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Oscillations of a cantilevered micro beam driven
by a viscoelastic flow instability

Anita A. Dey,ab Yahya Modarres-Sadeghi, a Anke Lindner b and
Jonathan P. Rothstein *a

The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this

paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and

a cantilevered beam in a confined microfluidic geometry. Cantilevered beams with varying length and

flexibility were studied. With increasing flow rate and Weissenberg number, the flow transitioned from a

fore-aft symmetric flow to a stable detached vortex upstream of the beam, to a time-dependent

unstable vortex shedding. The shedding of the unstable vortex upstream of the beam imposed a time-

dependent drag force on the cantilevered beam resulting in flow-induced beam oscillations. The oscillations of

the flexible beam were classified into two distinct regimes: a regime with a clear single vortex shedding from

upstream of the beam resulting in a sinusoidal beam oscillation pattern with the frequency of oscillation

increasing monotonically with Weissenberg number, and a regime at high Weissenberg numbers

characterized by 3D viscoelastic instabilities where the frequency of oscillations plateaued. The critical

onset of the flow transitions, the mechanism of vortex shedding and the dynamics of the cantilevered

beam response are presented in detail here as a function of beam flexibility and flow viscoelasticity.

1 Introduction

Fluid–structure interactions (FSI) have been heavily studied by
researchers because of their ubiquity in a variety of mechanical,
industrial and biological processes. At high Reynolds numbers,
the interaction of flexible structures with flow instabilities leads
to very rich dynamics documented in many books and review
papers.1–7 In low Reynolds number flows, although flows are
stable, complexity arises from non-linear interactions between
deformable structures and viscous flow. Viscous fluid motion
can modify the shape, orientation and position of a structure
which in turn leads to coupling between the flow field and the
structural response.8 FSI studies of these flows are relevant to
the biological and physiological world seen in the flow past
flagella,9 swimming of micro-organisms,10 the deformation of
red blood cells during transport in blood vessels11 or the
deformation of soft fluid-conveying vessels.12,13 An important
class of low Reynolds number flows includes viscoelastic fluid
flows. In these flows, purely elastic instabilities can occur even
in the absence of inertia14–17 and can in turn interact with

flexible structures. Although these elastic flow instabilities have
been reported in a host of viscoelastic fluids and flow geometries,
such viscoelastic FSI studies (VFSI) remain scarce and have only
recently been conducted for the flow of wormlike micelle
solutions past flexible structures placed in a crossflow.18–20

However, the interplay between the various types of viscoelastic
fluids, flexible structures and flow geometries is expected to lead
to a large variety of dynamics, relevant for a number of fields
such as low Reynolds number flows and structural mechanics.

Polymer solutions are often classified as viscoelastic fluids
due to the complex behavior of these fluids imparted by the
physical nature of a mobile polymer macromolecule. As a flexible
polymer coil stretches within a flow field, it is deformed out of its
equilibrium random walk configuration. An elastic restoring
force results, driving the polymer back toward its entropically
favorable equilibrium state.21 High molecular weight polymers
can thus impart an entropic elasticity to a fluid which allows the
polymer solution or melt to carry stress along the flow stream-
lines and can lead to the build up of normal stresses in simple
shear flows. The importance of elasticity in the flow is described
by the non-dimensional Weissenberg number, Wi = l_g, where l is
fluid relaxation time and _g = U/L is the shear rate, where U is the
flow velocity and L is the characteristic lengthscale. The impor-
tance of inertia is described by the Reynolds number, Re = UL/n,
where n is the kinematic viscosity of the fluid. High Weissenberg
number flows have become easily achievable in the absence of
inertia, Re { 1, in microfluidics.22 The micrometer sized flow
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geometries result in large shear rates23,24 and Weissenberg numbers
while simultaneously minimizing the Reynolds number. The
combination of large elastic stresses resulting from those high
Weissenberg numbers and streamline curvature,15,25 while
keeping the Reynolds number small, leads to purely elastic flow
instabilities, making these flows quite different from Newtonian
fluid flows. The low Reynolds number-high Weissenberg number
space that can be probed due to microfluidics has led to many
studies of viscoelastic instabilities in polymer solutions. Various
microfluidic geometries such as contraction–expansion flows,26

cross-slot flows,27,28 T-channel flows,29 flow past cylinders30 and
serpentine channel flows31 have been studied. Although all of
these flows demonstrate the onset of elastic instabilities at large
Weissenberg numbers, in all of the examples, the structure
geometry is rigid and not actively interacting with the instabilities.

