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Abstract—This paper investigates decoding of low-density
parity-check (LDPC) codes over the binary erasure channel
(BEC). We study the iterative and maximum-likelihood (ML)
decoding of LDPC codes on this channel. We derive bounds on
the ML decoding of LDPC codes on the BEC. We then present an
improved decoding algorithm. The proposed algorithm has almost
the same complexity as the standard iterative decoding. However,
it has better performance. Simulations show that we can decrease
the error rate by several orders of magnitude using the proposed
algorithm. We also provide some graph-theoretic properties of
different decoding algorithms of LDPC codes over the BEC which
we think are useful to better understand the LDPC decoding
methods, in particular, for finite-length codes.

Index Terms—Bipartite graphs, erasure channel, improved de-
coding, iterative decoding, low-density parity-check (LDPC) codes,
maximum-likelihood (ML) decoding, performance bound.

I. INTRODUCTION

I N this paper we study decoding of low-density parity-check
(LDPC) codes when they are used over the binary erasure

channel (BEC). The application of LDPC codes over BEC has
been studied extensively [1]–[5]. When the message-passing al-
gorithm is applied to an LDPC code over the BEC, it results in a
very fast decoding algorithm [1]. However, the performance of
this decoder is inferior to that of the maximum-likelihood (ML)
decoder. Here, we derive some bounds on the performance of
the ML decoder over the BEC. Then, we propose a technique to
improve the performance of the message-passing decoder while
keeping the speed of the decoding fast.

Asymptotic analysis of the performance of LDPC codes has
been done successfully [6], [1], [7]. Capacity-achieving degree
distributions for the binary erasure channel have been intro-
duced in [1], [4], [3], and [5]. Although using the asymptotic
analysis we can find good degree distributions, generating good
finite-length LDPC codes has always been a challenge. Finite-
length analysis of LDPC codes over the BEC was accomplished
in [2]. In that paper, authors also proposed to use finite-length
analysis in order to find good finite-length codes for the BEC.
Here, we take a different approach. Instead of trying to find
good LDPC codes we improve the decoding of the existing
codes. The combination of the optimized codes using the fi-
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nite-length analysis and the improved decoding algorithm that
we present in this paper can result in good coding schemes over
the BEC. Although the method we propose can be applied to
any code length, its impact is more important for finite-length
codes because for large values of code lengths there exist codes
that achieve the capacity of the BEC. Thus, here we concen-
trate more on the moderate-length and short-length codes. More
specifically, we consider the lengths that are less than or equal
to . It is worth noting that the algorithm we present here for
the BEC can be generalized for other memoryless binary-input
output-symmetric (MBIOS) channels [8].

Throughout the paper, we assume the following terminology.
By a graph we mean a simple graph, i.e., a graph with no loops
(edges joining a vertex to itself) and no multiple edges (several
edges joining the same two vertices). However, a multigraph
may have loops or multiple edges. Let be a subset of the ver-
tices in the graph . shows the set of neighbors of in

. Let be a subgraph of such that its vertex set is . We
say is induced by if contains all edges of that join two
vertices in . Let be an edge in the graph . When we
say we contract we mean that we identify the vertices and

and remove all the resulting loops. Note that unlike the usual
definition of contraction, we do not remove the duplicate edges
resulting from identifying and . Let be a subgraph of . If
we contract all the edges in , we say that we have contracted

into a vertex. Let be a bipartite multigraph with bipartition
and , For any , we define as the

graph induced by the vertices in and their neighbors. For a set
, is the set of all subsets of .

II. BOUNDS ON THE PERFORMANCE OF ML DECODING

ML decoding has the best possible bit-error rate (BER).
Since we are concerned with improving the iterative decoding
of LDPC codes, ML decoding gives us the best possible
improvement we may get. Thus, it is useful to study the ML
decoder and its properties. Some properties of ML decoding
of LDPC codes have been studied before, see, for examples,
[9]–[11] and [2]. We first consider the asymptotic capacity
of LDPC codes over the BEC under ML decoding. LDPC
codes can be defined by their Tanner graphs [12]. Consider the
ensemble of bipartite graphs defined by their degree
distributions. We define the ML capacity (threshold) of the
ensemble as the supremum value of the parameter such that
a randomly chosen code from the ensemble can achieve an
arbitrarily small BER for sufficiently large almost surely over
a BEC with erasure probability . There is no concentration
result known for ML decoding of LDPC codes over general
MBIOS channels, however, the ML capacity is well defined
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and is always greater than or equal to the threshold of the
iterative decoding. With the above definition, we can find
simple lower and upper bounds on the ML capacity of an
ensemble. Since these upper and lower bounds are very close
to each other (they are practically the same at least for regular
codes), they provide an estimate of the ML capacity of the
codes. A simple lower bound can be found using the union
bound given in [2] and the asymptotic distance distributions
of the regular LDPC codes derived in [13]. Note that in [14],
the authors have independently derived the lower bound in the
context of the error exponent of ML decoding. Let be
the ensemble of the regular LDPC codes with variable nodes
and check nodes of degrees and , respectively.

