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Performance of Low-Density Parity-Check Codes With
Linear Minimum Distance

Hossein Pishro-Nik, Member, IEEE, and
Faramarz Fekri, Senior Member, IEEE

Abstract—This correspondence studies the performance of the iterative
decoding of low-density parity-check (LDPC) code ensembles that have
linear typical minimum distance and stopping set size. We first obtain a
lower bound on the achievable rates of these ensembles over memoryless
binary-input output-symmetric channels. We improve this bound for the
binary erasure channel. We also introduce a method to construct the codes
meeting the lower bound for the binary erasure channel. Then, we give
upper bounds on the rate of LDPC codes with linear minimum distance
when their right degree distribution is fixed. We compare these bounds to
the previously derived upper bounds on the rate when there is no restric-
tion on the code ensemble.

Index Terms—Bipartite graphs, erasure channel, error floor, iterative de-
coding, low-density parity-check (LDPC) codes, minimum distance, perfor-
mance bound.

1. INTRODUCTION

In some applications, it is necessary to design codes that do not
suffer from the error floor problem at the desired bit error rates (BERs),
while their rates are close to the channel capacity. For example, in some
page-oriented memories, low-density parity-check (LDPC) codes can
result in very efficient coding schemes [1]. In these memory systems,
we can use large block lengths and thus we get performance close to
the Shannon limit. However, BERs less than 10™'2 are required. Since
the storage capacity of the system is directly proportional to the code
rate, it is very important that the code rate be close to the capacity of
the channel. Thus, we need to design LDPC codes that do not show
error floor for the BERs higher than 10712 and at the same time, have
a threshold near the Shannon limit.

One method to solve the error floor problem is to use an outer code.
In this method we use the outer code to reduce the BER. This method
slightly increases the complexity of the system. This is specifically un-
desirable in page-oriented memories where simple and fast decoding
algorithms are required. Moreover, using an outer code results in a rate
loss; however, the rate loss is usually small. There are also methods for
decreasing the error-floor effect for the capacity-approaching codes [2];
however, these methods are sometimes not effective for the BERs re-
quired by the storage systems. Depending on the application, the above
methods may or may not be suitable. As it will be described in more
detail, an alternative option is to use codes with linear minimum dis-
tance. These codes also have some desirable properties other than good
error floor performance. Thus, in this paper our aim is to study codes
with linear minimum distance and to find bounds on their achievable
rates.
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Here we use the ensemble of LDPC codes described in [3]. The en-
semble (d,,d.) of LDPC codes is an ensemble that consists of reg-
ular LDPC codes in which variable nodes have degree d, and check
nodes have degree d.. In order to construct a graph from the ensemble
we do the following. To each variable or check node we assign d,, or
d. sockets, respectively. We label the variable nodes and check nodes
sockets separately with the set {1, 2, ..., nd,, }. We then pick a random
permutation @ on E = nd,, letters. For each ¢, we put an edge between
the socket ¢ and (). Two, vertices are connected if there is an edge
between their sockets. For irregular ensembles, we use a degree distri-
bution that is defined by the pair (A, p), in which A and p are polyno-
mials. In particular, we have

plz) = pia'™"

AMz) = Z Nt

where ); is the fraction of edges connected to a variable node of degree
i and p; is the fraction of edges connected to a check node of degree
i. The ensemble (A, p) is defined similar to the regular ensembles. It
has been shown in [3] and [4] that any ensemble (\, p) has a threshold
under the iterative decoding. If the noise level of the channel is bellow
the threshold, the BER of the iterative decoder tends to zero as the code
block length tends to infinity. On the other hand, if the noise level is
above the threshold, the BER is bounded away from zero. Throughout
the paper, by threshold we mean the the threshold of the code ensemble
under the iterative decoding.