Alternatively, allowing these instabilities to affect the position,
deformation and motion of an object falls in the domain of fluid–
structure interaction problems and introduces a host of interesting
questions regarding the dynamics and elasticity of the structures
and boundaries of the flow. In this paper, using viscoelastic flow
past a flexible beam attached as a cantilever to one side of a
microchannel, we provide evidence that elastic flow instabilities
occurring at high Weissenberg numbers in a confined flow of a
polymer solution can, given the right structural flexibility,
generate motion in the structure and subsequently couple with
the structural motion.

The geometry of flexible beams used in this study has
applications in the field of microfluidics in the development of
micro- and nano-devices such as flow rate sensors and actuators.32–35

Development of fluid-actuated cantilevered microscale beams to act
as fluid energy harvestors is also a promising technology.36 The
results of this work could provide an insight into the use of
viscoelastic flow instability as a mechanism of inducing vibrations
in micro-structures. Thin flexible fibers are also commonly seen in
biology, where they appear as cilia and flagella used for locomotion
and feeding of various micro-organisms. Micro-organisms interact
with biological flows which are often viscoelastic and always at
low Reynolds numbers.10,37 Mimicking of micro-organisms using
bio-inspired cilia and flagella has applications in the develop-
ment of artificial micro-swimmers, micro-pumps, valves and
mixers.38–40 Our study of thin cantilevered micro-scale beams
placed in a viscoelastic polymer solution could help in under-
standing the dynamics and interactions of micro-organisms in a
host of different micro-environments.

This paper describes the investigation of the flow of a visco-
elastic polymer solution past a cantilevered beam attached to a
side wall of a micro scale flow channel. The beam is confined by
the top and bottom walls of the channel, occupying nearly the full
channel depth and partially blocks the channel height due to its
significant length. With increasing flow velocity, elastic instabil-
ities arise in the flow due to the presence of the cantilevered
beam which in turn begin to couple with the cantilevered beam.
This interaction has been studied by varying the flexibility of the
cantilevered beam placed in the flow path. The critical onset of
beam oscillations, the underlying mechanism of the oscillations,
the characteristics of the flow instabilities and the flow-induced

beam deformation over a range of Weissenberg numbers are
discussed. Across the tests of the cantilevered beams, two distinct
regimes of the oscillatory response of the flexible beam are
identified in this paper.

2 Experimental setup

The experimental geometry consisted of a long rectangular
channel with a rectangular beam extending from one of the
sidewalls (Fig. 1(left)). The channel was made of polydimethyl-
siloxane (polydimethylsiloxane, Sylgard 184, Corning) (PDMS)
and fabricated using traditional soft-lithography techniques
with a depth of dc = 48 mm and heights of H = 150 mm
and 360 mm. To fabricate the flexible beam, we used a stop
flow microscope-based projection photolithography process41,42

allowing for a precise control of beam shape and modulus. This
method relies on the crosslinking of a photosensitive polymer
solution inside a microfluidic channel under UV illumination
through a mask. Crosslinking is hindered in the presence of
oxygen as it quenches the photopolymerization reaction. PDMS
being permeable to oxygen, using this method a beam cannot
be directly attached to any of the walls of the microchannel.
Instead, following Wexler et al.,43 rectangular PDMS posts were
fabricated close to the microchannel side wall which served as
anchors for a rigid bounding sidewall, fabricated using the same
projection photo-lithography process.41,42 As a short segment in the
sidewall and the beam are now made from the same material, the
beam can be directly attached to the sidewall as shown in Fig. 1.