Theorem 1: Let be the only positive root of

(1)

Define as

if is even or

otherwise.
(2)

Then the ML capacity of the ensemble is
lower-bounded by the supremum value of such that

for all

Proof: Let be the th column of an parity-check
matrix . Suppose a codeword is transmitted over a BEC
channel with the erasure probability and let denote the set
of variable nodes that correspond to the erased bits. Further,
assume that , where is the lower bound for the
ML capacity given by the theorem. Let be the event that

. We have for all . The ML
decoder can decode the received word correctly if the columns
of that corresponds to the erased bits are independent. Let
be the set of indexes of the erased bits. We define

(3)

for . Let be a random variable defined by
, where shows the cardinality of a set. The typical

minimum distance of LDPC codes from with
increases linearly with the code length. More specifically, for
the ensemble with there exists
such that the probability that the minimum distance of a ran-
domly chosen code from the ensemble is less than or equal to

converges to zero as [15], [16]. Thus, we
conclude that

(4)

Let be the probability that randomly chosen columns of
sum to zero. Therefore,

(5)

As it is shown in [13]

Therefore,

approaches as goes to zero. Let

Using , it is easy to show that for sufficiently small we
have . Thus,

(6)

Now define . From the preceding discus-
sion we have

as

(7)
Since , using and the Markov
inequality we conclude that . Since

we obtain . Combining this with (4)
we conclude that the ML decoder can decode the received word
successfully almost always.

Let be the lower bound for the ML capacity given by The-
orem 1. As an example, of the ensemble is equal
to while the capacity under message passing (the
threshold found using density evolution) is . Since
we always use LDPC codes below their threshold, we conclude
that for sufficiently large code lengths, the ML decoder is likely
to decode the received word even though the message-passing
decoder fails.

Using the distance distributions of the irregular codes, it is
possible to generalize the preceding argument for the irregular
codes. The distance distributions of irregular codes have been
found by several authors [17], [18], and [14]. As shown in [16],
if the minimum distance of the expurgated en-
semble increases linearly with the code length. Thus, we find
the following bound for the expurgated ensemble.

Theorem 2: Consider the ensemble that satisfies
.1 Let be the average distance

1As commented by one of the reviewers, the condition � � (1) < 1 can be
relaxed.
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distribution as defined in [13]. Then the ML capacity of the ex-
purgated ensemble is lower-bounded by the supremum
value of such that

for all .

It is useful to find an upper bound for the ML capacity. The
bound would obviously be an upper bound for the iterative de-
coder as well. First, using Markov’s inequality, the following
lemma can be easily obtained.

Lemma 1: Let be a constant. Let also be a positive
integer such that for all , the sequence of random vari-
ables , where satisfies .
Then, for all there exist and such that for all

we have .

Let be the fraction of variable nodes of degree and be
the fraction of check nodes of degree . Let us define

and

By a simple observation, we can find the following upper bound
for the capacity of LDPC codes over the BEC.

Theorem 3: To have arbitrarily small bit error probability
under ML decoding on a BEC with erasure probability , we
must have

(8)

Proof: Let us construct a matrix from the parity matrix
by selecting each column of with probability in-

dependently and replacing it with the zero vector. The nonzero
columns of correspond to the erased bits. If we pick a row
from at random, this row is equal to zero in with proba-
bility . Therefore, on the average, we have
zero rows in . We now prove the following lemma.

Lemma 2: If we peak a random integer between and ,
then with probability at least we have
at least two rows in whose th element is and all their other
elements are .

Proof: Call the required probability . For clarity of ex-
position, consider the regular ensemble . Let be the
event that the th column in be nonzero, thus, .
There are rows in whose th element is
one. Let be the set consisting of these rows. Thus, we have

. Let be the event that only the th element of
the th row in is equal to . Since , with high prob-
ability the positions of the ’s in all of the rows in do not
overlap except for the th position. Therefore, given that the th
column is preserved in , the events are independent.
Since the probability of any event is less than or equal to one,
to obtain it suffices to consider only the case when ’s

are independent and add an to the result. Now, obviously,
we have . Considering the above
discussion it is easy to show that

(9)

For irregular codes using the inequality

(10)
for , we obtain

(11)

Thus, we showed that if we pick a random integer between
and , with probability at least we

have at least two rows in whose th element is and all the
other elements are . Any such reduces the rank of by at
least one. Therefore, if we define , we have

(12)

By defining

(13)

we have

(14)

Now we show that for an arbitrarily small error probability we
must have . Suppose . As previously shown

Let be a constant. Then, by Lemma 1, there
exist and such that for all we have

. Therefore, with a strictly positive probability
that is independent of we have . Hence,
the decoder can find the value of at most erasures.
Consequently, at least erasures remain after the
decoding. This implies that the overall error probability of the
decoder is at least .Therefore, for reliable commu-
nication we must have . Thus,

(15)

This completes the proof of the theorem.

In the preceding argument if we just consider the rows that are
zero in and omit the discussion about the rows with weight
one, we will get a slightly weaker bound as

(16)
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Fig. 1. Lower and upper bounds for the ML capacity of g(3; d ).

This is the same bound given in [4] for the iterative decoding
of the LDPC codes. Note that in [4], the bound is derived for
the iterative decoding but the preceding discussion shows that
the bound is also valid for ML decoding. It is also noteworthy
that examining the proof of Theorem 3, we find that the upper
bound given by (16) is valid for any individual code in the en-
semble while the one given in (8) is valid for typical codes.
This is because we made use of the cycle-free neighborhood as-
sumption. As an example, for the ensemble , Theorem 3
gives the upper bound while (16) provides a slightly
weaker bound . Furthermore, the authors in [19] 2

have also obtained the upper bound , that is, again
slightly weaker than the one given by Theorem 3. However, the
bound in [19] was proven for the individual codes.