The error floor problem is related to the minimum distance and the
minimum stopping set size of the code. As it is shown in [5], [6],
and [7], a suitably expurgated ensemble (A, p) of LDPC codes has
a linear typical minimum distance and minimum stopping set size if
A'(0)p' (1) < 1. Here, a constant fraction of the codes in the ensemble
with low minimum stopping set size are removed in the expurgation.
On the other hand, if A'(0)p'(1) > 1 the size of the minimum stopping
set and the minimum distance is sublinear with high probability. The
codes with small minimum distance and small minimum stopping set
(the ones with ' (0)p’ (1) > 1) suffer from the error floor problem. On
the other hand, if the minimum distance is linear, the error-floor effect
is reduced substantially. For the binary erasure channel (BEC) with low
enough channel erasure probability, using a simple union bound we can
show that the BER of an expurgated ensemble with A’ (0)p' (1) < 1 de-
creases exponentially with respect to the code length and the channel
erasure probability [8], [9]. Thus, the code shows a lower error floor
effect for the corresponding erasure probability range. Although this
has not been shown for other channels, simulations clearly show the
superiority of these codes in terms of the error-floor effect over the
codes having a sublinear minimum distance. It is shown in [10] that
(assuming that the first two derivatives of 1 — p~'(1 — ) are pos-
itive in (0, 1)) capacity-achieving LDPC codes over the BEC satisfy
N ( ())p'(l) > 1 and hence have sublinear minimum distance. Thus,
they are very likely to suffer from the error-floor problem. Code en-
sembles satisfying A'(0)p’(1) < 1 present other good properties such
as having a strictly positive relative erasure correction radius. In other
words, if the size of the minimum stopping set is greater than én, where
n is the code length and ¢ is a positive constant, then the code is guar-
anteed to recover all the erased bits provided that the number of erased
bits is less than or equal to én.

The question that arises here is how close we can get to the Shannon
limit while the minimum distance is maintained linear with respect to
the code length. In other words, how much do we possibly lose by re-
stricting to codes with linear minimum distance? This paper is con-
cerned with this question.

In this paper, we find lower bounds on the achievable rates over mem-
oryless binary-input output-symmetric (MBIOS) channels using LDPC
codes with linear minimum distance when decoded using the belief
propagation algorithm. Then, we obtain upper bounds for the rate of
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these ensembles over the BEC. We give upper bounds similar to [11]
for codes with a given right degree distribution. We will compare these
bounds with the ones given in [11] to estimate the rate loss due to re-
stricting to codes with the linear minimum distance property. We think
that, like almost any other properties of LDPC codes, the study of this
question over the BEC can provide better understanding of the problem
over other channels.

II. LOWER BOUNDS ON THE ACHIEVABLE RATES

In this section we provide lower bounds on the achievable rates of
LDPC codes with linear minimum distance over MBIOS channels.
Consider a MBIOS channel with parameter 8, where 6 € [fmin, Oimax]
and Gumin, fmax € RU {—o0, +o0}. For example, for the binary-input
additive white Gaussian noise (BIAWGN) channel, # can be consid-
ered as the variance o of the noise. Let C be a class of channels with
parameter 6. Thus, any channel C in C is uniquely determined by its
variable #. A channel in C with parameter 6y is called Cy,. The ca-
pacity of the channel Cy, is denoted by ¢y, . For simplicity, we assume
that ¢ is a continuous function of ¢. Similar to [3], we consider phys-
ically degraded channels. For clarity of exposition we assume that if
61 < 82, then Cy, is physically degraded with respect to Cl, . For the
channel C's, we define the random variable Zs, as

plr=1y.0=0) _, »lr=10=06)
ple=~1ly,0 =6o)  p(yle = =1.6 = o)
where « and y are the input and output of the channel, respectively. Let
Fo(x;6) be the distribution function of Zy under the assumption that
a “1” is transmitted. Similar to [4], we define

r(#) = —In </Re§d(F0(1:;(9))>.

