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Effect of contact angle on the orientation, stability, and assembly of dense floating cubes
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In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating
cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of
capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare
acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a
commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their
size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up,
vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy
force, and capillary forces could be measured using a force transducer as a function of cube position as it was
lowered through the air-water interface. Measurements showed that the maximum capillary forces were always
experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was
found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical
predictions were performed for the cubes floating in each of the three primary orientations to calculate the net
force on the cube. The theoretical predictions were found to match the experimental measurements well. A
cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the
predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating
face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were
found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes.
Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge,
vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large
numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.
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I. INTRODUCTION

The study of floating objects has a long history dating
back to ancient Greece and the work of Archimedes. That
work has principally benefitted the field of naval architecture
by enabling the design of ships that can float stably under
a variety of loading and weather conditions [1]. Ships and
other large-scale objects float because they are less dense than
water and utilize buoyancy forces [2]. Small-scale objects,
however, like colloidal particles or aquatic insects, can utilize
capillary forces, allowing them to float even though they are
more dense than water [3–6]. For example, the legs of water
striders are covered with many thousands of oriented tiny
hydrophobic hairs containing nanogrooves which make them
superhydrophobic with an advancing contact angle upward of
θA > 150° [7]. Because their legs are nonwetting, the interface
of the water can significantly deform under the insect’s weight
until the advancing contact angle is reached. The resulting
capillary curvature force that far exceeds the insect’s weight
can be used for both floatation and locomotion [5,8,9]. By
approximating the water strider’s leg as a cylinder, a number of
studies have investigated the effect of size, hydrophobicity, and
flexibility on its performance [5,8,9]. In this paper we will try
to understand the role of shape on capillary induced floating by
investigating the stable orientations of and capillary forces ex-
erted on a series of hydrophobic and superhydrophobic cubes.

Of particular interest in this study is the role that the
presence and orientation of sharp edges and vertices play for
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cubes in capillary-induced floating. Chang et al. [10] showed
that for objects like a vertical cylinder or a flat plate the
presence of the edge at the top of the object can have a
substantial effect on its ability to float. They showed that as
the density of the cylinder was increased it sank deeper into
the water until the contact line eventually reached the top of
the cylinder, becoming pinned by the edge of the cylinder [10].
At that point, for the cylinder to sink, the interface had to be
deformed such that the advancing contact angle was reached
on the top, horizontal surface of the cylinder. As a result, Chang
et al. [10] demonstrated that hydrophilic cylinders more dense
than water could float due to the presence of a sharp edge. In
the case of a vertical cylinder, the presence of the edge is only
relevant when the cylinder is fully submerged. This is not the
case for a horizontal cylinder floating on an interface. In that
case, large interfacial curvature is introduced as the contact
line wraps around the end of the cylinder. The presence of this
curvature has little impact on the ability of the cylinders to
float, but it does have a significant effect on the self-assembly
of multiple cylinders floating on an interface.

Capillary interactions between multiple objects floating on
an interface can lead to their self-assembly and the formation of
particle rafts [11,12]. For a dense object with a large contact
angle floating on the surface of a liquid, the weight of the
particle can deform the fluid interface downward in such a
way that the gravitation potential energy has been shown to
decrease as the objects approach [13]. The result is an attractive
force which scales like the inverse of particle separation and
causes the floating objects to self-assemble [13]. For colloidal
particles the weight of the particle becomes too small to
significantly deform the fluid interface and the gravitational
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forces become inconsequential. Even in the absence of gravity,
however, attractive interactions between particles have been
observed. These attractive interactions, which are thought to
be the result of electrostatic stresses caused by the particles
dipolar field [14] or immersion capillary forces resulting from
nonuniform wetting [13,15], can result in particle aggregation
into dense clusters [15]. In addition, for these small particles
suspended on an water-oil or water-air interface, Coulomb
interactions can result in a repulsive force between particles
that can often lead to their assembly into well-ordered
hexagonal crystalline lattices [16–18].