Figs. 1 and 2 show the upper bound and the lower bound
that are given by Theorems 1 and 3 for and ,
respectively. As suggested by the figures, the two bounds are
practically the same. As an example for irregular graphs, we
consider the ensemble of LDPC codes defined by

(17)
Using Theorems 2 and 3, we find that the ML capacity for the
given ensemble satisfies . It is worth
noting that for the calculation of the lower bound we used [17]
to find the weight spectrum of the code. Again we conclude that
the bounds are sufficiently tight. Therefore, we can approximate
the ML capacity from the given bounds. Note that Theorem 3

2This paper appeared after the review of our manuscript in IEEE Transactions
on Information Theory.

gives an upper bound that can be easily computed for any degree
distributions. However, for the lower bound we need to have the
distance distribution of the code.

Since we are interested in the finite-length LDPC codes, it
is desirable to choose the codes that satisfy . This
is because as shown in [16] and [20], if we have ,
then the minimum stopping set and the minimum distance will
be sublinear with high probability and, therefore, we will have
small stopping sets in the graph which is not desirable for fi-
nite-length codes. In the above definition, we defined the ML
threshold for the bit erasure probability. It is mentioned in [2]
that the threshold for bit erasure probability and block erasure
probability may be different. Any upper bound for the threshold
for bit erasure probability is an upper bound for the threshold for
block erasure probability as well. Therefore, the upper bound in
Theorem 3 is also an upper bound for the threshold for the block
erasure probability. In the ensembles for which , the
thresholds for the block erasure probability and the bit erasure
probability are the same. This is because for these ensembles
there is no codeword with weight less than or equal to
with a high probability. Therefore, if the ML decoder cannot
decode the received word, there will be at least era-
sures that are left after the decoding is performed. Thus, the
BER is at least times the block error rate. The same
argument works for the iterative decoder if we replace the min-
imum distance by the size of the minimum stopping set. Con-
sequently, the lower bounds in Theorems 1 and 2 are also valid
for the threshold for block erasure probability. In fact, although
we stated the theorem for the bit error probability threshold, in
the proof we showed that the block error rate goes to zero.
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Fig. 2. Lower and upper bounds for the ML capacity of g(4; d ).

III. IMPROVING THE ITERATIVE DECODING

A. Description of Algorithms

The iterative decoding of LDPC codes over the BEC is much
faster than the ML decoding. However, it has higher error proba-
bility. Our aim in this section is to decrease the error probability
while keeping the decoding fast. We mostly focus on moderate
and short-length codes. We use the message-passing algorithm
with some modifications. Let
and be the set of variable and
check nodes, respectively. A stopping set is defined in [2] as
a subset of such that all neighbors of are connected to
at least twice. Let be the subset of the set of variable nodes
that is erased by the channel. It is proved in [2] that the iterative
decoding fails if and only if contains a stopping set. In [2] it
is also shown that the set of the remaining erasures when the
decoder stops is equal to the unique maximal stopping set of .

Let be the average time required for the standard itera-
tive decoding of an LDPC code of length when it is used over
a BEC with the erasure probability . Let be an improved
decoding method for the same code when used over the same
channel. Let be the time that Algorithm B needs to
decode a received word and let be the average time of
the decoding of the code using Algorithm B. We want to have

(18)

(19)

where is a small constant close to zero and is a sufficiently
small constant. Our simulations show that the algorithm we pro-

pose in this section (Algorithm C) will achieve the above in-
equalities with and .

Theoretically, any LDPC code has a threshold such that
if then the error probability of the standard iterative
decoding is bounded away from zero by a strictly positive con-
stant. On the other hand, if , an arbitrarily small error
probability is attainable if , the length of the code, is large
enough [6], [1]. However, for finite-length codes the situation
is deferent. First, we may get an error floor and cannot decrease
the error probability as we want. Moreover, to decrease the error
probability, for example from to , we need to decrease

by a considerable amount. Here we propose a method for de-
coding LDPC codes over BEC that has the same complexity as
the message-passing decoder. However, its error rate is consid-
erably smaller.

The key idea is the following observation. Consider a BEC
with an erasure probability and an LDPC code of length
that has a small enough error probability. If the message-passing
decoder fails to decode a received word completely, then there
exists a few (usually less than or equal to 3 bits) undecoded bits
that if their values are exposed to the decoder, then the decoder
can finish the decoding successfully. Note that this is true only
when the BER is small enough (for example, less than ).
Simulations and intuitive arguments strongly confirm the above
statement for different LDPC codes.

Let us recall the message passing decoding of LDPC codes
over the BEC [1]. The algorithm can be stated as follows.

• For all unlabeled check nodes do the following. If the values
of all but one of the variable nodes connected to the check
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node are known, set the missing variable bit to the XOR
of the other variable nodes and label that check node ’fin-
ished’. If all the variable nodes connected to the check node
are known label the check node as finished.The procedure is
done sequentially, i.e, one check node at a time.

• Continue the above procedure until all check nodes are la-
beled as finished or the decoding cannot continue further.

We want to improve the above algorithm. Let us call the above
algorithm A and the first improved Algorithm B. For the erasure
patterns that Algorithm A finishes the decoding successfully,
both algorithms are the same. The difference between the two
algorithms is when Algorithm A fails to complete the decoding
of a received codeword. In this case, Algorithm B continues the
decoding as following. It chooses one of the unknown variable
nodes (we will discuss how to choose this variable node) and
guesses its value (for example, by setting its value to zero). Now
it continues as follows.

