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’ INTRODUCTION

The dynamics of polymer chains in entangled melts has been a
major research focus for the past 40 years,1�9 but few reports
directly investigate the entanglement of polymer chains in a
confined regime.10�12 Placing polymer molecules into confined
geometries provides a way to probe the effects of confinement on
the conformation and mobility of chains and polymer�surface
interactions. In the bulk, entangled polymermelts are modeled as
ideal Gaussian chains where their random walk motion has a
length scale dependent on the molecular weight, Mw, of the
polymer.3 This characteristic length scale of a polymer chain can
be expressed by the root-mean-squared end-to-end distance, Ree,
whereRee∼Mw

1/2. Because of random thermalmotions, an ideal
chain will explore and occupy a pervaded volume, Vp ∼ Ree

3. In
this volume a polymer chain will have specific interactions with
itself and many other chains. Some of these interactions being
entanglements or “knots” with other chains, which restrict chain
mobility. These entanglements are responsible for many impor-
tant characteristic polymeric properties including very high melt
viscosities, toughness, and elastomeric viscoelasticity.3,11

In ultrathin polymer films (less than 100 nm in thickness) the
film thickness, h, approaches the natural length scale of a polymer
chain (Ree), and as the film thickness decreases, the pervaded

volume allowed for a chain’s conformation also decreases.
Because of increasing confinement, segments from other chains
are excluded from a specific chain’s pervaded volume, resulting in
a reduced interchain entanglement density despite a constant
overall entanglement density.11 In this confined regime, changes
in polymer conformation can result in large deviations in phase
behavior and dynamics from the bulk.

Confined systems can be explored by studying the formation,
evolution, and breakup of suspended fibers formed from the
melting of free-standing polystyrene ultrathin films. Hole forma-
tion in viscous thin films has been studied in detail in the literature,
as in the case of dewetting.13�20 The nucleation of holes in
suspended polymeric films in the melt state has been studied by
Rathfon et al.21 as well as Croll et al.22 and is found to exhibit a
classic free energy barrier relationship, in which hole density, Fh, is
proportional to the film thickness, h; thus Fh ∼ exp(�h2). The
holes expand exponentially under capillary forces and impinge
upon each other to form a branched network of suspended fibers.
By applying a model for the viscoelastic-capillary thinning and
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ABSTRACT: A study of the confinement effects on chain
entanglements in free-standing ultrathin (<100 nm) polymer
films is presented. Chain entanglements are probed by deter-
mining the lifetime and breakup time scale of a branched
network of suspended fibers formed from the annealing of
these films. Films of polystyrene (between 50 and 100 nm) cast
via flow coating are suspended atop lithographically patterned
arrays of pillars. The films are then annealed above the glass
transition temperature, where holes are randomly formed. The
holes expand exponentially due to capillary forces and impinge
upon each other to form a suspended, branched network of fibers. The thinning of fibers as well as the lifetime and breakup of this
fiber network is observed via optical microscopy. Amodel for the viscoelastic-capillary thinning of fibers can be applied to determine
a time scale for the breakup of individual samples. The decay of this time scale, below a critical parent film thickness, shows a
transition between interchain and self-entanglements when crossing into a confined regime, illustrating a significantly decreased
interchain entanglement density and breakdown in the entangled network of the polymer melt. This analysis of confinement effects
on chain entanglement extends the understanding of ongoing studies into suspended fiber formation from the melting of free-
standing polymer thin films. A better knowledge of chain entanglements in confined systems will make future fabrication of
nanoscale suspended fibers, new architectures, and subsequent devices more controlled and accessible.
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breakup of fibers in this network, a characteristic time scale can
be derived.

In this study, fiber thinning as well as the branching lifetime
and breakup of suspended fibers is investigated via optical
microscopy. Ultrathin polystyrene films (h = 50�100 nm), cast
via flow coating, are suspended atop lithographically patterned
arrays of pillars. The films are then annealed well above the bulk
glass transition temperature, Tg, of the polymer, randomly
forming holes which expand to form a branched network of
fibers. Details of hole expansion21,23�30 of polymeric thin films
have been researched thoroughly in the literature. In this report,
the thinning of fiber radius is measured as a function of time and
compared for samples of varying molecular weights and thick-
nesses. The fiber radius evolution is used as a tool to explore
rheological properties of these samples. The characteristic time
scale for the decay of the branched structures is calculated and
compared across the range of film thicknesses. This breakup time
scale is dependent on entanglement molecular weight; thus, a
transition into a confined regime where interchain entangle-
ments are greatly reduced is shown, evidenced by a correspond-
ing drastic increase in the breakup time scale.

