easily testable aspects on the adversary, use
off-the-shelf technologies, to achieve information theoretical
security for the secrecy sharing. The modern wireless com-
munication researches stimulate a counter-intuitive direction.

In most wireless communication occasions, SNR limitation
and complex multipath effects cause the transmission errors
very hard to reduce. In the channel coding area, researchers
are dedicating to make the best use of the redundancy to
recover transmission errors. In this paper, we follow the
reverse direction. We can force the eavesdropper to have
inevitable errors by restricting transmission power, choosing
vulnerable modulations or even actively jamming. We have
the testability by measuring the noise and interference. If
the channel coding is only effective on error detection but
not capable of recovering the error, then the legitimate users
can keep those reliably received information to build the
agreement. As long as the eavesdropper can not receive the
exactly identical information as the legitimate users, he or she
is guaranteed to suffer from the information loss regardless
of the computing power or algorithm advantage. Therefore,
it is possible to build the secrecy sharing protocol based on
the error measurement and the detectable but non-correctable
channel coding.

To release the worry that the eavesdropper might receive
identically with the legitimate users, the electromagnetic wave
propagation theory states that when the receivers are physically
apart more than half of the carrier wave length, their errors
would be considered as independent. There are experiment
results on 2.4GHz networks that verifies the theory [3].

B. Related Works

This paper is an interdisciplinary research. It is motivated
and built on many previous research milestones.

In the security research domain, Wyner proposed the wiretap
channel as a simple, highly abstract yet effective model to
illustrate the information theoretical security capacity when
the eavesdropping exists [4].

As shown in fig. 1, the legitimate users Alice and Bob
communicate through the main channel and the eavesdropper
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Fig. 1. the wiretap channel model

Eve listens via the wiretap channel. Both channels are dis-
crete memoryless channels (DMC). This model can represent
general wireless eavesdropping scenarios because most of the
time, eavesdropper would be far away from the legitimate user
(far more than half carrier wave length).

Wyner concludes the relationship between the upper bound
of secrecy sharing rate and the channel capacities as

CS =
{

CM − CW CM > CW

0 CM ≤ CW
(1)

CS is the secrecy capacity. CM and CW are the main channel
capacity and the wiretap channel capacity respectively.

This conclusion is discouraging because it implies that the
secrecy sharing is only feasible when the wiretap channel is
worse than the main channel which is difficult to guarantee in
practice.

Maurer improved this model by introducing public dis-
cussions and repeating bits transmission [5]. In the physical
layer, Barros and Rogdrigues proposes that the variation of
physical layer errors could produce positive secrecy capacity
[6]. Cooperating with them, Bloch and Mclaughlin proposes
a physical layer approach in the quasi-static fading channels
for secure key agreement[7].

In the channel coding research domain, unlike the prominent
low density parity check (LDPC), dense parity check is not
favorable because the error propagation prevents the possibility
of iterative decoding and the maximum likelihood decoding is
an NP-complete problem [8].

This paper is built on these important research results. We
propose a protocol that could produce information theoretical
security in the wireless communications. Not only the theo-
retical bound is concretely proved, but also the protocol could
be easily implemented with the publicly available wireless
technologies. We will focus on the binary symmetric channel
(BSC) instead of general DMC in this paper for the calculation
of the secrecy capacity.

II. THE SECRECY SHARING PROTOCOL

We use the traditional Alice, Bob and Eve scenario to
describe the protocol. The concepts and techniques used in
the protocol are formally defined immediately after the frame-
work, then the secrecy capacity of this protocol is proved.

Protocol Framework

1) Alice and Bob agrees on the (n,R) equiprobable parity
check codes and other parameters which will be used in
the secrecy sharing process.

2) Alice generates a set of uniformly distributed binary
sequences and encodes them as t1, t2, · · · to transmit.

3) Bob receives the transmitted codewords as r1, r2, · · ·
4) According to the expecting security threshold,

Bob keeps m correctly received binary sequences
rk(1), rk(2), · · · , rk(m) and broadcasts the index set
{k(1), k(2), · · · , k(m)} repeatedly until Alice confirms
completely correctly received it.