The microchannel was first filled with a photosensitive
solution composed of 10 vol% of Darocur 1173 photo-initiator
(PI, 2-hydroxy-2-methylpropiophenone, Sigma) and 90 vol% of
polyethylene glycol-diacrylate (PEGDA, Mw = 700, Sigma). Under
a zero flow condition, a photomask with the bounding wall
geometry was placed in the field-stop position of a microscope

Fig. 1 A schematic diagram of the cantilevered beam in the microchannel
is shown on the left. The dark gray areas are the sidewalls of the
microchannel which are composed of PDMS. The light gray areas are
the photo-polymerized bounding wall and the flexible cantilevered beam.
An image of the beam in the microchannel is shown on the right.
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(Zeiss) equipped with a UV light source (Lamp HBO 130W) and
a 10� Fluar objective, and the shutter was opened for 800 ms.
With an open shutter, the photosensitive solution in the
microchannel exposed to UV light through the photo-mask
underwent polymerization. Subsequently, a second photosensitive
solution composed of 10 vol% Darocur 1173 photo-initiator (PI,
2-hydroxy-2-methylpropiophenone, Sigma), 45 vol% polyethylene
glycol-diacrylate (PEGDA, Mw = 700, Sigma) and 45 vol% of a
solvent mixture of water and polyethylene glycol (PEG, Mw = 1000,
(Sigma) at a ratio of 1 : 2 in volume) was introduced into the
microchannel for the fabrication of the flexible beam. A photo-
mask of the beam geometry was placed at the base of the sidewall
and allowed to photo-polymerize as described above. An image of
the resulting cantilevered beam with a clamped boundary con-
dition is shown in Fig. 1(right).

The photosensitive solution was then flushed to introduce
the viscoelastic fluid into the microchannel. As the polymerized
beam was exposed to the incoming aqueous viscoelastic solution,
a swelling of the beam by 15% was observed for the flexible beams.
The swelling of the beam in the microchannel was found to occur
only at the initial inflow of the solution and no consequent
changes in the polymerized beam were observed with time once
the channel was filled with the aqueous polymer solution. The
elastic moduli of the swollen flexible beam and bounding wall
were determined outside the microfluidic device by measuring
the deflection of a photo-polymerized beam under gravity
after immersion in the aqueous polymer solution. The elastic
modulii of the rigid bounding wall and flexible beam were found to
be 12 MPa and 3 MPa, respectively. The non-polymerized layer
above and below the swollen beam was measured to be 4� 1.5 mm.

The relative intensity of viscous and elastic forces acting on the
beam can be compared using a dimensionless elasto-viscous
number, ~m = ZUl3/EI, where Z is the fluid viscosity, U is a typical
flow velocity, E is the material Young’s modulus, I is the area
moment of inertia.8,44,45 The details of the fabricated beam
geometries such as beam length, l, channel height, H, channel
blockage ratio at zero flow conditions, a = l/H, beam stiffness,
k = EI/l3, and the range of the elasto-viscous numbers tested, ~m,
are provided in Table 1. The channel depth, width and depth of
the cantilevered beam, and elastic modulus were dc = 48� 2 mm,
w = 17 � 2 mm, db = 40 � 2 mm and E = 3 � 0.2 MPa respectively.
The theoretical natural frequency of the cantilevered beam in air
was calculated to be fN E 1 MHz which is much larger than any
expected oscillation frequency in this experiment.46 As a result,
lock-in behavior often observed in Newtonian fluid–structure
interactions is not anticipated.

The viscoelastic fluid was composed of Flopaam 3630 (SNF
Floerger) mixed with deionized water at a concentration of
0.02 wt%. Flopaam is a partially hydrolyzed polyacrylamide
with an extremely high molecular weight (20 MDa) and a degree
of hydrolysis between 25–30%. At a concentration of 0.02 wt%,
the mixture showed a zero shear rate viscosity of Z0 = 0.25 Pa s
as shown in Fig. 2(a). Beyond a shear rate of _g = 1 s�1, the steady
shear rate viscosity was found to shear thin with a power law
exponent of n = 0.3. The relaxation time of the fluid was
measured in extensional flow using the capillary breakup
extensional rheometer (CaBER) and was found to be l = 0.05 s.
CaBER can also be used to measure the extensional viscosity of
the fluid.47,48 The test fluid was found to be strain hardening with
a steady-state extensional viscosity of ZE = 72 Pa s as seen in Fig. 2(b).
The resulting Trouton ratio was found to be Tr = ZE/ZS = 288, which
is significantly larger than the theoretical limit for a Newtonian fluid
which is Tr = 3. This viscoelastic fluid is thus shear thinning,
extensionally strain hardening and elastic.