’RESULTS AND DISCUSSION

Thin Film Preparation. “Flow coating” is a technique, devel-
oped by Stafford et al., to fabricate ultrathin polymer films with a
gradient thickness in the submicrometer to nanoscale regime, in
which a bead of polymer solution is sandwiched between a blade
and is drawn across a substrate.31,32 A schematic of thin film
sample preparation for this branching study is given in Figure 1.
Gradient thickness polystyrene films, from approximately
50�100 nm in thickness, were cast from 0.75�1.5 wt % solutions
in toluene using an acceleration of 6 mm/s2. Monodisperse

polystyrene standard samples were used (PS, Mn = 123, 400,
2000, 6000 kDa, Mw/Mn = 1.08, 1.06, 1.20, 1.22, respectively,
Alfa Aesar). After flow coating, film thicknesses were measured
across the film’s gradient profile via a UV�vis interferometer
(Model F20, Filmetrics, Inc.). Films were then floated off the
silicon substrate onto clean water (Milli-Q) and subsequently
transferred atop a lithographically patterned array of pillars. The
pillars have dimensions of 15 μm in diameter and 75 μm spacing.
Films were dried and annealed just below the Tg of the polymer
film under vacuum for 24 h to remove water and residual
solvents.
Fiber Thinning. Ultrathin film samples with varying thick-

nesses were thermally annealed using an enclosed Linkham
LTS350 microscopy thermal stage and imaged via a Zeiss Axio
Imager M2m optical microscope at 50� magnification. Film
sampleswere taken from room temperature andheated at 30 �C/min
to the annealing temperature, 130 �C for 400 kDa PS, and held
while hole formation, subsequent expansion, fiber formation, and
branching/fiber breakup occurred. Samples of other molecular
weights were annealed at temperatures to match the zero shear
rate viscosity, η0, of this experiment (1.73 � 109 Pa 3 s), calcu-
lated using the empirical WLF equation (116, 161, and 196 �C
for 123, 2000, and 6000 kDa, respectively). Previous studies by
Rathfon et al. have shown a new approach toward the fabrication
of suspended fibers from the melting and breakup of suspended
ultrathin, polymer films.21,33 Upon heating above the Tg of
the polymer film, random hole nucleation occurs spontaneously
in the suspended films either through a process analogous to
spinodal decomposition or from defects such as dust or density
inhomogeneities (<0.2 μm).23,34 Holes observed in this report
form spontaneously in the melt in random locations, consistent
with literature findings,23,26,30 and not at the pillar edges. These

Figure 1. Process for fiber formation via flow coating and thin filmmelting and a representative image of fiber branching (h = 60 nm, 400 kDa PS). Some
fibers have thinned and necked beyond the point of being visible at 50� magnification, which appear as dangling ends. The red uniform circles in the
image are the supporting pillars, ∼15 μm in diameter with 75 μm spacing.
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holes then expand at an exponential rate due to surface tension
driven capillary forces competing with viscous dissipation resist-
ing the flow of the polymer.23�28 As these holes expand,
eventually they impinge upon other holes, where the hole edges
meet, forming suspended “bridges” or fibers.
The elastocapillary thinning and breakup of slender viscoelas-

tic filaments or fibers has been studied in detail.35�38 For viscous
Newtonian fluids, the time scale for capillary thinning can be
expressed as the capillary time tcap = η0R/σ, where η0 is the
viscosity, R is the radius, and σ is the surface tension. However, in
elastocapillary thinning, fibers neck down and elongate due to
capillarity and undergo strong extensional flows which result in
large deformations of the polymer molecules leading to large
elastic stresses. The strain rate, ε·, for this capillary thinning, fluid
filament can be given as

_ε ¼ �2
d lnðRmidðtÞ=R0Þ

dt
ð1Þ

where Rmid is the midfilament radius and R0 is the initial radius of
the filament. For an Oldroyd-B fluid, Entov and Hinch37 showed
that the resulting extension rate is constant and given by
ε· = 2/(3λ), where λ is the Oldroyd relaxation time constant. Anna
and McKinley35,36 later showed that this result is consistent for a
number of other viscoelastic constitutive models at moderate
strains before the onset of finite extensibility effects (FENE). This
includes multimode FENE models as well as the Rouse�Zimm
model. However, in each case the Oldroyd relaxation time is
replaced by the longest (Zimm) relaxation time, λZ. The Rouse�
Zimm model predicts this relaxation time to scale with a depen-
dence on chain length with the well-known expression, λZ∼Mw