For nonspherical particles, high interfacial curvature has
been shown to cause cylindrical, ellipsoidal, and superellip-
soidal particles to assemble end to end to minimize the overall
interfacial curvature and energy of the system [19–22]. In
addition, the presence of a sharp vertical edge, such as that
produced by the edge of a square micropost, has recently been
utilized to locally generate large interface curvature and tem-
plate the assembly of particles on an air-water interface [19].
In this study, we investigate how floating cubes self-assemble.
Of particular interest is how the presence of sharp corners and
the initial floating orientation affects the resulting orientation,
alignment of assemblies of multiple floating cubes, as well as
the dynamics of their assembly.

II. RESULTS AND DISCUSSION

As seen by the examples in Fig. 1 and the schematic
drawings in Fig. 2, cubes were observed to float in one of
three primary orientations: face up, edge up, and vertex up. As
we will demonstrate through both experimental measurements
and theoretical predictions, the most stable capillary floating
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FIG. 1. (Color online) Cubes floating (a) 1 cm, θ = 85° face up,
(b) 1 cm, θ = 150° face up, (c) 1 cm, θ = 150° vertex up, and
(d) 6.35 mm, θ = 150° vertex up. Note that vertex up (c) and face up
(b) are stable for the same 1 cm hydrophobic cube, however, vertex
up is more stable.

FIG. 2. (Color online) The three observed orientations of the
floating cube: (a) face up, (b) edge up, and (c) vertex up.

orientation is a function of the density of the cube, the size of
the cube, and the contact angle made between the cube and the
water.

A. Experiments

An experimental apparatus was constructed to measure
the vertical forces exerted on a cube as a function of its
precise depth below the free surface of a small reservoir of
water. These measurements were performed to determine the
equilibrium floating depth and the maximum force experienced
series of acrylic cubes of different sizes, contact angles, and
orientations. The force measurements were conducted with a
10g force transducer (Futek) mounted on a vertical translating
stage as shown in schematically in Fig. 3. Each cube was
mounted to a thin brass column which was held by a collar
mounted on the force transducer. Cubes were prepared in
acrylic which has a density of ρ = 1.16 g/cm3 and mounted
in face up, edge up, and vertex up configurations. Cubes with
sides of a = 6.35 and 12.7 mm (McMaster Carr) were obtained
commercially and a = 1 cm cubes were milled from blocks of
acrylic. One set of cubes in each orientation was left in acrylic
with an advancing contact angle θa = 85°; while another set
was prepared and coated in Fluorothane WX2100 (Cytonix,
Beltsville, MD), which is a superhydrophobic coating, with an
advancing contact angle of θa = 155°. The coating thickness
added less than 2% to the smallest dimensions of the cubes
and does not measurably affect the density.

Cubes were individually mounted to the transducer, which
was zeroed with the cube held well above the surface of the
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FIG. 3. (Color online) Schematic diagram of experimental setup.

water. The force transducer thus measured the sum of the
capillary and the buoyancy forces on the cube. To determine
the net force on the cube, the weight of the cube was subtracted
from the force transducer measurements. A negative force in
Figs. 4–6 thus correspond to a net downward force and a
sinking cube. The cubes were brought down slowly to the
point where the lowest point of the cube first contacts the
water. A dial indicator with resolution of 25.4 μm was used to
measure the movement of the stage; the point of first contact
was set as height zero. The cube was then lowered in small
increments and the force measured. Finer increments were
utilized where the contact line approached edges until the
cube was fully submerged. The process was repeated several
times for each orientation with and without superhydrophobic
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FIG. 4. (Color online) Experimental measurements of the net
force as a function of vertical position for a 1 cm cube with a contact
angle of θ = 85° and a density of ρ = 1.16 g/cm3 oriented with (�)
face up, ( ) edge up, and ( ) vertex up.

coating. Additional shapes were prepared including vertical
cylinders D = 8.08 mm with circumference equal to that
of the face up cubes and a cross shape having the same
perimeter as the 6.35 mm cubes with four inside edges and
eight vertical outside edges. Each shape was tested with the
Fluorothane WX2100 coating and in bare acrylic following
the same procedure used for the cubes.