A precision pump (Nemesys, Cetoni) was used to drive the flow
in the microchannel at flow rates ranging from 0 to 150 nl s�1. The
flow experiments were recorded at a frame rate of 500 frames
per second (Hamamatsu Orca-flash 4.0 camera). Particle image

Table 1 The beam length, l, channel height, H, channel blockage ratio at
zero flow conditions, a = l/H, beam stiffness, k, and the range of the
elasto-viscous numbers tested, ~m, of the fabricated beam geometries

l [mm] H [mm] a k [N m�1] ~m

Beam 1 105 � 2 150 � 2 0.7 2 � 10�1 2 � 10�4 to 1 � 10�2

Beam 2 290 � 2 360 � 2 0.8 1 � 10�2 1.2 � 10�3 to 1 � 10�1

Fig. 2 (a) Shear viscosity as a function of the shear rate and (b) extensional viscosity versus Hencky strain of the viscoelastic polymer solution. The inset is
a representative plot of the diameter decay versus time recorded in a CaBER experiment. The temperature of each experiment was T = 25 1C.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
3 

D
ec

em
be

r 
20

19
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

as
sa

ch
us

et
ts

 -
 A

m
he

rs
t o

n 
2/

12
/2

02
0 

8:
52

:2
5 

PM
. 

View Article Online

https://doi.org/10.1039/c9sm01794a


1230 | Soft Matter, 2020, 16, 1227--1235 This journal is©The Royal Society of Chemistry 2020

velocimetry was used to generate a complete and quantitative
measurement of the velocity flow field around the cantilevered
beam. The polymer solution was seeded with fluorescent micro-
particles of size 1 mm (Sigma Aldrich) at 0.005% by weight. The
responses of the fabricated beams and the test fluid were analysed
using a particle tracking software (Tracker), ImageJ (NIH) and the
particle image velocimetry (PIV) technique (Lavision) respectively.

3 Results

In order to illustrate the response of the beam to the oncoming
flow, a dimensionless Weissenberg number, Wi = lUgap/dc, is
used where l is the fluid relaxation time, dc is the channel
depth and Ugap is the average flow velocity in the gap between
the tip of the beam and the opposite channel sidewall, neglecting
leakage through the thin layer above and below the beam. This
flow velocity in the gap is obtained as Ugap = Q/(dc(H � %y)), where
Q is the flow rate, dc is the channel depth and %y is the time-
averaged projected length of the deformed beam perpendicular
to the oncoming flow. This definition of the gap velocity ensures
that the effects of increasing beam deformation with the flow rate
and thus a flow-rate-dependent blockage ratio, aflow = %y/H, are
incorporated in the Weissenberg number.

The images in Fig. 3 represent the streakline and PIV images
captured at Weissenberg numbers of Wi = 1.5 and Wi = 3 for
stable flow past Beam 1 (see details in Table 1). At these flow
rates, the cantilevered beam was observed to undergo a small
static deformation in the flow direction, as observed by Wexler
et al.43 for a cantilevered beam in the flow of a Newtonian fluid.
In Fig. 3(a) and (b), a small re-circulation zone can be observed
just upstream of the cantilevered beam. The stability of the
re-circulation zone can be confirmed by the streakline image
taken over the course of a long exposure time of 0.5 s. This flow
separation was found to be initiated at Weissenberg numbers
of Wi Z 1. At these Weissenberg numbers, separated vortices
upstream of flow obstacles have been observed in a number of

viscoelastic microfluidic flows including flow into corners, into
contractions and past posts.26,49–52 All of these flows have the
combination of streamline curvature and elasticity known to be
necessary for elastic vortex formation.15,25 This re-circulation
zone was observed to increase in size with increasing flow
velocity. As seen in Fig. 3, the vortex appears to originate at
the corner between the beam and the upper wall. With increasing
flow velocity, the vortex grows in size and intensity. Although the
majority of the flow is deflected downward and around the tip of
the cantilevered beam, a small fraction (E2%) of the flow can
also be seen in the movies to pass through the small 4 mm gap
between the beam and the upper and lower walls of the micro-
channel. At even higher flow velocities, the vortex upstream of the
beam was found to become unstable and time dependent, which
in turn triggered oscillations of the beam.