For any 6 € [0min, Omax], let ay be the supremum value of R/cg
for which there exists an ensemble (A, p) of LDPC codes that has rate
R and threshold (under belief propagation decoding) higher than or
equal to #. For the BEC we have oy = 1 where ¢ is the erasure
probability [12], [10], [13], [14]. For other MBIOS channels we know
0 < ap < 1 and it is conjectured that oy = 1 for all #. Let Ry be the
supremum value of R, the rate of an ensemble (], p) of LDPC codes
with the threshold higher than or equal to ¢ satisfying A" (0)p'(1) < 1.
Shokrollahi’s flatness theorem [10] implies that, under certain condi-
tions, Re¢ < cp for the BEC. Thus, unlike the general class of LDPC
codes, the LDPC codes with linear typical minimum distance are not
capacity-achieving. Moreover, it is conjectured in [10] that the stability
condition is satisfied with equality for capacity-achieving LDPC codes
over other MBIOS channels. If this is the case, then Ry < ¢y for all
MBIOS channels. However, one of the results of this paper is that we
do not lose too much by restricting to the codes with the linear min-
imum distance constraint. We first prove two lemmas.

Zy, = 1n

Lemma 1: Let (), p) be an ensemble of LDPC codes having the
threshold ¢y, under belief propagation decoding. For 0 < 7 < A2
define A™ and p” as follows:

A (z)=Na—7T)z+ (A3 + 7').1’2 + Z Aozt !

>3
pr(a) = pla) = pia' T

Then the threshold of the ensemble (A7, p7) is greater than or equal
to Bth .
Proof: Letf < 6, and Iy be the density function of Zy. Then
the density evolution formulas for the ensemble (\, p) can be described
as [4]

P =R (QMQ1) e
Qu=T""(p(T(P-1))). )

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 13, 2008 at 14:07 from |IEEE Xplore. Restrictions apply.



294

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006

0.7

0.6 -

0.5

0.4

0.3

Fig. 1. Plot of the function p(z).

For the ensemble (A7, p"), we introduce a message-passing de-
coding algorithm named Algorithm B. In this algorithm, for any edge
e that connects a variable node v and a check node ¢, the messages are
computed in the following way in each iteration. The message from
¢ to v is computed the same way as the standard belief propagation
algorithm. If the degree of v is not equal to 3, then the message from v
to ¢ is also computed the same way as the standard belief propagation
algorithm. However, if the degree of v is equal to 3 then there are two
other edges (e1 and e3) incident with v. In this case, with probability
% = A;T’ we choose one of the edges ey and e at random.
Suppose we choose e1. Then, we compute the message from v to ¢
similar to the belief propagation algorithm except that we disregard
e in the computation. In other words, the message from v to ¢ is
computed based on the observation from the channel and the message
transmitted to v by e» in the previous iteration. Now if we obtain
the density evolution formulas for Algorithm B on the ensemble
(AT, p7), we get the same equations as (1) and (2). This shows that
when ¢ < 6., the error probability of Algorithm B on the ensemble
(A7, p7) tends to zero as the number of iteration goes to infinity.
But, based on the cycle-free-neighborhood lemma in [3], the belief
propagation algorithm has an asymptotic error rate less than or equal
to Algorithm B. Thus we conclude when § < 6y, the error probability
of the belief propagation decoding on the ensemble (A", p") tends
to zero as the number of iteration goes to infinity. Therefore, the
threshold of the ensemble (A", p™) under belief propagation decoding
is greater than or equal to 6y},. O

The intuition behind Lemma 1 is that we change degree-two
variable nodes into degree-three variable nodes without changing the
check node degree distribution. We note that the lemma states that
the threshold can only improve. The reason for this improvement is

that the rate of the code is getting worse, as more bits receive more
information.

Lemma 2: For any ensemble (A, p) of LDPC codes, we have

1
1

Proof: The function p(x) has the following properties:

p(0)=0. p(1)=1, p™(x)>0,
forz € (0,1 and0 < n <d

“max

where p(") () is the n’th derivative of the function p and d.,___ is the
largest degree of check nodes. Fig. 1 shows the plot of a typical p(x).
The tangent line to the curve at point (1, 1) is also shown in the figure.
We have

_ 1
(1)

Therefore, the area of the triangle ABC' in Fig. 1 is equal to ﬁ
Since p(x) is a convex function in [0, 1], the area of the triangle ABC'
is less than the area under the curve. That is, we have

1

1

Theorem 1: For any MBIOS channel with parameter 6 and capacity
cg, we have

1—apgco
1 (1—ageg)(em(@)—1) "
— Umecelle =D

Ry >1-—
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Fig. 2. Upper bound on the gap between the ensemble threshold and the Shannon limit of the BIAWGN channel for LDPC code ensembles with linear typical
minimum distance. The bound is obtained using the lower bound on the rate given by (4).