5) Alice uses privacy amplification techniques to distill a
secrecy sA from

tk(1), tk(2), · · · , tk(m)

6) Bob uses privacy amplification techniques to distill a
secrecy sB from

rk(1), rk(2), · · · , rk(m)

sA and sB are equal with very high probability and the
information leak to the adversary is lower bounded.

This protocol framework is very similar to the quantum key
distribution. They share the same three steps: transmission,
data reconciliation and privacy amplification. We call our pro-
tocol Poor’s QKD. The difference is that our protocol works on
codewords while QKD works on qubits. Our protocols requires
no expensive quantum instruments but uses the natural noise
and interference.

It is noteworthy that the legitimate users do not need to face
the decoding complexity problem of the equiprobable parity
codes. They just use the privacy amplification techniques to
compress the received strings.

A. Equiprobable Parity Check Codes

Among all dense parity check codes, the equiprobable parity
check codes is of our interests. For the simplicity, we define
the codes in the systematic form. The equivalent codes to the
system form codes are equiprobable parity check codes too.

The systematic form of the generation matrix MG for the
(n,R) equiprobable parity check codes is

MG =
[

InR M
]

(2)

Ik represent the k by k identity matrix. The M inside MG

is an nR by n(1 − R) matrix. It is filled with statistically
independent equiprobable binary bits (e.g. all of its bits are
i.i.d. with equal probability of being 0 or 1). .

It is trivial to show that the corresponding parity check
matrix would be

MH =
[

M
In(1−R)

]
(3)

The equiprobable parity check codes have two important
properties: the lower bounded equivocation after transmission
in BSC channel and the upper bounded false negative proba-
bility.

By defining
• t row vector for the transmitted codeword
• r row vector for the received binary sequence
• Ω the codeword set
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• pe the bit transition probability of the BSC channel

we have the following two theorems.
Theorem 1 (lower bounded equivocation): With two sup-

plement functions1

h(x) = x log x + (1 − x) log (1 − x) (4)

φk(x) =
1 + (1 − 2x)k

2
(5)

the equivocation of t given r is lower bounded by

H(t|r) ≥ nh(pe) − n(1 − R)h(φnR+1(pe)) (6)

Proof:

H(t|r) = H(t, r) − H(r)
= H(t, t ⊕ r) − H(r)
= nR + nh(pe) − H(r)

(7)

We then divide r into two parts

r =
(

rs rc

)
(8)

rs is the first nR bits and rc is the rest n(1−R) bits. Let r
(i)
c

represent the ith bits of rc. We interpret H(r) as

H(r) = H(rc, rs) = H(rc) + H(rc|rs)
≤ nR + H(rc|rs)

≤ nR +
n(1−R)∑

i=1

H(r(i)
c |rs)

(9)

The second ≤ is because the overlapping of parity check set
can only reduce the uncertainty of r.

Let M (i) represent the ith column in the random matrix M
as defined in equation (2) and (3). k(i) is the number of 1s in
M (i).

H(r(i)
c |rs) = Ers∈{0,1}nR [H(r(i)

c |rs)]
= Ers∈{0,1}nR [h(p(r(i)

c = rsM
(i)|rs))]

= h(φk(i)+1(pe))
≤ h(φnR+1(pe))

(10)

The third equality is because M is a equiprobable random
binary matrix, p(r(i)

c = rsM
(i)|rs) is the probability of even

number of bit errors occur in this parity check set and this
probability is unchanged for any rs ∈ {0, 1}nR.

The last ≤ is because h(φk(p)) is monotonically increasing
with k and k(i) ≤ nR.

Combining the equation (7), (9) and (10), we have

H(t|r) ≥ nh(pe) − n(1 − R)h(φnR+1(pe)) (11)

Theorem 1 is proved.
Equation (6) illustrates that when the code rate R is high,

the uncertainty about transmitted codeword t given received
binary sequence r is lower bounded above zero. This is the
minimum loss of information when the eavesdropper receives
an error prone codeword.