This flow transition was observed to occur at a Weissenberg
number of Wicrit = 5. The shedding of the unstable vortex was
observed to produce periodic beam oscillations. A sequence of
PIV images captured at time intervals of Dt = 20 ms at Wi = 16
for a shedding vortex are presented in Fig. 4. These PIV images
illustrate the vortex evolution and the subsequent beam oscillations.
In Fig. 4(a), the corner vortex at its maximum size can be seen at
a location of about 100 mm upstream of the flexible beam. As
time progressed from Fig. 4(b) to (c), the strength of the vortex,
its vorticity, is observed to increase as the vortex center began to
approach the flexible beam and move away from the wall. As
time progresses further in Fig. 4(d), the center of the vortex is
observed to move towards the tip of the flexible beam. At this
position, the high flow velocity of the fluid passing around the
tip of the cantilevered beam provides sufficient shear stress to
dislodge the vortex, strip it from the beam and convect it
downstream as seen in Fig. 4(e). In Fig. 4(f), the x-position of
the cantilevered beam’s tip is shown as a function of time. It is
clear from Fig. 4(f) that the growth and decay of the vortex is
directly coupled to oscillations observed at the tip of the
cantilevered beam. The maximum deflection of the beam tip
correlates with the instance shown in Fig. 4(c), when the center

Fig. 3 The (a) darkfield streakline and (b) PIV images of viscoelastic flow past Beam 1 for Weissenberg numbers of (a) Wi = 1.5 and (b) Wi = 3. The flow is
from left to right.
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of the vortex is at the same height as the tip of the beam, where
the large torque arm helps maximize the deflection of the tip
of the beam. The motion of the beam’s tip in Fig. 4(f) appears to
follow a sinusoidal motion with time. This motion is similar to
the oscillations observed during vortex-induced vibration at
high Reynolds numbers, but very different from the viscoelastic
fluid–structure interactions previously observed for the flow of
wormlike micelles past cylinders19 or sheets.18 In those systems,
vortices upstream of the cylinder or sheet were not observed and
instead, the oscillations were induced by a breakdown of the
elastic fluid in the extensional flow region in the wake of
the cylinder or sheet. The resulting oscillations followed a
saw-tooth profile because the failure of the wormlike micelles
that induced the observed flow instability was quite rapid.19

In Fig. 5(a), the oscillation frequency of the tip of Beam 1 and
the frequency of velocity fluctuations a distance of 2w = 34 mm
upstream of the tip of the beam are plotted against increasing
Weissenberg number in the gap, Wi. The velocity fluctuations
were obtained from PIV images. At the Weissenberg number of
Wi = 5, the stable vortex upstream of the beam transitioned to
an unstable time-dependent vortex resulting in a periodic
shedding with a frequency of 2 Hz. The velocity fluctuations
upstream of the beam resulting from the vortex shedding did
not yet provide sufficient forcing to cause a time-dependent
beam displacement that could be resolved at the magnification
used in these experiments. A slight increase in the Weissenberg

number led to the enhancement of the unstable vortex
upstream of the beam and its subsequent shedding resulted
in the onset of Beam 1 oscillations at the Weissenberg number
of Wi = 10. Over most of the range where oscillations were
observed, the frequency of the fluctuating velocity upstream of
Beam 1 and the frequency of Beam 1 oscillations closely matched
each other and increased monotonically with Weissenberg number
(Fig. 5(a)). However, the beam oscillation frequency reached a
plateau at Wi = 50 at about 33 Hz while the frequency of fluctuating
velocity vectors continued to increase with Weissenberg number.
As the natural frequency of the beam is many orders of
magnitude larger than the frequency of observed beam oscillations,
fN E 1 MHz, the observed plateau is not associated with the lock-in
observed for Newtonian FSI. At Wi 4 50, the coherent vortices
observed in Fig. 4 are no longer present upstream of the beam. The
oscillations beyond this Weissenberg number are induced not by
the shedding of a vortex with a single dominant frequency, but
by 3D velocity fluctuations originating upstream and observed
in the flow around the tip of the beam with a dominant
frequency accompanied by higher harmonics exciting the
motion of the beam. These 3D flow fluctuations around Beam
1 appear to be similar to the flow fluctuations observed for
elastic turbulence at low Reynolds numbers.53–55 A complex
power spectra characteristic of elastic turbulence has been
recently reported for the flow of wormlike micelle solutions
past a microfluidic cylinder.20 Unfortunately, the limitations of

Fig. 4 (a–e) PIV image sequence for flow past Beam 1 at Wi = 16. The time interval between each two consecutive images is 20 ms. The flow is from left
to right. (f) The time history of the beam tip displacement with the solid dots ( ) corresponding to the PIV image sequence from (a) to (e).
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the current experimental setup do not allow a similar verification
of the occurrence of elastic turbulence to be performed here. In
Fig. 5(b), the amplitude of the Beam 1 tip oscillations and
the mean beam deflection (%x) are plotted against increasing
Weissenberg number. Even though the frequency plateaus
beyond Wi 4 50, the amplitude of oscillations and the mean
beam deflection were observed to increase monotonically with
the Weissenberg number reaching a maximum amplitude
A = 5 mm at the highest Weissenberg number tested, Wi = 70.