Proof: Let (X\,p) be an ensemble of LDPC codes with
N(0)p'(1) > 1 with the threshold #y;,. Similar to Lemma 1, de-
fine A™ and p” as follows:

AT(@) = —1a+ (A + a® + Z)\igcifl

>3

(@) = pa) = pir' !

N(0) (1) - 1
T> — 3
p'(1) @
Then by Lemma 1, the ensemble (A7, p”) has a threshold greater than
or equal to Ay, . It also satisfies A "(0)p "(1) < 1. Now we claim that
for any £ > 0, by a suitable choice of 7, the ensemble has the rate R™
satisfying

. 1-R

R 21- | _ Q=) -1 —-&
3

Assuming the above claim, and using the fact that for any 6 there exists
an ensemble (X, p) of LDPC codes with the rate arbitrary close to
agcy and threshold higher than 6, we conclude the theorem. It should
be noted that if the ensemble that achieves the rate agcy satisfies
A'(0)p' (1) < 1, then the assertion of the theorem is trivial. Thus we
may assume without loss of generality that A'(0)p'(1) > 1. It remains
to prove the claim. The rate R™ can be expressed as

_
JA
(1-R)[A
T Az

R =1

=1

where the integrals are on [0, 1]. Using the stability condition [4] and
Lemma 2, we have
AN(0)p'(1) — 1
P TP
<2(e"? - l)/p =2(1-R)("? — 1)/>\.

A(0)p'(1) -1
p'(1)

(01‘(0) _ 1)

Thus, by choosing 7 close enough to , we can ensure that

1-R

R 21- 1 _ (=R -1) -
3

€. O

It is worth noting that Theorem 1 not only gives a lower bound on the
achievable rate, but also gives a distribution meeting the lower bound.
However, we can find this distribution only if we know codes that ap-
proach the optimal rate «gco. We also note that, the basic idea behind
Theorem 1 is to start with an optimized degree distribution without any
constraint on \’'(0)p'(1). Then using Lemma 1 we transform the de-
gree distribution into one with A'(0)p'(1) < 1. Using this method we
can find an analytical lower bound on the achievable rate. However, in
practice, one may try optimize the degree distribution while imposing
X'(0)p'(1) < 1 as a constraint.

For the BIAWGN channel we let # be o, the variance of noise, and
the lower bound becomes

1—ascs

R, >1-

E— “)
(l—agcy)(e20'2 —1)
1 - +
Using the lower bound on the rate, we can find an upper bound on
the gap between the ensemble threshold and the Shannon limit for
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the BIAWGN channels. Fig. 2 shows this upper bound for the BI-
AWGN channel assuming oy = o, = 1 forany o € [0, ) (i.e., as-
suming that LDPC codes are capacity-achieving over BIAWGN chan-
nels). Therefore, as shown in the figure, by restricting to LDPC codes
with the linear minimum distance property, we lose at most 1.1 dB. It
is worth noting that in storage systems we usually use high-rate codes
[1]. Examining Fig. 2 reveals that the gap is very small at these rates.
For example, the gap is less than .4 dB for the rate R = .9. This is
important from the practical point of view.

For the binary symmetric channel (BSC) channel, we let # be the
crossover probability p. Thus, using Theorem 1, the lower bound be-
comes

1—apep
" 1 1"
(I*C‘pcp)(Q (=) 1)

3

R,>1-—

(&)

Fig. 3 shows this lower bound for the BSC assuming ap = a;, = 1
for any p € [0, 1) (i.e., assuming LDPC codes are capacity-achieving
over the BSC). The figure suggests that the rate loss due to the linear
minimum distance property is small.