3ν,
which for a theta solvent (ν = 1/2) is stated λZ ∼ Mw

3/2.
The total deformation at a given time can be given as the

Hencky strain:

εðtÞ ¼
Z t

0
_εðt0Þ dt0 ¼ 2 lnðR0=RmidðtÞÞ ð2Þ

Equation 1 can be rewritten to obtain a prediction for how the
radius of a viscoelastic fluid filament will decay with time:

Rmid

R0
¼ GR0

σ

� �1=3

expð�t=3λZÞ ð3Þ

whereG is the elastic modulus, and thus the prefactor in eq 3 can
be viewed as the dimensionless elastocapillary number GR0/σ.
This model for the evolution of a viscoelastic fluid filament as a
function of time is shown in Figure 2a. The evolution of fiber
radius versus time was measured for fibers formed from films
with various molecular weights and thicknesses. A representative
plot of fiber evolution, showing the exponential decay of fiber
radius versus time, for a sample with 100 nm thickness andMw =
400 kDa, is given in Figure 2b. Fiber radius,Rmid, wasmeasured at
the midpoint of each fiber from optical microscopy images with
an error of (0.2 μm. Initial fiber radius values measured were
typically 30 ( 3 μm. Each data point in the exponential decay
curves is from an average of fiber radii from a minimum of five
representative fibers. The Rmid(t)/R0 curve is fitted via an
exponential decay function and accurately depicts the exponen-
tial decay of fiber radius for each sample.
The exponential decrease in the fiber radius is well-described

with the elastocapillary balance presented in eq 3. However,

Figure 2. Model for the evolution as a function of time for an elastic fluid filament stretched between two surfaces (a), adapted from McKinley.36 The
dashed line represents the linear response of a Newtonian fluid. A representative plot of the exponential thinning of capillary fibers (b), from a parent film
of 100 nm thickness, (400 kDa PS) with an inset of a thinning fiber. Equation 3 was fitted to the data using least-squares-regression.

Figure 3. Representative data for the evolution of fiber radius as a
function of time, in a semilog plot, exhibiting two regimes of thinning:
exponential at early times, as seen by the linear region at t = 0�300 s, and
transitions to linear at long times, with a different characteristic time
scale (h = 65 nm, 400 kDa PS). Note that at t > 500 s, a linear region
should appear curved in a semilog plot; however, the slope of this region
is small and imperceptible on the scale shown. Equation 4 was fitted to
the data using least-squares regression.
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Entov and Hinch show that radius evolution will approach a
linear behavior at late times due to polymer chains becoming fully
stretched, no longer being capable of resisting the increasing
capillary pressure.37 At this time, the filament thins similarly to a
very viscous Newtonian fluid and approaches a steady-state
extensional viscosity, ηh¥. In order to model the two regimes of
fiber radius evolution, the following equation is used:

RmidðtÞ
R0

¼ Ae�t=B � Ct þD ð4Þ

where A, B, C, and D are fitting parameters. The value of B is
accordingly related to the longest relaxation time, λZ, and σ/C
determines the steady-state extensional viscosity, as will be seen
in eq 5. Equation 4 is fitted to each sample in order to better
model the radius behavior over the two thinning regimes. Figure 3
shows a representative plot of fiber thinning behavior with the
model eq 4 applied (see Supporting Information for all curves),
clearly showing both the initial exponential decay of fiber
diameter then the linear response at long times.
The transient extensional rheology of the PS samples is

contained within the fiber radius evolution data and can be
reexamined in the form of the transient extensional viscosity or
apparent extensional viscosity, ηhapp. The forces on the filament
form a balance of viscous and viscoelastic stresses with the
capillary pressure; thus, by substituting eq 1, ηhapp is determined
to be