• For all unlabeled check nodes do the following: If the value
of all but one of the variable nodes connected to the check
node are known, set the missing variable bit to the XOR of the
other variable nodes and label it as a finished check node. If
all the variable nodes connected to the check node are known
then if the check node is satisfied label that check node “fin-
ished,” otherwise label it “contradicted.” The procedure is
done sequentially, i.e, one check node at a time.

• Continue the above procedure until all check nodes are la-
beled or the decoding cannot continue further.

Once the above procedure is finished, if all of the check nodes
are labeled and none of them is labeled “contradicted,” the de-
coder outputs the resulting word as the decoded word. If all of
the check nodes are labeled but some of them are labeled “con-
tradicted,” then it changes the value of , the guessed vari-
able node, and repeats the decoding from there. This time the
decoding finishes successfully because we have found the ac-
tual value of . But if the decoding stops again (i.e., some
of the check nodes are not labeled) we have to choose another
unknown variable node and guess its value to continue the
decoding. Again, if some check nodes are labeled as “contra-
dicted,” we have to go back and try other values for and

. Obviously, Algorithm B is efficient only if the number of
guesses is very small. Fortunately, simulation results show that
even if we limit the number of guesses to a very small number,
we can decrease the error rate by a considerable amount. Thus,
in practice we limit the number of guesses to a maximum value

. If after guesses the decoding does not finish, we
claim a decoding failure. In fact, simulations show that with the
right choices of the variable nodes to guess, usually the decoding
finishes successfully by one or two guessed variable nodes. Note
that Algorithm B does not need any extra computation other than
the usual iterative decoding. Thus, the decoding is very fast.

Now let us consider the problem of choosing the variable
nodes ’s that we need to guess their values. One easy method
is to choose them from the set of variable nodes with the highest
degree. Note that a variable node of degree is present in equa-
tions. Therefore, when we assume that its value is known, any
parity-check equation that has only one unknown variable node

other than the guessed variable node will free a variable node.
Therefore, intuitively we expect that guessing a high-degree
variable node results in freeing more unknown variable nodes.
However, we can still improve our method of choosing ’s as
follows. First, we choose a high-degree unknown variable node

and examine its neighborhood. If guessing frees at least
unknown variable nodes for a suitable constant , we accept
as one of our guesses. Otherwise, we choose another high-de-
gree variable node. In our simulations we chose the value of
between and .

Algorithm B has two problems. First, the complexity of the
algorithm grows exponentially with the number of guesses. Al-
though the number of guesses is very small, this is undesirable.
In fact, if the complexity of the algorithm increased linearly with
the number of guesses we could increase and decrease the
error probability substantially. Second, it is possible that the al-
gorithm declares a wrong word as the output of the decoding.
However, this can happen only if the ML decoder cannot decode
the corresponding codeword. Since the ML decoder has a very
low error probability, this happens with a very small probability.
We now propose Algorithm C that copes with both problems.

Let be the first variable node that we guess. Let be the
value of . From now on, any variable node whose value is
determined by the algorithm can be represented in one of the
following forms: , , , or . In general, if the
algorithm makes guesses, any variable node that is determined
after the first guess can be represented as

(20)

where . Therefore, any variable node that is deter-
mined after the first guess can be represented by .
After the first guess, Algorithm C continues as follows.

• For all unlabeled check nodes do the following: If the values
of all but one of the variable nodes that are connected to the
check node are known, compute the value of
for the missing bit and label that check node as “finished.”
If all the variable nodes that are connected to the check node
are known then label that check node as a “basic equation.”
The procedure is done sequentially, i.e, one check node at a
time.

• Continue the above procedure until all check nodes are la-
beled or the decoding cannot continue further.

If necessary, Algorithm C makes other guesses. If after the
maximum possible number of guesses some of the variable
nodes are unlabeled, then we claim decoding failure. Suppose
that after guesses all the check nodes are labeled.
Now we have the following.

Lemma 3: The received word is ML decodable if and only if
the set of basic equations have a unique solution.

Proof: By the labeling procedure, any choice for the
values of satisfy all the parity-check equations
that are labeled “finished.” Therefore, decoding is possible if
and only if a unique choice of satisfies all the
basic equations.
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Therefore, after all the check nodes are labeled, we examine
the set of basic equations. If they have a unique solution, we
determine and then we find the values of all the
variable nodes. Otherwise, we claim decoding failure. Note that
since is a very small number, solving the basic equations is a
very simple task and can be done quickly. In fact, it is easy to
show that Algorithm C has complexity . Sometimes,
although the set of basic equations does not have a unique solu-
tion, they still determine a subset of uniquely.
In this case, we can replace the values of these variable nodes in
the expressions for unknown variable nodes and, consequently,
we may be able to recover some of the bits. This approach is
specifically useful when we deal with a code that has error floor
due to the small minimum distance. Note that the procedure of
finding a variable node for guessing in Algorithm C is the same
as Algorithm B. The following lemma determines the number
of basic equations.

Lemma 4: Let be the subset of the set of variable nodes that
are erased by the channel and be the unique maximal stopping
set in . Then the number of basic equations is equal to

(21)

Proof: At the beginning of the guessing process there are
unlabeled check nodes. Any of these check nodes is ei-

ther a basic check node or determines exactly one variable node.
Since there are variable nodes that are determined by the
check nodes, check nodes are labeled as “basic
equations.”

Note that Algorithm C is equivalent to the ML decoder if we
do not limit the maximum number of guesses . In fact, in
this case Algorithm C is just an efficient implementation of the
ML decoder. It is worth noting that the set of basic equations
depends on the choice of variable nodes we guess.