For the binary erasure channel (BEC), it is possible to improve the
bound given by Theorem 1. In the following, we exploit the developed
theory on the capacity-achieving sequences to obtain a tighter bound.
Furthermore, we can explicitly find sequences of LDPC codes meeting
this lower bound.

Theorem 2: For any BEC with erasure probability 6 we have

5(1 = 6)

\%

Proof: For any BEC with erasure probability 6, we construct
a sequence of LDPC code ensembles with linear typical minimum

Lower bound on the achievable rate for LDPC codes with linear minimum distance on the BSC.

distance and threshold greater than or equal to 6 whose rates approach
5(61_;56). Our construction is based on right-regular LDPC codes.
Choose R < 1 — 6. As it is shown in [13] and [14], there exists a
sequence {(An, pn) oz of right-regular LDPC codes of rate R and

thresholds 6., 1 as follows:

An (l) - Zki,nwiil
pn(x) = 2"

lim a, = oo
n——~oo

lim 6, =1- R.

n—- oo

Using the flatness theorem, we obtain

lim Az nap
n—aoo

1

1-R’

lm  Ag.ph (1) =

Now we construct the sequence { (A", p;.") }a; of LDPC code en-
sembles with thresholds 6,7 and rates R;," as follows:

A (@)= At
=2 —7a)x+ (Aam + 1)’ + Z Xinz' !

>3
pr’(x) = pn(r) =
_ )\Z,TI(J/IL -1 1

= an + n(an, +1)°

Ay

First by Lemma 1, we have ﬁ:ﬁ > 0n tn- Since

lim 6, =1-R>0, for some N > 0

n
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Fig. 4. Lower bound on the achievable rate for LDPC codes with linear minimum distance on the BEC.

we conclude
n>N= 67 >6.

We also note that

0 S Tn S Az)n

A )Ty =1 — — g
Z,npn ( ) n(an+1) <
‘ , 1

Jm malan 1) =35 — 1.

The rate R, of the ensemble (A, p;™) is given by

1-R

R;n — 1 _ — .
- 2(an + 1)(1 - R)

Thus, we obtain

1-R
(Zr-D0-R)"
R

lim R;» =1-

n—o0

If we let R tend to 1 — 6, we get R;* — 5(61;56) , which concludes

the theorem .

Fig. 4 shows this lower bound for the BEC. We note that the lower
bound on the achievable rate is very close to the capacity. Since some
capacity-achieving right-regular sequences are known [13] and [14],
we can explicitly construct the sequences of LDPC codes satisfying
the bound given by Theorem 2. It is also easy to see that applying the
above procedure to the Tornado sequence [12] will result in the same
bound. More generally, we have the following corollary.

Corollary 1: If{(Mn, pn)}5Z is a capacity-achieving sequence of

rate X, and b = limsup,, fQ\ , then applying the procedure in
the proof of Theorem 2, we can find a sequence of LDPC codes sat-
isfying the linear-minimum-distance property having rates R;™ such

that

- 66
R — 11— 76—(1—15)5'

We now show that we can tighten the lower bound of Theorem 2 for
the BEC by including the ensemble of punctured LDPC codes. This
can be done by choosing an optimized parent LDPC code that has the
linear minimum distance property. Since there is no loss of % due to
puncturing [15], we can obtain higher rate LDPC codes with the linear
distance property if the puncturing fraction ¢ is less than I defined
in Theorem 3. It can be concluded that the resulting bound on % can
improve Theorem 2.

Let us define the performance of any ensemble C of LDPC codes
over the erasure channel by

R_ R
C 11— 6w

Ne =

where 6.1, is the threshold of the code under the standard iterative de-
coding over the BEC. For v € (0, 1), let b,, be the asymptotic average
distance distribution defined in [16]. Then, we have the following the-
orem.

