BOUNDARY LAYER ANALYSIS WITH
NAVIER-STOKES EQUATION
IN 2D CHANNEL FLOW

Yunho Jang
Department of Mechanical and Industrial Engineering
Univ. of Massachusetts

05/15/03
• Introduction

• Solution for Laminar and Turbulent Channel Flow

• Results

• Conclusion
Introduction

• The plane channel or duct flows
 – A canonical configuration for studying internal flows
 – Boundary layer analysis
 – The behavior of laminar and turbulence flow
 – Turbulence Model

• Numerical Method issue
 – Compare the Finite Element Method with other numerical methods
 (Finite Volume Method, Direct Numerical Simulation)
Solution for Laminar Channel Flow

- Laminar channel flow
 - Domain: \(h = 2 \text{m}, \ L = 100 \text{m} \)
 - Grid \(h \times L = 60 \times 200 \)
 - Mean velocity \(= 30 \text{m/s} \)
 - Kinematic viscosity \(= 0.01111 \text{kg/m} - \text{s} \), density \(= 1 \text{kg/m}^3 \)
 (incompressible)

 \[
 \text{Re}_\tau = \frac{u_\tau \delta}{\nu} = 90
 \]

 where \(u_\tau = \sqrt{\frac{\tau_w}{\rho}} \), and \(\delta \) is \(h/2 \)

 - Compare with Analytical solution for both Methods (FEM,FVM)
Solution for Laminar Channel Flow

- For steady state, two dimensional Navier-Stokes equation

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\] \hspace{1cm} (2)

\[
u \frac{\partial u}{\partial x} + \rho \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
\] \hspace{1cm} (3)

\[
u \frac{\partial v}{\partial x} + \rho \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)
\] \hspace{1cm} (4)
Solution for Laminar Channel Flow

• Horizontal velocity

\[u(y) = -u_{max} \left[1 - 4\left(\frac{y}{h}\right) \right] \]
\[u_{max} = \frac{h^2 \, dp}{8 \mu \, dx} \]

• Shear stress

\[\tau_{yx} = \mu \frac{du}{dy} = -8\mu u_{max} \frac{y}{h^2} \]

• Vorticity

\[\omega_{yx} = -\frac{du}{dy} = 8u_{max} \frac{y}{h^2} \]
Solution for Turbulent Channel Flow

- Turbulent channel flow
 - Same domain and grid with laminar case
 - Mean velocity $= 18.4539\text{m/s}$
 - Kinematic viscosity $= 0.001695\text{kg/m} - \text{s}$, density $= 1\text{kg/m}^3$ (incompressible)

$$Re_{\tau} = \frac{u_{\tau}\delta}{\nu} = 590 \quad (9)$$

- Compare results from FEA with both Methods (FVM,DNS)
Solution for Turbulent Channel Flow

- $k - \epsilon$ model

\[\mu_t = \rho C_\mu \frac{k^2}{\epsilon} \] \hspace{1cm} (10)

- The standard wall function

\[u^+ = \frac{1}{\kappa} \ln(Ey^+) \] \hspace{1cm} (11)

where

\[u^+ \equiv \frac{U_p C_\mu^{1/4} k_p^{1/2}}{\tau_w / \rho} \] \hspace{1cm} (12)

\[y^+ \equiv \frac{\rho C_\mu^{1/4} k_p^{1/2} y_p}{\mu} \] \hspace{1cm} (13)
Results of Laminar Channel Flow

Table 1: Values from the laminar solutions

<table>
<thead>
<tr>
<th>Method</th>
<th>u_{max} (m/s)</th>
<th>τ_w (pascal)</th>
<th>ω_w (s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic solution</td>
<td>45</td>
<td>1.0</td>
<td>-90</td>
</tr>
<tr>
<td>FVM</td>
<td>44.9313</td>
<td>0.987</td>
<td>-88.8</td>
</tr>
<tr>
<td>FEA</td>
<td>44.248</td>
<td>0.935</td>
<td>-84.144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>C_f</th>
<th>C_{fo}</th>
<th>δ^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic solution</td>
<td>0.00222</td>
<td>0.000987</td>
<td>0.333</td>
</tr>
<tr>
<td>FVM</td>
<td>0.00219</td>
<td>0.000974</td>
<td>0.356</td>
</tr>
<tr>
<td>FEA</td>
<td>0.00207</td>
<td>0.000923</td>
<td>0.338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>θ</th>
<th>Re_m</th>
<th>Re_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic solution</td>
<td>0.1333</td>
<td>5400</td>
<td>4050</td>
</tr>
<tr>
<td>FVM</td>
<td>0.1343</td>
<td>5400</td>
<td>4043</td>
</tr>
<tr>
<td>FEA</td>
<td>0.1338</td>
<td>5400</td>
<td>3982</td>
</tr>
</tbody>
</table>
Results of Laminar Channel Flow

- Velocity profiles in fully developed laminar channel flow at $X/L = 1$
Results of Laminar Channel Flow

• Shear stress profiles
Results of Laminar Channel Flow

• Vorticity profiles
Results of Turbulent Channel Flow

- Velocity profiles in fully developed turbulent channel flow at \(X/L = 1 \)
Results of Turbulent Channel Flow

- Shear stress profiles
Results of Turbulent Channel Flow

- Vorticity profiles
Results of Turbulent Channel Flow

- Mean velocity profiles
Conclusion

• Finite Element Method works well for laminar channel flow as well as Finite Volume Method.

• In turbulent flow, there are some errors from using turbulent modeling.

• The prediction of FEA for turbulent channel flow is believable.

• However, we need to develop more exact turbulent model for boundary layer flows.