An alternative method is to perform ML decoding on the
remaining erasures whenever iterative decoding fails. This de-
coding is much faster than the ordinary ML decoding and has
exactly the same performance as ML decoding. However, it has
two problems. First, it does not satisfy the requirement in (19),
because generally ML decoding of LDPC codes over the BEC
has time complexity . Second, the ordinary ML decoding
of LDPC codes requires space while Algorithms A, B,
and C require space.

B. Bounds on the Number of Guesses in Algorithms B and C

Here we study the required number of guesses by Algorithms
B and C based on the properties of the Tanner graph of the code.
Instead of providing asymptotic results, we focus on graph-the-
oretic results that we think are useful in finite-length analysis.
To do that we need to extend the iterative decoding to bipar-
tite multigraphs. Let be a bipartite multigraph with bipar-
tition and , where and

are the sets of variable and check
nodes, respectively. Iterative decoding works on as follows.
At the beginning, all the erased variable nodes are labeled “un-
known” and the following algorithm is repeated in each step.

Fig. 3. Construction of R(F ).

• If only one of the edges that is connected to a check node is
incident with an unknown variable node, label that variable
node as “known.”

Note that the preceding algorithm is not a decoding algorithm
for a real code. We just define it to simplify our discussion. We
need here the following definitions. We define a set
to be sufficient if by knowing the values of the variable nodes in

, the iterative decoder can finish the decoding successfully. A
set is called unnecessary if is sufficient. In
other words, is unnecessary if the iterative decoder
can determine the values of erased variable nodes, when the
variable nodes in are erased but all the other variable nodes are
known. Obviously, a set is unnecessary if it does not contain
a stopping set.

Assume the iterative algorithm A fails to decode a received
word on a graph . Let be the stoping set that remains after the
decoding stops and let . We define an equivalence re-
lation on in the following way. We write if there is
a path from to on that does not contain any check node of
a degree higher than two. Obviously, is an equivalence rela-
tion. Thus, this relation partitions into equivalence
classes. Let be the equivalence classes of .
Note that if the value of is exposed to the decoder, then the
decoder can find the values of all variable nodes in the equiva-
lence class of .

For a bipartite graph we construct the graph as fol-
lows. For each equivalence class , we contract all the variable
nodes in and all the check nodes that do not have any neigh-
bors outside into one vertex . Fig. 3 shows an example
of this construction. Note that every check node in has a
degree at least three. Assume the iterative Algorithm A fails to
decode a received word on a graph . Let be the stoping
set that remains after the decoding fails and let . We
have the following.

Theorem 4: Let be ML decodable and be the random
variable that is equal to the number of guesses that are required
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by Algorithm B to finish the decoding. Let also be the
minimum sufficient set in and be the number of
equivalent classes in . Then, we have

(22)

Moreover, the lower bound is always attainable by using the
right choices of the guessed variable nodes.

Proof: After each guess in Algorithm B, all the variable
nodes in at least one of the equivalence classes will be deter-
mined. Therefore, after guesses the values of all the vari-
able nodes are found. Let be the min-
imum cardinality sufficient set in . Suppose, in each step
we choose a variable node in one of ’s such that . Then
after steps all the variable nodes are determined. Obvi-
ously, the number of guesses cannot be less than .

For example, in Fig. 3, is the minimum cardinality suf-
ficient set in . Therefore, we have . If we
choose our first guess from the vertices in , only one guess is
enough to finish the decoding successfully. Since the
number of guesses satisfies . However, it is easy to
show that the number of required guesses is always less than or
equal to two for this example.

The preceding discussion shows the connection between the
graph-theoretic properties and the number of guesses. It would
be nice if we could use these arguments to obtain some prob-
abilistic results such as finding the average number of guesses
for a specific code and channel. Note that we deal with a fi-
nite-length analysis and asymptotic analyses are not useful. In
fact, we need some discussion based on the BER of the iterative
decoder for a finite-length code to find the probabilistic proper-
ties of the given algorithm.

C. Improving Algorithms B and C by Reduction of Number
of Guesses

Let be the Tanner graph of an LDPC code and be the
number of guesses required by Algorithm B or C when the iter-
ative algorithm A fails. Later we will show that is very small
(usually ). However, we can still reduce the number
of guesses. Here, we introduce one method to reduce . We
first need to give some results based on the two-edge-connected
components of the Tanner graph of LDPC codes.

Assume that all the vertices in , the Tanner graph of the code,
have a degree at least two. For any we defined
as the graph induced by the vertices in and their neighbors.
The graph is sparser than the graph in the sense that
the degree of each vertex in is less than or equal to the
degree of that vertex in . Let be a stopping set. Then,
obviously has at least one cycle because any vertex in

has a degree at least two. Let be the th row of .
Suppose is a codeword and is the bit
corresponding to the variable node . Any row can be written
as a parity-check equation in the form

(23)

where is the element in the th row and the th column of
. Consider the case that the iterative decoder fails but the ML

decoder can decode the received word. Let be the set of
variable nodes that the iterative decoder cannot decode. Con-
sider a variable node . In this case, there exist

and such that

(24)

We say that the set of parity checks corresponding to
frees the variable node and we call this set of parity checks

a freeing set for . Let be a subgraph of . We define
as the set of parity-check nodes in . For , we say a graph
is -edge-connected if it has at least two vertices and no set of
at most edges separates it.