Forces on the cubes are presented in Figs. 4 and 5 for
a = 10 mm cubes in the face, edge, and vertex up orientations
and contact angles of θa = 85° and θa = 155°, respectively.
The results for the θa = 85°, a = 10 mm cube show that only
the face up orientation can float stably, as it crosses F = 0 mN
at a depth of just over h = 10 mm. As a result, this cube
floats with its entire body submerged below the level of the
air-water interface and does so by deforming the interface that
is pinned to the four edges of its vertical face. This can be seen
in Fig. 1 and was observed for denser than water cylinders
by Chang et al. [10]. That is not the case for the θa = 155°,
a = 10 mm cube. For this cube, as seen in Fig. 5, the buoyancy
and capillary forces exerted on the cube are sufficient to allow it
float in any of the three basic orientations. In all cases, the face
up orientation was found to produce the largest vertical force
and could therefore support the largest size or density cubes.
Interestingly, for the edge up and vertex up configurations or
the superhydrophobic cube, the net force on the cube crosses
F = 0 mN at two different depths. As we will see from the
simple theory presented in the next section, only the first of
these two zero net force points is stable to finite perturbation.
Additionally, although all three of the cube orientations were
found to have a stable floating depth, our direct observations of
floating cubes in Fig. 1 indicates that the vertex up orientation
is the most stable. In fact, our observations are that a freely
floating 10 mm superhydrophobic cube will very quickly orient
itself with its vertex up independent of the orientation from
which it was released. In the next section we will derive a
simple theory that will explain why the vertex up orientation
is the most stable for this particular cube and we will develop
a stability diagram based on contact angle and cube size.

B. Theory

To better understand the experimental results, a simple
theory was developed to try to predict the forces exerted on a
cube in different orientations and to determine the most stable
orientation for floating as a function of cube density, cube
size, and contact angle. For a cube to float, the capillary forces
acting on the wetted perimeter of the sphere must balance the
gravitational buoyancy force:

Fcap = Fg. (1)

So that we could match the experimental measurements, the
difference between the capillary forces and the gravitational
forces were calculated as a function of cube position for
all three observed cube orientations: face up, edge up, and
vertex up.

Starting with the face up orientation, with the water
interface along the vertical sides of the cube as shown in
Fig. 2(a), the gravitation and capillary forces can be easily
calculated by determining the length of the wetted perimeter
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FIG. 5. (Color online) Experimental measurements of the net
force as a function of vertical position for a 1 cm cube with a contact
angle of θ = 155° and a density of ρ = 1.16 g/cm3 oriented with (�)
face up, ( ) edge up, and ( ) vertex up.

and the volume of the cube submerged below the water:

Fg = g(ρw − ρcube)ha2 + gρcube(a − h)a2,
(2)

Fc = 4aσ cos θ.

Here σ is the interfacial tension of water, ρw is the density
of water, ρcube is the density of cube, a is the size of the cube,
h is the length of the cube submerged below the water, θ is the
advancing contact angle, and g is the gravitational constant. By
finding the point where the gravitational and capillary forces
balance, the floating depth of the cube below the level of the
water can be determined:

hfloat = −(4aσ cos θ − gρcubea
3)

g(ρw − ρcube)a2 − gρcubea2
. (3)

Note that Eq. (2) treats the contact line on each face of
the cube independent of each other, essentially making the
assumption that the presence of the vertical edge of the cube
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FIG. 6. (Color online) Theoretical calculations of the net force as
a function of center of gravity for a 1 cm cube with a contact angle of
θ = 155° oriented with (�) face up, ( ) edge up, and ( ) vertex up.

has little effect on the capillary forces. This, however, may
not be true especially for small cubes where sharp corners
are known to induce peaks or depressions along interfaces
depending on the contact angle [23]. A full numerical
simulation using surface evolver [24] would be needed to
fully understand the importance of the corners, however these
predictions are a useful first step that will allow us to calculate
an approximate stability diagram for cubes.