Theorem 2 (upper bounded false negative probability):
For the (n,R) equiprobable parity check codes, regardless of

1If not specified, all log functions in this paper are base-2.

the transmission error pattern, the false negative (undetected
error) probability would be upper bounded as

pud = pr∈Ω(t �= r) ≤ 2−n(1−R) (12)

Proof: Define the error vector

e = t ⊕ r =
(

es ec

)
(13)

es contains the first nR bits of e and ec is the later part.
According to equation (3), the syndrome is

s = eMH = esM ⊕ ecIn(1 − R) (14)

When s = 0, the received binary sequence is believed to be
correct. Hence

esM = ec (15)

There are three possible error types:

1) es = 0, ec �= 0
2) es �= 0, ec = 0
3) es �= 0, ec �= 0

Type 1) error will bring non-zero syndrome and always can
be detected.

For type 2) and 3) errors, we rewrite equation (15) to an
equation array.




esM
(1) = e

(1)
c

...

esM
(i) = e

(i)
c

...

esM
(n(1−R)) = e

(n(1−R))
c

(16)

M is an equiprobable random binary matrix. M (i) is a ran-
dom binary string picked from {0, 1}nR. Therefore no matter
what the values of es and e

(i)
c are, p(esM

(i) = e
(i)
c ) = 1

2 .
Because each equation in the array (16) is independent to the
others, the probability of all equations in (16) are satisfied
would be 2−n(1−R). According the above analysis we have

pud = p(t �= r|r ∈ Ω) ≤ 2−n(1−R) (17)

Theorem 2 is proved.

B. Privacy Amplification

The privacy amplification is a matured topic in the cryp-
tography research. There are many literatures explaining this
technique in details such as [9], [10] and [11]. In general, it is
shortening the message strings to defend potential information
leaking.

To be more specific, When Eve’s information about the orig-
inal message X is limited by n− r bits, Alice and Bob could
publicly choose a compression function g : {0, 1}n → {0, 1}r

such that Eve has arbitrarily little information about g(X) with
overwhelming probability.
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C. Provable Security

Take a closer look at equation (1), it could be rewritten as

CS = max {CM − CW , 0}
= 1

n max {max
p(t)

I(t; rM ) − max
p(t)

I(t; rW ), 0} (18)

It is a general result for the one-directional transmission for
all possible distribution p(t). However, in our protocol, the
legitimate users could choose certain p(t) and certain t in their
favor. The eavesdropper is forced to work with their choices.

When p(t) is given, the secrecy capacity of our protocol in
BSC wiretap channel model is

CS =
1
n

max {H(t|rW ) − HrM∈Ω(t|rM ), 0} (19)

rM and rW are the received binary sequence of Bob and Eve
respectively.

Let pe,E represent the bit transition probability of the
wiretap channel, pud represent the false negative probability
of the codes and recalling equation (4) and (5). We have the
following theorem on the secrecy capacity.

Theorem 3 (protocol secrecy capacity): Regardless of the
performance of the main channel, the secrecy capacity is lower
bounded by the coding parameters and the performance of the
wiretap channel as

CS ≥ max {h(pe,E) − (1 − R)h(φnR+1(pe,E)) − Rpud, 0}
(20)

Proof: According to equation (6), we have

H(t|rW ) ≥ nh(pe,E) − n(1 − R)h(φnR+1(pe,E)) (21)

Referring to equation (12), the equivocation of t by r given
rM ∈ Ω would be

HrM∈Ω(t|rM )
= ErM∈Ω[− log p(t|rM )]
= pudErM∈Ω[− log p(t|rM )|t �= rM )]

+(1 − pud)ErM∈Ω[− log p(t|rM )|t = rM )]
≤ pud · nR + (1 − pud) · 0
= nRpud

(22)

The ≤ is because the uncertainty about t would not exceed
nR bits; when rM ∈ Ω and the false negative detection does
not occur, the equivocation would be zero.

Substitute equation (21) and (22) into equation (19), we
have equation (20).