Theorem 5: Assume be a nonempty stopping set such
that the ML decoder can decode the word when the set is
erased. Suppose we receive a word for which is the unique
maximum stopping set. Then there exists a two-edge-connected
subgraph of , say , such that the set of parity checks in

, i.e., , frees an erased variable node.
Proof: Let be the word constructed from by marking

the variables in as erasures. Since the ML decoder can de-
code , there exists a freeing set for any of the variable nodes
in . Let be an arbitrary variable node in and be a min-
imum freeing set for . Define , then is a
connected graph. Otherwise, has at least two components,
and . Note that all the variable nodes in except one (the vari-
able node ) have even degrees in . Thus, in at least one of
the two subgraphs and (assume ), all the variable nodes
have even degrees. Therefore, is a freeing set for .
This contradicts the assumption that is minimum (note that

).
If is two-edge-connected we are done, so we may assume
is not two-edge connected. We consider two cases as shown

in Fig. 4.

• Case1: , where denotes the degree
of the vertex in the graph . In this case, the degree of
any variable node in is at least two. By our assump-
tion and definition of the degree of any check node
in is at least two. Since the degree of each vertex in

is at least two, contains at least one cycle. Thus,
contains at least one two-edge-connected component. Let

be a graph obtained by contracting any two-edge-con-
nected component of to a vertex. Then, is a tree.
This is because if had a cycle then that cycle would
be in a two-edge-connected component and would have
been contracted to a vertex. Note that has at least two
vertices otherwise would be two-edge-connected. Since

is a tree, it has at least two leaves (vertices of degree
one). Moreover, since for all ,
these leaves must correspond to two-edge-connected com-
ponents and in . Since and are disjoint, for
at least one of them, say , we have . Next we
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Fig. 4. Construction of the graph D .

show that is a freeing set for a variable node. Ad-
ditionally, is two-edge-connected. The existence of
proves the theorem.

Let be the only edge that is connected to in
. Assume and . If is a variable node then

will free because has degree one in and
all the other variable nodes in have even degree.
This is because the degrees of these variable nodes in
and are the same. Now if is a check node, then is
a variable node. Then will free . This is because
by the above assumption . Therefore, is
even and is an odd number.

• Case2: . We construct the graph Similar
to Case 1 and will be one of the leaves in . But
has at least one more leaf that corresponds to a two-edge-
connected component. Call this leaf . Obviously

. Therefore, using the argument in Case 1, is a
freeing set for a variable node.

Fig. 4 shows the above argument.

The immediate result of Theorem 5 is the following corollary.

Corollary 1: If we append all the parity-check equations that
are formed by adding the parity-check equations in the two-
edge-connected subgraphs of to , then the iterative decoding
on the new is equivalent to the ML decoding.

Obviously, this is not feasible because there are lots of such
equations. However, we will show in the following sections that
we can exploit Theorem 5 in order to improve the iterative de-
coding.

Corollary 2: If we apply the message-passing algorithm to
an acyclic graph it will be equivalent to ML decoding.

This is a well-known result that can be proved for the erasure
channel as follows. Let be the stopping set that remains after
the iterative decoding. For any set of check nodes in ,
the graph that is induced by the vertices in and their neighbors
in has at least two leaves. Since any check node in has a
degree at least two in , these leaves must be variable nodes.
Therefore, the set cannot be a freeing set for any variable
node. Note that in any acyclic graph we have at least two variable
nodes of degree one (we are assuming that check nodes have
always degrees greater than one) and any stopping set in the
graph must contain at least two variable nodes of degree one.

Let be the set of check nodes in ,
the Tanner graph of the parity-check matrix . We define the
set as following. For any set

we have if and only if is a two-edge connected
subgraph of . Let be the set of parity-check equations
that are obtained by adding the set of parity-check equations
from an element of . Recall from Theorem 5 that the equa-
tions in are sufficient for ML decoding. However, the
number of these equations is extremely high and we cannot use
all of them in the iterative decoding. Note that all of these equa-
tions are redundant because they are obtained by adding some
parity-check equations in . However, it turns out that by using
a very small number of suitably chosen equations from this large
set of equations, we can reduce the number of guesses in Algo-
rithms B and C. Again we use these equations whenever Algo-
rithm A fails. Note that any two-edge-connected graph is com-
posed of several cycles. A cycle is the simplest two-edge-con-
nected graph. Here, we only consider short cycles. Let be
the number of cycles of length in . It is shown in the
Appendix that the expected value of is equal to

(25)

where is the number of check nodes and
is the number of edges in the graph. For a constant

number we have

(26)

and for

(27)

where . Therefore, the av-
erage number of the finite-length cycles is a constant and does
not increase with . Obviously, the same argument works for
irregular codes. In order to reduce the number of guesses in Al-
gorithm B or C we find some parity-check equations that con-
struct short cycles (cycles of lengths four or six) in the Tanner
graph and add them together to find new parity-check equations.
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Fig. 5. Distribution of the number of guesses that is required for successful decoding at � = 0:36.

Note that these equations are used only if the iterative decoding
(Algorithm A) fails. We will show that using a small number of
these equations suffices to reduce the number of guesses. Using
(26) we can find the expected number of equations that we need
to consider. For example, in , if we just take parity-check
equations that construct cycles of lengths four or six, on the av-
erage we will find around 192 equations.