As the size or density of the cube is increased, or the
contact angle decreased, the equilibrium floating depth hfloat

will increase until the contact line reaches the top of the cube.
At that point the contact line will becomes pinned by the
edges surrounding the top face. The cube can continue to float
beyond this point by deforming the air-water interface until
the advancing contact angle is reached on the top face of the
cube causing it to sink. Once the contact line is pinned at
the edge of the top face, Eq. (2) must be modified to account
for the increased deformation of the interface. Here we make
another simplifying assumption on the shape of the deformed
interface. In order to calculate the capillary forces, the contact
angle made between the interface and the edge of the face is
determined by assuming that the radius of curvature of the
depressed interface is constant and set by the capillary length
Lcap = √

σ/ρwg. As a result, the contact angle made between
the water and the top face of the cube can be calculated as

β = π

2
− sin−1

(
Lcap − d

Lcap

)
. (4)

Where d = (h − a) is the distance the cube has been
submerged below the water level. From Eqs. (2) and (4) the
force on the cube floating with the face up can be calculated
as a function of position. The results are superimposed over
the experimental measurements in Figs. 4 and 5 for cubes with
contact angles of 85° and 155°. The results are found to match
the experimental measurement reasonably well considering
the number of simplifying assumptions. As seen in Figs. 4
and 5, the force is initially negative and increases roughly
linearly as the cube is lowered into the water. This is a result
of the decrease in the gravitational force as the cube displaces
water and becomes more buoyant. At a depth of 1 cm the shape
of the curve changes as the contact line is pinned by the edge of
the top face of the cube. For the 85° contact angle cube, a sharp
increase in the force is observed as the interface rotates from
nearly horizontal on the side of the cube to nearly vertical. For
the 150° contact angle cube the interface deforms and rotates
through vertical as it approaches 150° causing a maximum in
the force with increasing cube depth. In both cases, the face
up cube can float stably as a zero net force condition can be
found for both contact angles.

The predictions for the forces acting on an edge up or vertex
up cube floating on water are somewhat more complicated
because of the complexity of the shape. For an edge up cube,
two sides are vertical and two sides are sloped at 45° angles.
With the cube more than halfway submerged in the water, the
forces become

Fg = (ρw − ρcube)gha2 + 1
2ρcubega3 + (a2 − h2)ρcubega,

Fc = 4hσ cos θ + 2aσ cos(θ − 45◦). (5)
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Here we again treat each side of the cube independently
and ignore the edge effects on the forces. For the purposes
of comparison to the experimental results, the forces are also
calculated when the cube is less than halfway submerged. As
was the case for the face up cube, the contact line will become
pinned on the horizontal edge as shown in Fig. 2(b). In our
calculations we assumed the line remained pinned until the
interface had been deformed such that the advancing contact
angle was met on the two 45° faces. As seen in Figs. 4 and 5,
our predictions show an increase in force with increasing depth
and a kink in the curve when the interface becomes pinned at
the horizontal edge midway up the cube. Our calculations also
show that the cube will not float stably edge up with a contact
angle of 85° but will with a contact angle of 155°. These predic-
tions again match the experimental measurements very well.

Finally, calculations were performed for the cube with its
vertex up. In this configuration the top of the cube becomes a
trirectangular tetrahedron when all but the last 0.5 cm of the
cube is submerged in the water. In this state a simple solution
can be found for the gravitational and capillary forces:

Fg = 4
3 (ρw − ρcube)gh3 + (

a3 − 4
3h3

)
ρcubeg,

(6)
Fc = 6

√
2hσ cos(θ − 45◦).