Theorem 3 is proved.
Equation (20) clearly shows that when R is approaching 1

and pud is small (n large), the secrecy capacity is guaranteed
to be positive if the eavesdropper’s bit error probability is not
zero. The existence of positive secrecy capacity is irrelevant
to the main channel’s performance.

We illustrate the secrecy capacity lower bound on fig. 2. It
almost increase linearly with n after being strictly positive.

Even the eavesdropper also gains benefit from the error
detection, the probability for the eavesdropper to correctly
receive all legitimate user selected codewords is exponentially
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Fig. 2. CS lower bound on various n and pe,E with 16 checksum bits

decreases with m. The probability of the eavesdropper has k
out of m erroneous binary sequences are

pk =
(

m
k

)
(1 − pe,E)n(m−k)(1 − (1 − pe,E)n)k (23)

The expectation number of the eavesdropper’s erroneous code-
words would be

k̄ =
m∑

k=0

kpk = (1 − (1 − pe,E)n)m (24)

According to equation (24), one execution of the protocol
can averagely share (1 − (1 − pe,E)n)mnCS bits of secret
information between Alice and Bob. However, if the main
channel is bad, it takes many transmissions to accumulate m
correctly received codewords.

Considering the discarded bits in both data reconciliation
stage and privacy amplification stage, the secrecy capacity on
the BSC-wiretap channel model would be

C∗
S = CS(1 − pe,B)n(1 − (1 − pe,E)n) (25)

Here CS is defined as in equation (19) and lower bounded by
equation (20).

C∗
S in equation (25) is an average. Its instantaneous value

is random due to the error randomness in wireless communi-
cations. However, the non-zero capacity of secrecy sharing is
guaranteed whenever CS is strictly positive.

D. Decoding Difficulty for the Eavesdropper

Not only the equivocation is lower bounded, but also the
eavesdropper need to solve the NP-complete problem to make
the redundancy useful in attempts of recovering errors from
the received binary sequences.

It is extremely rare that the random parity check codes
would coincidentally satisfy the iterative decoding criteria. The
generation matrix would almost surely be complicated circled
on the Tanner graph. The error propagation is inevitable.

It is well known that the coset weights problem for the linear
block codes is NP-complete [12]. When non-zero syndrome
appears, the maximum likelihood (ML) decoding can reduce to
the coset weights problem. Therefore it is also NP-complete.
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TABLE I
TYPICAL PARAMETER SETS AND PERFORMANCES

measured bit error prob. 10−3 10−4 10−5 10−6

number of codewords to keep 32 32 32 32
checksum length (bits) 16 16 16 16
codeword length (kbits) 2 16 128 1024

Bob’s bit error prob. 10−4 10−4 10−5 10−6

avg. secrecy shared (bits) 205.4 210.7 180.5 136.9
avg. total transmitted bits (Mbits) 0.48 2.57 14.83 91.3

Furthermore, there could be multiple indistinguishable solution
candidates at the same Hamming weight when R is high.

This decoding complexity barrier provides us more confi-
dence in executing the protocol because n usually would be
large. The eavesdropper would need to fight against compu-
tational complexity barrier to recover its received erroneous
binary sequences.

III. PRACTICAL IMPLEMENTATION SCENARIOS

Because the above proposed protocol is based on physical
layer properties of the wireless communications, it is naturally
capable of serving as an enhanced layer to almost all existing
cryptographic systems. We can use the shared secrecy as the
one time pad to protect the public key transmission, promoting
the public key cryptographic system to be information theo-
retically secure. We can also directly use the shared secrecy
as the secret key to encrypt data.

Table I shows parameter sets and performances on some
typical bit error probabilities. Even for the home-use wireless
LAN, the protocol would be fairly low cost.

One of the novel feature of the proposed protocol is the
testability. The user need to measure the surrounding environ-
ment noise to determine the parameters. Because the signal
decays proportional to at least the square of the distance
to the source, this feature is essential to defend outside
eavesdroppers, e.g. perimeter protection. The testability is the
key to build up true confidence to the security concerns.