D. Simulation Results

In this subsection, we provide some empirical results. First,
we experimentally verify the main claim that we made in Sec-
tion III-A (i.e., a very few number of guesses is enough to finish
the decoding). We then give simulation results for the LDPC
codes of lengths and and evaluate the
performances of Algorithms A, B, and C. We compare these al-
gorithms based on the BER, average speed, and the speed of
decoding for a specific received word. Notice that the LDPC
codes that we use here are not optimized for the corresponding
length and rate. We did the simulations for half rate codes and
for each length we picked a code with reasonable performance
and degree distributions. In fact, we observed that for a fixed
length and a maximum degree, the relative performances of the
algorithms are roughly independent of the degree distribution of
the code.

Let us first study the number of guesses in Algorithms B and
C when Algorithm A fails. Again, let us define the random vari-
able to be the number of required guesses when the stan-

dard iterative decoding (Algorithm A) fails to decode a received
word. For the length , we considered the following de-
gree distribution:

(28)

To evaluate the number of required guesses we set
and decoded 10 bits that were transmitted over the BEC with
the erasure probability . Fig. 5 shows the empirical
probability density function for the number of required guesses.
We note that in more than 70% of the cases for which the it-
erative decoder fails, only one guess is enough to complete the
decoding successfully. We also note that the number of required
guesses is always less than or equal to eight. The error rate of Al-
gorithm A is about . Even if we limit the maximum number
of guesses to four, using Algorithms B or C we can improve the
error rate by almost two orders of magnitude.

However, the situation changes when we increase . For ex-
ample, for , the average BER of the standard iterative
decoder (Algorithm A) is . Fig. 6 shows the empirical
probability density function for the number of required guesses.
The figure shows that the number of required guesses increases
as we increase . For example, if we limit the maximum number
of guesses to four, we can decrease the BER by only one
order of magnitude using Algorithms B or C. However, it is
worth noting that even for , the average number of
required guesses is still very small ( ).
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Fig. 6. Distribution of the number of guesses that is required for successful decoding at � = 0:39.

Let us now examine the effect of the code length on the
number of guesses. We picked an LDPC code of length
with the following distributions:

(29)

Fig. 7 depicts the empirical probability density function of
for this code. Note again that the number of guesses is largely
concentrated on the small values (less than or equal to four).
Therefore, we conclude that the number of required guesses is
small for most of the practical code lengths. Therefore, Algo-
rithms B and C are efficient. Note that in the preceding example,
when the standard iterative decoding fails, there are about 3500
erasures left when the decoding stops. However, in most of the
cases by knowing the values of less than or equal to 4 erased
bits the decoder can find the value of all the 3500 erasures!

Now we examine the performance of the proposed algo-
rithms. Note that Algorithms B and C have almost the same
BER. In all simulations we set to . Fig. 8 shows the
performance of Algorithms A and C for a code from the
ensemble with the length . The figure shows
that the gap between the BER of the two algorithms increases
as decreases. At , the BER of Algorithm A is 20 times
bigger than the BER of Algorithm C. This gap increases to
about three orders of magnitude when is reduced to . This
suggests that Algorithm C can alleviate the error floor problem
in LDPC codes. Specifically, this algorithm can be very useful
when very small BER is required. On the other hand, for

the large values of , the improvement due to Algorithm C
becomes negligible. Our simulations show that for the values
of that the BER of the iterative decoder is less than or equal to

, a good improvement is possible in the BER by applying
Algorithm C.

There are several stopping sets in a Tanner graph of an LDPC
code. Some stopping sets are weak in the sense that if the values
of one or two bits in the stoping set is exposed to the itera-
tive decoder, the decoder can finish the decoding successfully.
For these stopping sets, is a very small
number. On the other hand, some stopping sets are very strong
and their is a large number. When is close to , we usu-
ally face with strong stopping sets. For example, at the
strongest stopping set (i.e., ) occurs. As we decrease , the
strong stopping sets become less probable while the weak sop-
ping sets become more probable. Therefore, a smaller number
of guesses is required to finish the decoding. This discussion ex-
plains why the gap between the BERs of Algorithms A and C
increases as decreases.

Table I shows the average number of required guesses by Al-
gorithm C for the received blocks that Algorithm A fails. The
table suggests that the average number of guesses is very small.
Note that the values in Table I are slightly smaller than the av-
erage values obtained by Figs. 5 and 6 because for those dia-
grams we have , but Table I is obtained for .

Fig. 9 shows the performance of Algorithms A and C for a
code from the ensemble with a length of . We see
that the results are similar to that of the code with the length

. The above results are obtained when .
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Fig. 7. Distribution of the number of guesses that is required for successful decoding at � = 0:39 and code length = 10 .

TABLE I
THE AVERAGE NUMBER OF GUESSES FOR

THE LDPC CODE OF LENGTH 1000

We note that, in both ensembles and , the
minimum distance grows linearly with the codes lengths. In fact,
when we generated codes from these ensembles, we made sure
that these codes did not have small stopping sets that could cause
an error floor. In order to see the effect of the error floor on
Algorithms B and C, we generated a code of length from
the ensemble defined by

(30)

We note that for this ensemble we have
Thus, with high probability, a code generated from this en-

semble has a small minimum distance and shows an error floor.
Fig. 10 shows the performance of Algorithms A and C for the
code. We observe that for high BERs, Algorithm C shows some
improvement over Algorithm A. However, as we approach the
error floor region, the improvement decreases. This is because,
for this code, even the ML decoder shows an error floor (be-

TABLE II
THE AVERAGE NUMBER OF GUESSES FOR THE LDPC CODE OF LENGTH

10000 THAT HAS AN ERROR FLOOR

cause of small minimum distance) and thus, using improved de-
coding methods, does not help much in the error floor region.
Table II shows the average number of guesses for this code.