Extending this simple theory beyond this point seemed a
bit speculative because of the presence of so many edges and
surfaces at different angles. Even still, this theory proved useful
because as seen in Figs. 4 and 5 it was able to predict the
maximum in the net force and clearly demonstrate that the cube
will not float stably vertex up with a contact angle of 85° but
will with a contact angle of 155°. An interesting observation
for both the edge up and vertex up configuration is that unlike
the face up cube, as the cube moves deeper into the water, the
wetted perimeter goes down. As a result, the capillary forces
go down as the cube sinks deeper into the water. This can be
seen quite clearly for the case of the 155° vertex up cube. In
this case, the net force has a clear maximum and crosses the
zero net force line twice. Only the first of these two floating
heights is stable. A cube floating at the second, lower, zero net
force height will sink if it is perturbed downward from this
point and move to the first zero net force height if perturbed
upward.

The question then arises as to which of the three floating
configurations is most stable and which configuration will the
cube chose. In order to determine the stable orientation, the
center of gravity was calculated for each cube orientation.
The results for the 155° contact angle cube are presented in
Fig. 6. The most stable orientation will be the orientation with
the lowest center of gravity or the lowest gravitation potential
energy when the net force on the cube is zero. Here one can
observe that for a 1 cm cube with a density of 1.16 g/cm3 and
a contact angle of 155° that is the cube with the vertex up. To
understand the most stable configuration for a more general
case, a stability diagram was generated for cubes ranging in
size from 0.5 to 1.5 cm as a function of contact angle for a
fixed density of 1.16 g/cm3. The results are shown in Fig. 7
with the experimental observations superimposed over the
theoretical predictions. A similar stability diagram could be
constructed with a fixed cube size and density variation as
increasing density is consistent with increasing cube size.
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FIG. 7. (Color online) Theoretical orientation stability diagram
for a cube of density ρ = 1.16 g/cm3 as a function of contact angle
and size of the cube. The most stable states are presented as (�) face
up, (•) edge up, (�) vertex up, or no stable state resulting in the cube
sinking ( ). The large filled symbols superimposed over the stability
diagram at θ = 85° and 150° are the floating orientations observed in
the experiments.

At low contact angles the cubes are all found to sink. The
critical contact angle beyond which the cubes will float is
found to increase with increasing cube size, or equivalently
increasing density. In all cases, the cubes are initially found
to transition from sinking to floating face up with increasing
contact angle. The stability diagram shows that for cubes larger
than 1.05 cm on a side, the face up orientation is the only stable
floating orientation. However, below 1.05 cm, a band of vertex
up orientation becomes stable at large contact angles. This
band is found to broaden as the size of the cube is decreased.
Interestingly, the vertex up orientation ceases to be the most
stable orientation at very large contact angles for cubes close
to 1 cm on a side. This is because in the vertex up configuration
the angle of the cube’s faces is 45° from vertical. So as the
contact angle increases past 135° the vertical component of the
capillary forces on the cube decreases and the vertex up cube
eventually becomes unstable. At these high contact angles,
a narrow band of stable edge up orientations become stable
followed by the re-emergence of face up stable cubes as the
contact angle gets close to 180°.

Experiments with loose cubes validate the above analysis.
As seen in Fig. 7, a 12.7 mm acrylic cube with contact angle
of θa = 85° will sink most of the time, although, with great
care and a little luck, it will occasionally float face up. With
θa = 155°, the 12.7 mm acrylic cube was observed to float
face up. With θa = 85°, both the 10 and the 6.35 mm cube
were observed to float face up while both of these cubes
were observed to float vertex up when their contact angle
was increased to θa = 155°.