Theorem 3: Let (A, p) be an ensemble of LDPC codes of rate R
with typical relative minimum distance v* (i.e., dmin > v*n with high
probability for the expurgated ensemble, where n is the block length)
and (B = ﬁ = 150. Let

P =sup{p:b, +vin(p) <0, Vv € [v",1]}. (6)
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Then for rates r satistying R < r < %, there exist punctured LDPC
codes whose performance over the erasure channel satisfies 7 > 1o and
has linear typical minimum distance.

Proof: Letq < P =sup{p:b,+vin(p) <0, Vve[v* 1]}
We perform the following experiment. We choose a code from the ex-
purgated ensemble (A, p) at random. Let &; be the ith column of the
corresponding m X n parity-check matrix H. We then puncture each
bit in the codeword independently with probability ¢ [17]. Puncturing a
bit in the codeword can be viewed as erasing the corresponding column
of the matrix. Let A C {1,2,...,n} with [A| =1 =n,0< v < 1,
and E 4 be the event that 7, _ , h; = 0. Let also @ 4 be the number of
erased columns in the set A. Then for 0 < ¢ < ~, we have

Pr{Qa 2 (v = On}

1 1- ¢ 1= ¢ *(1*%)7”
2T (1- £ —q) n(v—of—;[ 1 }
— A5
o {(1 l‘])’)]
G

where we used [18, Theorem 1.1]. If pg4 is the probability that the min-
imum distance d is sublinear, then p4 is upper-bounded by

>

AC{1,2,...,n},|A|=yn>v*

o(1)+ Pr{EA}Pr{Qa > (v — O)n}.

Let ¢, = sup{b, + vIn(q),» € [v*,1]}. Since ¢ < P, we have
¢s < 0. Applying (7), and letting ¢ tend to zero we obtain

n — oo. O

pd:o(l)—l—()(c%)e 0 as

Using the (3, 6) regular ensemble as an example, we find that for
the rates 0.5 < r < 0.8469, there exist punctured LDPC codes with
n > 0.8763 and linear typical minimum distance. By finding good
degree distributions we can tighten the lower bound on the achievable
rates using Theorem 3.

As we mentioned, for ordinary LDPC code ensembles, the condi-
tions for linear typical minimum distance and linear typical minimum
stopping set size are the same. However, for a punctured ensemble this
may not be the case. Thus, it would be desirable to obtain similar re-
sults to Theorem 3 for the codes with linear minimum stopping set size,
rather than the linear minimum distance. In fact, this can be done by
replacing the b,, function with the stopping set distribution of the en-
semble found in [7].

III. UPPER BOUNDS ON THE ACHIEVABLE RATES

In this section we provide upper bounds on the achievable rates using
LDPC codes with linear typical minimum distance over the BEC. In
[11], authors derived upper bounds on the achievable rates of LDPC
codes over the BEC given their right-degree distribution. We derive
similar bounds for LDPC codes with linear minimum distance. By
comparing our bounds with the bounds in [11], we get an estimate of
the rate loss due to the linear minimum distance constraint. As in [11],
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it suffices to consider only the case §p'(1) > 1, where § is the channel
erasure probability.

Theorem 4: Let (X, p) be an ensemble of LDPC codes with fixed
A (0) = Ay and p'(1), whose threshold over the BEC is higher than or
equal to 6. Then, we have

8 (1—-X2p'(1)6)°
T S = |

Rsl-qz (1— 6827

(M
Proof: For a given right-degree distribution function p(x) we de-
fine y,(x) as

y(r) = 1_%(1_1)

As it is shown in [11], we have

1 1 1
R T LA

where the integrals are taken over the interval [0, 1]. Let ¢(x) be the
tangent line to y(z) at the origin. Moreover, we define

a(x) = Mg + (1 — Ag)a’.

Then we have a(x) > A(x) for € [0, 1]. Computing the shaded area

in Fig. 5 and applying Lemma 2, we obtain the bound in the theorem.

(]

Now if we consider the ensemble (A, p) of LDPC codes having the

linear minimum distance property, we would have p’(1) < /\1—) Thus,
we have the followingcorollary. .