A second set of experiments was conducted where the
flexible Beam 1 was replaced with a more flexible beam, Beam
2 (see details in Table 1) which had the same beam width and
elastic modulus but a longer beam length while maintaining a
similar channel blockage ratio. By increasing the beam length
while keeping other parameters constant, Beam 2 is an order of
magnitude more flexible than Beam 1 resulting in a signifi-
cantly larger mean deflection under the same flow conditions
as seen in the inset of Fig. 5(b). The frequency and amplitude of
Beam 2 oscillations are plotted over a range of Weissenberg
numbers in Fig. 5(a) and (b). Similar to the case of Beam 1, a
re-circulation zone was observed to grow upstream of Beam 2 at
low flow velocities while the beam maintained a constant static
deflection. The transition from a stable vortex to an unstable
time-dependent vortex shedding was observed to occur at a
similar Weissenberg number to that for Beam 1, i.e. Wi = 4.
Accompanying the vortex shedding was the onset of periodic
oscillations of Beam 2. The increased flexibility of Beam 2 was
observed to have a significant impact on the beam oscillations
as the agreement in the critical Weissenberg numbers between the
two beams was only possible if the experimentally measured
blockage ratio was used to calculate the effective shear rate
between the tip of the beam and the bottom wall of the channel.
Similar to Beam 1, the frequency of Beam 2 oscillations was
observed to increase monotonically with the Weissenberg number.

The mechanism of the instability driving the beam oscillations
differed slightly in the case of Beam 2 due to its increased
flexibility. Unlike the vortex shedding pattern observed for Beam
1, the vortex upstream of Beam 2 was not observed to shed
around the tip of the beam en masse. Two streakline images of
the flow field upstream of Beam 2 in Fig. 6 show the complex
flow conditions occurring during the beam oscillations (Wi = 8).
The two instances occur at a time interval of Dt = 2.5 ms. In
Fig. 6(a), a large re-circulating vortex can be observed upstream
of Beam 2. Due to the increased beam length, the large vortex is
observed to split in two with separate vortices appearing at the
tip and the base. The two separate vortices were significantly
smaller than the single vortex with some of the fluid shedding
around the tip and some flowing through the 4 mm gap above
and below the beam. This alternate vortex shedding pattern was
observed during the Beam 2 oscillations up to a Weissenberg
number of Wi = 12. The appearance of a smaller vortex near the
tip of Beam 2 is similar to the lip vortices observed in studies of
axisymmetric contraction–expansion flows with rounded corners
where rounding of the corner led to a reduction in the contraction
ratio and extensional stresses developed in the contraction.56,57

The amplitude of oscillations of Beam 2 was found to be
significantly larger than that of Beam 1, reaching a maximum
amplitude of A = 44 mm at Wi = 8, but then decaying with
increasing Weissenberg number. Due to the increased flexibility of
Beam 2, the beam underwent a significant beam deflection with
increasing flow velocity. The progression of Beam 2 oscillations
with increasing Weissenberg number is presented in Fig. 7. The
vortex previously observed near the tip of Beam 2 is completely
swept off of the beam at these high flow velocities as the beam
curvature is unable to support the growth of vortices upstream of
the beam and instead, the shear flow along the length of the beam
sweeps them off along the beam. The large beam deflection and
beam curvature observed in Fig. 6 and 7 are analogous to the