Finally, in Fig. 8 the effect of vertical edges is investigated
by comparing face up cubes, face up cylinders, and face up
crosses all made from acrylic with an advancing contact angle
of θa = 85°. The cube was 6.35 mm on a side. All three shapes
were designed to have identical wetted perimeters and weight.
Their only difference was the number of vertical edges and
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FIG. 8. Measured force as a function of height for a face up
6.35 mm cube (�), cylinder (•), and cross (+) with equal wetted
perimeters θ = 85°.

sharp corners present along their top faces. The presence of the
sharp corners on the face of the cube and the cross was found
to have a negative impact on the maximum capillary force that
could be generated as the object submerged below the level of
the air-water interface. The cylinder, with no vertical edges and
no corners at the top face, was able to sustain the highest forces
and displacements before sinking. This effect was found to
develop at large depths, h > 6.35 mm, meaning the additional
force and displacement borne by the cylinders comes as the
contact line is attempting to turn the corner onto the top face of
the shape. In fact, up to this point, all three shapes appear to be
performing equally well. These observations indicate that the
sharp corners at the top surface of the shape are destabilizing,
inducing high interface curvature and providing a point of

FIG. 9. Representative images for assemblies of (a) and (b) two
and (c) many 0.635 mm, θ = 85° cubes floating face up.

failure from which the contact line can advance across the
face causing the object to sink.

C. Assemblies of floating cubes

A series of experiments were performed to investigate the
assembly of dense cubes floating at the air-water interface. In
these experiments, from two to twenty 6.35 mm cubes were
floated on an air-water interface and assembly process was
observed. An aluminum plate with a regular array of 3.2 mm
holes spaced 4.8 mm apart was used to set the initial orientation
and spacing of the cubes. The cubes were arranged between
15.9 and 31.8 mm apart on center using the holes on the plate
as a guide. Initial spacing was found to have little impact on the
final assembly of the cubes. When studying three cubes, they
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FIG. 10. (Color online) Observation frequency of two cube as-
semblies for the 6.35 mm, θ = 150° cubes floating vertex up.
Representative images are presented for each of the four major
assemblies: face-to-face, vertex-to-face, edge-to-edge, and vertex-
to-vertex.
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were initially arranged on the plate as an equilateral triangle,
while four or more cubes were arranged as a square lattice. To
insure an initial vertex up orientation for the superhydrophobic
cubes, a corner of each cube was initially placed within one
of the holes on the perforated plate. The plate, which can be
seen in Fig. 7, was then slowly lowered into the water so that
the cubes could be floated and gently released with minimal
disturbance to the air-water interface.

Assemblies of cubes with an advancing contact angle of
θa = 85°, which prefer to float face up, were studied first.
Independent of their initial orientation or spacing, when two
face up cubes were released, they were found to rotate such
that they became aligned along the diagonal of their faces
as they approached each other. This is physically intuitive
as the largest interfacial curvature is found near the vertical
edges of the face up cubes. This also agrees with the theory
developed by He et al. [22] who showed that the attractive force
between two capillary floating object scales like

√
a/Lcap with

a proportionality coefficient that depends on the mean radius
of curvature at the closest points between the two objects. The
two cubes typically made initial contact edge-to-edge before
rotating and assembling face-to-face. This observation also
agrees with the predictions of He et al. [22]. An example of
such a two face up cube assembly process is shown in Figs. 9(a)
and 9(b). The addition of three or more cubes was found to
increase the complexity of the assembly process, but the final
raft nearly always formed a square lattice pattern with only
a few defects typically around the edges. An example of a
typical raft resulting from the assembly of 40 face up cubes is
shown in Fig. 9(c).

Assemblies of cubes with an advancing contact angle of
θa = 150°, which prefer to float vertex up, were studied
next. The assembly of the vertex up cubes was much more
complex and varied than the face up cubes. For the face
up cubes, a tight packing was achieved on the interface