Corollary 2: For any ensemble of LDPC codes with \'(0) = X2, a
linear typical minimum distance, and a threshold over the BEC that is
higher than or equal to §, we have

8 (1=6)°\3
R<1- 1+ o= 5

We note that this inequality is similar to the bound given by [13]
and the zero-order bound of [11]; however, it has an extra term which
is due to the linear-minimum distance property. Now, as in [11f], we
consider the ensemble of LDPC codes with a fixed given right degree
distribution and obtain an upper bound on the achievable rate.

Theorem 5: Consider an ensemble (), p) of LDPC codes with
threshold higher than § over the BEC that has a linear typical minimum
distance. Define

9

b(z) = x4+ (1 JE (8)

L L
p'(1) p'(1)

Let ¢(x) = min{y,(x),b(x)} in [0, 1]. Let also f,(x) = y,(x) —
c(x). Then, we have

o
R<1— ————
ST

where the integrals are taken over the interval [0, 1].

Proof: The condition \'(0)p'(1) < 1 implies that b(z) > a(x).
Thus b(x) > A(x). Computing the area between y,(x) and b(x) con-
cludes the theorem. O
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Fig. 5. Upper bound on the achievable rate for the LDPC codes with the linear minimum distance property.
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Fig. 6. Comparison between the upper bound on the achievable rate for the LDPC codes with the linear minimum distance property and the bound for the

unconstrained codes.

Similar to the arguments in the second-order bound of [11], the
bound in Theorem 5 can be improved. However, to compare the
performance of the code ensembles having the linear typical minimum
distance property with ones with no restriction, it suffices to work with

this simple bound. Fig. 6 shows the upper bound of Theorem 5 and the
second-order bound of [11] for right-regular codes over the BEC with
erasure probability 6 = 0.15. As it is shown in [11], the second-order
bound is tight, at least for our example. Thus, the difference between
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the two curves shows the rate loss because of the linear minimum
distance constraint.

In the end, we would like to emphasize that all the results in the paper
can be easily generalized for the condition ' (0)p'(1) < a, where a is
a given constant. For example, if we want to avoid degree-two variable
nodes completely, we should have Ao = 0 (i.e., @ = 0, in this case
there is no need for expurgation since the ensemble has linear minimum
distance with high probability). Thus, using bounds similar to the ones
in the paper we can estimate the achievable rates.

IV. CoNCLUSION

We derived lower and upper bounds on the achievable rates of the
iterative decoding of LDPC code ensembles having linear typical min-
imum distance and linear typical minimum stopping set. These bounds
were obtained for MBIOS channels and were improved for the BEC.
We also gave a design methodology to construct codes meeting the
lower bound for the binary erasure channel. We showed that practically
the rates of the linear-minimum-distance codes are close enough to the
Shannon limit. For example, on the BIAWGN channel, there is at most
1.1-dB loss due to the linear minimum distance property. Moreover, the
loss is much smaller at higher rates. This result implies that it is possible
to design codes with low error floors whose rates are close to capacity.
On the other hand, our results on the upper bound for the BEC indi-
cate that if the average right degree is not large enough, the loss can be
considerable. This was shown by comparing the upper bound derived
in this correspondence with a known tight bound on the rate of LDPC
codes.

REFERENCES

[1] H. Pishro-Nik, N. Rahnavard, J. Ha, F. Fekri, and A. Adibi, “Low-den-
sity parity-check codes for volume holographic memory systems,” Appl.
Opt., vol. 42, pp. 861-870, 2003.

[2] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of
irregular LDPC codes with low error floor,” in Proc. IEEE Int. Conf.
Communications, vol. 5, Anchorage, AK, May 2003, pp. 3125-3129.

[3] T.J.Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599-618, Feb. 2001.

[4] T.J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, pp. 619-637, 2001.

[5]1 C. Di, T. Richardson, and R. Urbanke, “Weight distributions: How de-
viant can you be?,” in Proc. IEEE Int. Symp. Information Theory, Wash-
ington, DC, Jun./Jul. 2001, p. 50.

[6] C.Di,D. Proietti, I. E. Telatar, T. Richardson, and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1570-1579, Jun.
2002.