Another feature is that the better main channel can provide
significant performance gain in the secrecy sharing. Since the
legitimate users can decide the transmission scheme and utilize
the active interference (jamming, antenna polarization, etc),
they can always exploit these benefits to build up the privilege.
Also, the racing on the receiver capability is easy to testify. It
would be obviously suspicious when someone pointing a huge
antenna towards the legitimate communication scenario.

This protocol requires only binary XOR and AND oper-
ations besides the common cryptographic requirement of a
random number generator. It can be easily implemented in
hardware and excel the computational security methods in
both power consumption and speed aspects. Hence it would
be suitable for resource limited situations such as the RFID
security.

IV. FUTURE WORKS

The equiprobable parity check codes might not be the best
candidate for the detectable but non-correctable purpose. There
might be codes that can more effectively utilize the error in the

wiretap channel. The secrecy capacity bound is loose. There
should be tighter bounds to replace the inequalities (10), (22)
and (25).

We are proposing to prototype this protocol in both the mesh
network using 802.11a/b/g wireless LAN and the access point
based network with 802.11n and the beam-forming technology.
These experiments would optimize this protocol and hopefully
reveal new theoretical breakpoint.

We hope this paper can stimulate the research interests
to pursue the low-cost and technology-ready solution for the
provable security in wireless communications.

V. CONCLUSION

This paper presents an improvement to the secrecy capacity
bound in the BSC-wiretap channel model with public channel
feedback. The strictly positive secrecy capacity only relies on
the wiretap channel performance but not the main channel.
Based on the theoretical results, a secrecy sharing protocol
is proposed to obtain the provable and testable security in
the wireless communications. The security doesn’t rely on
the restriction of adversary’s computing power or algorithm
advantage, but the testable physical limitations. This protocol
can be implemented in various applications to provide an extra
layer of information theoretical security to the existing security
models.

REFERENCES

[1] U. M. Maurer and S. Wolf, “Secret key agreement over a non-
authenticated channel - part i: Definitions and bounds,” IEEE Trans-
actions on Information Theory, vol. 49, pp. 822–831, 2003.

[2] C. Cachin and U. Maurer, “Unconditional security against memory-
bounded adversaries,” in Advances in Cryptology - CRYPTO’97, Lecture
Notes in Computer Science, vol. 1294, 1997, pp. 292–306.

[3] L. C. Wood and W. S. Hodgkiss, “Indoor spatial correlation measure-
ments at 2.4 ghz,” in Conference Record of the Thirty-Ninth Asilomar
Conference on Signals, Systems and Computers, 2005.

[4] A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal,
vol. 54, pp. 1355–1387, 1975.

[5] U. M. Maurer, “Secret key agreement by public discussion from common
information,” IEEE Trans. on Information Theory, vol. 39, pp. 733–742,
1993.

[6] J. Barros and M. Rodrigues, “Secrecy capacity of wireless channels,” in
ISIT’06 Proceedings, 2006.

[7] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin,
“Wireless information-theoretic security - part i: Theoretical aspects,”
IEEE Trans. on Information Theory, 2006.

[8] R. G. Gallager, Low-Density Parity-Check Codes, M. Press, Ed. MIT
Press, Cambridge, MA, 1963.

[9] C. H. Bennett, G. Brassard, C. Crkpeau, and U. M. Maurer, “Generalized
privacy amplification,” IEEE Transaction on information theory, vol. 41,
pp. 1915–1923, 1995.

[10] U. M. Maurer and S. Wolf, “Secret key agreement over a non-
authenticated channel - part iii: Privacy amplification,” IEEE Transac-
tions on Information Theory, vol. 49, pp. 839–851, 2003.

[11] R. Konig, U. Maurer, and R. Renner, “Privacy amplification secure
against an adversary with selectable knowledge,” in ISIT’04 Proceed-
ings, 2004.

[12] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems,” IEEE Transactions on Infor-
mation Theory, vol. 24, pp. 384–386, 1978.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

58

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 15,2010 at 15:22:12 UTC from IEEE Xplore.  Restrictions apply. 