through a rotation around the vertical axis so that cubes
could assemble face-to-face as seen in Fig. 9(a). However,
for the cubes floating with their vertex up the presence of the
cube beneath the surface of the water represents a physical
hindrance to dense packing at the interface. As a result, the
cubes which initially float with their vertex up were observed
to rotate into different orientation, edge up, face up, or a
tilted vertex up orientation, as they approached each other
on the interface, came into contact, and assembled into a raft.
Starting with two cubes floating vertex up in water, a number
of prominent configurations were observed. These included
cubes assembled face-to-face, vertex-to-vertex, edge-to-edge,
and vertex-to-face. In Fig. 10 a histogram is presented showing
the relative frequency of each of these assemblies from
well over 50 individual experiments. As seen in Fig. 10,
edge-to-edge assembly was the most common accounting
for more than 40% of the assemblies. Face-to-face was the
next most common assembly. In each of these cases, the
two cubes rotate away from a vertex up orientation into an
edge up orientation. In both the vertex-to-face and the less
common vertex-to-vertex orientation both cubes in the final
assembly maintain their vertex up alignment, although with a
different tilt. The addition of three or more cubes increased
the complexity of the assembly process as seen in Fig. 11.
Unlike the face up cubes, the orientation and alignment of
the vertex up cubes in the final particle raft was found to
be quite complex and varied as the raft was build up from
the many different possible orientations shown in Fig. 10. The
final statistics of assembly orientation were similar in three
or more cube assemblies as they were in two cube assemblies
with the edge-to-edge assembly favored more than 40% of the
time. Examples of some typical vertex up cube assemblies are
shown in Fig. 11 both for three cubes [Figs. 11(a)–11(c)] and
eight cube [Figs. 11(d) and 11(e)] assemblies. For both the
face up and vertex up assemblies, the final rafts were quite

FIG. 11. Observations of three cube and eight cube assemblies for the 6.35 mm, θ = 150° cubes initially floating vertex up.
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stable. Moderate disturbances produced through vibrations or
interfacial waves had little impact on the arrangement and
orientation of the cubes in the raft.

III. CONCLUSIONS

The effect of contact angle, density, and size on the
orientation and stability of floating cubes was investigated
with both experimental measurements and the development of
an analytical theory. All cubes studied in these experiments
were acrylic with a density of 1.16 g/cm3, more dense
than water, and were able to float because of the capillary
stresses introduced by deformation of the interface at the
free surface of the water. The advancing contact angle of
the bare acrylic cubes was measured to be 85° which was
increased to an advancing contact angle of 150° by painting
the cubes with a commercially available superhydrophobic
paint.

Depending on their size, density, and contact angle,
the cubes were observed to float in one of three primary
orientations: edge up, vertex up, and face up. A series of
theoretical calculations were performed for the cubes floating
in each of the three primary orientations to determine the net
force on the cube. Cubes would then be expected to float in
the orientation that maximizes the vertical component of the
capillary force while simultaneously providing a stable center
of gravity. A cube stability diagram of cube orientation as a
function of cube contact angle and size was prepared from the
predictions of theory. The theoretical predictions were found
to be in good agreement with experimental observations on
floating cubes. An experimental apparatus was constructed to
measure the sum of the gravitational force, buoyancy force,

and capillary forces using a force transducer as a function
of cube position as it was lowered through the air-water
interface at the free surface. Measurements showed that the
maximum capillary forces were always experienced for the
face up orientation. However, when floatation was possible in
the vertex up orientation, it was found to be the most stable
cube orientation because it had the lowest center of gravity.
Experiments with crosses and circular cylinders showed that
corners on the edge around the top face of the shape facilitated
the ability of the contact line to turn the corner onto the
horizontal surface of the shape, at which point the contact line
advanced rapidly across the top surface, sinking the shape. For
the sizes and shapes studied, the number of vertical edges had
no influence on the force exerted on the cube before the contact
line reached the top edge of the shape.

The assembly of cubes floating both face and vertex up
were also studied for assemblies of two, three, and many
cubes. Cubes floating face up were found to assemble face-
to-face and form regular square lattice pattern with no free
interface between cubes. Cubes floating vertex up were found
to assemble in a variety of different arrangements including
edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-
face with the most frequent assembly being edge-to-edge.
Large numbers of vertex up cubes were found to pack with a
wide distribution of orientations and alignments. In all cases,
assembled rafts were found to be quite stable.
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