[7]1 A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribution
of LDPC code ensembles,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp.
929-953, Mar. 2005.

[8] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check
codes on the binary erasure channel,” IEEE Trans. Inf. Theory, vol. 50,
no. 3, pp. 439454, Mar. 2004.

[9] D. Burshtein and G. Miller, “Asymptotic enumeration method for

analyzing LDPC codes,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp.

1115-1131, Jun. 2004.

M. A. Shokrollahi, Codes, Systems, and Graphical Models. New

York: Springer-Verlag, 2001, ch. Capacity-Achieving Sequences, pp.

153-166.

O. Barak, D. Burshtein, and M. Feder, “Bounds on achievable rates of

LDPC codes used over the binary erasure channel,” IEEE Trans. Inf..

Theory, vol. 50, no. 10, pp. 2483-2492, Oct. 2004.

M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient

erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.

569-584, Feb. 2001.

[10]

[11]

[12]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 1, JANUARY 2006

[13] M. A. Shokrollahi, “New sequences of linear time erasure codes
approaching the channel capacity,” in Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, Proc. 13th Int. Symp.
(AAECC-13) (Lecture Notes in Computer Science). Berlin, Germany:
Springer-Verlag, 1999, vol. 1719.

P. Oswald and M. A. Shokrollahi, “Capacity-achieving sequences for
the erasure channel,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp.
3017-3028, Dec. 2002.

H. Pishro-Nik and F. Fekri, “Results on punctured LDPC codes,” in Proc.
IEEE Information Theory Workshop, San Antonio, TX, Oct. 2004, pp.
215-219.

S. Litsyn and V. Shevelev, “On ensembles of low-density parity-check
codes: Asymptotic distance distributions,” IEEE Trans. Inf. Theory, vol.
48, no. 4, pp. 887-908, Apr. 2002.

J. Ha and S. McLaughlin, “Optimal puncturing of low-density parity-
check codes,” in Proc. IEEE Int. Conf. Communications, vol. 5, An-
chorage, AK, 2003, pp. 3110-31114.

B. Bollobds, Random Graphs, 2nd ed. Cambridge, U.K.: Cambridge
Univ. Press, 2001.

[14]

[15]

[16]

(17]

[18]

Timing Metrics for Constrained Codes

Ara Patapoutian, Member, IEEE

Abstract—The effect of data constraints on synchronization is quanti-
fied by the use of three simple timing metrics that respectively measure
the ensemble average, the worst, and the best timing qualities attainable
with a given binary pulse amplitude modulation (PAM) waveform. These
timing metrics are computed with the help of a graph which represents the
constrained PAM system. The timing metrics of the (0, k) constraint are
studied in detail for selected PAM pulses.

Index Terms—Constrained coding, Cramer—Rao bound, Fisher informa-
tion, magnetic recording, run-length-limited systems, shortest route, syn-
chronization, timing-error detector.

1. INTRODUCTION

A common approach to improve the performance of a symbol syn-
chronizer is to impose a set of constraints on the data sequence that
is transmitted or stored. The (d, k) constraint is such an example that
limits the number of consecutive zeros in a binary data sequence to
d > 0 atleast and at most ¥ > d consecutive bits.! In the last 50 years,
an enormous amount of research has been devoted to the understanding
of constrained sequences and their constructions [1]-[4]. In parallel to
these efforts, timing synchronization was interpreted and represented
as a parameter estimation problem and bounds on its performance were
derived, such as the Cramer—Rao lower bound [5]-[8]. However, the
two areas of constrained coding and symbol synchronization have not
interacted much, with coding theorists taking a (d, k) constraint as their
starting point while researchers in the theory of synchronization as-
suming the data bits to be uncorrelated. Hence, little effort, if any, has
been devoted in quantifying the synchronization improvements due to
a constraint, a topic that we will discuss in this correspondence. The k&
parameter of a (d, k) constraint, for example, trades off timing quality
with code-rate loss. With the availability of a timing metric, the guess-
work in determining the & parameter can be minimized.
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