Fig. 5 (a and inset) Frequency of Beam 1 (K) and Beam 2 (’) along with the frequency of fluctuating velocity vectors obtained from PIV images at a
point 2w = 34 mm upstream of the tip of Beam 1 (J) versus Weissenberg number. (b) Amplitude of Beam 1 (K) and Beam 2 (’) tip oscillations versus
Weissenberg number. The inset is a plot of the mean deflection (%x) observed during oscillations versus Weissenberg number.
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curvature of re-entrant corners into planar and axisymmetric
contractions.56–58 As with the rounded re-entrant corners, the
beam deflection and curvature resulted in a smoothing out of
the streamlines leading to a reduction in the local Weissenberg
number for the flow along the deflected beam span.56–58 This
further leads to a reduction of the local extension rate and
extensional strain experienced by the polymer solution.59 The
elastic stress of the fluid passing between the tip of the beam
and the opposite channel wall will thus be reduced leading to a
decrease in the size of the expected re-circulation zone upstream of
the beam and additionally, the amplitude of the beam oscillations.
In Fig. 7, the displacement of the beam’s tip can be seen as a
broadening of the beam cross-section in the long time exposure
images. The tip of the deflected beam can be observed to become
almost parallel to the flow. A concentration of elastic stresses
around the tip of slender objects in viscoelastic flows has been
observed in numerical simulations.60 A similar stress accumulation
around the beam tip may be present here and contribute to the
beam oscillations. Several traces of the flow path of the light-
reflective particles are visible in these images. Traces of particles
can be observed approaching the upstream face of the flexible
beam, and then moving alongside the length of the flexible beam to
slip off the beam edge into the flow. There are also traces of particles
visible that move over and under the beam through the small gap
between the beam and top and bottom walls.

The differences in the oscillation amplitudes between the
two beams arise from the increased flexibility and the resulting
larger mean beam deflection of Beam 2. For a cantilevered
beam under a uniformly distributed load, the maximum tip
deflection is given by dmax = qL4/8EI, where q = F/L is a uniformly
distributed load,61 that stems from the viscous and pressure
forces of the viscous flow.44,62 The exact pre-factors depend on
the specific flow geometry and have been evaluated for the
cantilevered beam and the confined geometry.43 For constant
channel and fiber geometry, blockage ratio, elastic and viscous
properties, this equation can be simplified to, dmax B L3. The
Beam 2 deflection will be theoretically scaled by (l2/l1)3 = 21,
where l1 and l2 are the beam lengths of Beam 1 and Beam 2
respectively. This simplification agrees closely with the mean
beam deflection during Beam 2 oscillations observed in the
experiments.

4 Conclusions

We report the results of our viscoelastic–fluid structure inter-
action study of a microscale cantilevered beam subjected to the
flow of a polymer solution. The interaction of the elastic flow
instabilities with the cantilevered beam was studied on beams
with varying flexibility. The flexibility of the beams was modified

Fig. 6 Dark field streakline images of flow fluctuations occurring in the upstream region of Beam 2 at Wi = 8 for a time interval of 2.5 ms. The flow is
from left to right.

Fig. 7 Bright field streakline image of viscoelastic flow past Beam 2 at varying Weissenberg numbers. (a) Wi = 5, (b) Wi = 8 and (c) Wi = 12. The flow is
from left to right.
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by increasing the beam length while maintaining the same
channel blockage ratio. The critical Weissenberg number at
the onset of the spatio-temporal variation of the re-circulation
zone upstream of the beam was found to Wicrit = 4. The resulting
oscillations of the flexible cantilevered beams, triggered by the
shedding of the unstable vortex, were observed to display two
distinct regimes. The first regime in which the amplitude and
frequency of beam oscillations increased with the Weissenberg
number was characterized by the shedding of either a single
vortex for a less flexible beam or the splitting and then shedding
of the upstream vortex as the beam flexibility increased. A
second regime was observed where the frequency of oscillations
plateaued with increasing Weissenberg number. This second
regime of beam oscillations was characterized by 3D viscoelastic
instabilities and the absence of a clear upstream vortex. The
evolution of the upstream recirculating zone was found to be
coupled with the flow-induced deformation and flexibility of the
beam. We show that the mechanism of vortex shedding across a
flexible structure is heavily influenced by the structural properties
such as beam length and flexibility. The critical onset, frequency
and amplitude of structural oscillations are a result of the strong
coupling between the elastic flow instability and the intrinsic
structural flexibility. We report the evidence of viscoelastic fluid–
structure interactions in a confined flow of a polymer solution
which vastly differentiates the resulting beam oscillation pattern
from those previously reported for un-confined flows of worm-
like micelle solutions. These conclusions illustrate the complex
nature of viscoelastic–fluid structure interactions and the future
possibilities of tuning of the microfluidic flow and/or geometric
parameters.
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