Now we present some experimental results for the running
time of the algorithms. Clearly, these results are dependent on
the specific computer program and the platform we use. How-
ever, a relative timing comparison can be made from these sim-
ulations. We give the results for a code of length from the
ensemble and a code of length from the ensemble

. The erasure probability of the channel is chosen
such that the BER of Algorithm A is . In all cases, we de-
coded 10 bits and measured the average running time and the
maximum running time for the decoding of received blocks. Let

, and show the average time of decoding
of the LDPC code of length from the given ensembles using
Algorithms A, B, and C, respectively. Table III shows the rel-
ative average time of Algorithms B and C with respect to the
standard iterative decoding. From the table we conclude that the
average running time of all the above algorithms are almost the
same.
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Fig. 8. Comparisons of the BERs of Algorithms A and C for code length n = 10 .

Fig. 9. Comparisons of the BERs of Algorithms A and C for a code of length n = 10 .
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Fig. 10. Comparisons of the BERs of Algorithms A and C for a code of length n = 10 that has an error floor.

Recall that we defined as the time that Algorithm B
needs to decode a received word . Let show the max-
imum value of over all the received blocks. We define

is defined similarly. Table IV shows the values of
and . The table suggests that although Algorithm B has a
good average running time, it can be very slow for some specific
received blocks. However, the running time of Algorithm C for
any received block is always less than 10 times the running time
of the standard iterative decoder. Combining this with the fact
that the average running time of Algorithm C is almost the same
as that of the iterative decoder we conclude that Algorithm C is
efficient in terms of running time. Since Algorithm C is fast and
has a BER smaller than the standard iterative decoder, it can be
considered as an efficient way of decoding LDPC codes over
the BEC.

As we have already mentioned, it is possible to reduce the
average number of guesses using some redundant equations.
Again, we chose a code of length from the ensemble

. As we discussed in the previous section, we looked
for cycles of lengths and in the Tanner graph of the
code. For any of these cycles we added the rows of corre-
sponding to the parity-check equations in the cycle and put
these parity-check equations as rows of a matrix . In total,
we chose 374 equations. Hence, had 374 rows. We set

and decoded 10 bits. In the first experiment, we
used Algorithm C. In the second experiment we used the same

TABLE III
COMPARISON OF AVERAGE RUNNING TIME OF DIFFERENT ALGORITHMS

TABLE IV
MAXIMUM RATIO OF THE RUNNING TIMES OF ALGORITHMS B AND C

TO THE RUNNING TIME OF ALGORITHM A

TABLE V
THE AVERAGE NUMBER OF REQUIRED GUESSES

algorithm. However, we also used the parity-check equations
in whenever the iterative decoder failed and we needed to
perform the guessing procedure. Let us call the second algo-
rithm C . Table V shows the results. In this table, and
are the average numbers of required guesses when we needed
to perform the guessing process in Algorithms C and C . The
table shows that the average number of guesses is substantially
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Fig. 11. Cycle distribution in g(d ; d ).

smaller in Algorithm C . Note also that the average number of
guesses at is less than . This is because sometimes
the parity-check equations in are sufficient to successfully
finish the decoding and we do not need any guesses.

IV. CONCLUSION

In this paper, we studied some properties of the ML and itera-
tive decoding of LDPC codes when they are used over the BEC.
We derived both lower and upper bounds on the ML capacity of
the ensembles of LDPC codes. The tightness of the bounds was
depicted for regular codes by using some examples. We pro-
posed two algorithms for decoding LDPC codes over the BEC.
It was shown by simulations that the proposed algorithms had
a better BER than the standard iterative decoder. More specifi-
cally, the improvement up to three orders of magnitude was ob-
tained in the BER. It was also demonstrated that the proposed al-
gorithm (Algorithm C) has almost the same running time as the
iterative decoder. Therefore, we conclude that Algorithm C can
be considered as an efficient method for decoding LDPC codes
over the BEC. Since finding good finite-length LDPC codes
is still a challenging problem, the decoding scheme presented
in this paper may compensate for this problem. We also pro-
vided some graph-theoretic results that are useful for bounding
the complexity of the decoding algorithms and improving them.
Although we demonstrated the superiority of Algorithm C for
standard LDPC codes, we expect that the proposed algorithm
can also improve the performance of other ensembles such as
codes based on cascaded bipartite graphs [1].

APPENDIX

NUMBER OF CYCLES

In this appendix, we calculate the average number of cycles
in a Tanner graph of LDPC codes. For clarity of exposition we
perform the computations for regular graphs. The generalization
to irregular graphs is trivial. Here we use the same ensemble
described in [6]. To each variable or check node we assign or

sockets, respectively. We label the variable nodes and check
nodes separately with the set . We then pick a
random permutation on letters. For each , we put
an edge between the socket and . Let be
arbitrary variable nodes and be arbitrary check
nodes. Let be sockets such that belongs
to and let be sockets such that belongs
to . Then the probability that these sockets construct the cycle

is equivalent to

(31)

Since any variable node has sockets and any check node has
sockets, the probability of having the cycle

in the Tanner graph is

(32)

Therefore, the probability that there exists a cycle of length
with vertices and is

(33)
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This proves (25). Evaluating (25) for a constant value of results
in (26). Using the following equations:

(34)

we get (27). Fig. 11 shows the function for . Note
that in the above model double edges are allowed. Therefore,
we may have double cycles. However, one can show that the
probability of having a double cycle is very small.
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