ηapp ¼ Δτ
_ε

¼ σ=RmidðtÞ
_εðtÞ ¼ �σ

2dRmid=dt
ð5Þ

where Δτ is the tensile stress difference on the filament and ε· is
the corresponding strain rate.35,36 Thus, ηhapp is inversely related
to the first derivative of the fiber radius. Experimental data of fiber
radius over time were differentiated in order to determine the
evolution of apparent extensional viscosity. In Figure 4, ηhapp is
plotted versus Hencky strain for samples with varying molecular
weights and parent film thicknesses, thus different initial strain
regimes. These initial strain regimes were studied in a previous
report where shear viscosity values, for initial hole expansion
toward the formation of fibers, were on the order of 106 Pa 3 s with
shear strain rates of ∼0.5 s�1.33 The resultant Trouton ratio
values for the present study would range between 101 and 104,

consistent with Anna and McKinley’s findings for thinning of
elastocapillary filaments.35 It is apparent that a steady-state
extensional viscosity plateau was not observed in these fiber
thinning experiments. A higher Hencky strain regime could yield
these values; however, in the current report, fiber networks
typically began to fail before the observation of a steady-state
plateau. A recent technique by Arratia et al. shows the acquisition
of transient extensional viscosity for polymeric filament thinning
in a microfluidic channel, allowing for the attainment of the
“elusive” steady-state extensional viscosity.39,40 The evolution in
ηhapp for samples of varying parent film thicknesses did not change
greatly, indicating fibers thinned similarly, for samples of the
same Mw, regardless of the differences in their initial strain
regimes. This observation is consistent with experimental ob-
servation of capillary breakup of polymer solutions andmelts and
with the predictions of constitutive models like the Oldroyd-B
and FENE dumbbell models discussed previously.
BranchDecay.To further probe the effects of confinement on

entanglements and the polymer dynamics in free-standing,
ultrathin PS films, the evolution of fibers with respect to
branching density was investigated. From the expression for
the evolution of an elastic fluid capillary fiber (eq 3), the critical
time to breakup, tc, can be expressed as

tc ¼ 3λ ln
4
3
L2ðGR0=σÞ4=3

� �
ð6Þ

where λ is the longest relaxation time for the fluid fiber and L is
the finite extensibility parameter. Equation 6 is derived from eq 3
as the evolving fiber radius, Rmid, approaches zero; however, the
finite extensibility of the polymer chain must be considered.35,36

Thus, tc gives a time based model for the breakup and decay of
the fiber network. Equation 6 shows that the critical time to
breakup is dependent upon the longest relaxation time, tc ∼ λ.
Because tc is proportional to λ, the breakup of fibers in the bulk is
dependent upon Mw, which relates directly to the previous
statement of λ ∼ Mw

3ν. Thus, there should be a strong correla-
tion between the relaxation time and the effective molecular
weight of the chains, dictated by their interchain entanglements,
while in a regimewith no confinement effects.With confinement,
interchain entanglements can be reduced having an influence on
the effective molecular weight and thus the relaxation time of the

Figure 4. Apparent extensional viscosity, ηhapp, versus Hencky strain, for samples with varying molecular weights (a) and thicknesses (b). Samples
with varyingMw had a constant parent film thickness of h = 65 nm, whereas samples with varying thickness had a constantMw = 400 kDa; pillar spacing
was 25 μm.
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fibers. As the breakup of the fiber network, relaxation time, and
the decay of branching in the bulk are all correlated, the following
expressions can be stated:

FbðtÞ
Fb0

∼ expð�t=τbÞ ð7Þ

τb ∼ λ ∼ Mw
3ν ð8Þ

where Fb(t) is the branching density as a function of time,
normalized by the initial branching density, Fb0, and τb is the
characteristic branching density time scale.
The decay of the branched fiber network is monitored via

optical microscopy. From the images, the number of branches
and subsequently branching density can be calculated versus
time. A representative plot of normalized branch density as a
function of time is shown in Figure 5. Branching density falls off
linearly in the initial stages of fiber network breakup, and then at
long times, breakup slows and the time scale decays. As shown in
Figure 5, applying a linear fit to the initial linear portion of the
branching data, the characteristic branching density time scale
can be acquired, Fb(t)/Fb0 ∼ �t/τb, as the inverse of the
tangential slope at t = 0 is equal to the exponential decay
constant. A linear fit was chosen to analyze branching density
decay due to the time frame of branching experiments at larger
thicknesses not completely encompassing the exponential decay
of these slower yielding samples. The inset in Figure 5 shows the
initial linear region in more detail. Because the branching density
time scale is dependent upon tc (and thus λ andMw), the slope of
the linear portion of the graph should be similar for samples of
the same molecular weight, unless the parent film thickness
enters the confinement regime. In the confinement regime we
would expect a dramatic increase in the magnitude of this slope,
thus a decrease in the branching density time scale, indicating less
entangled chains, which would contribute to greater yielding and
breakup of the fibers.
Confinement Effects on Chain Entanglement. Data for the

breakup of fiber networks from parent films with thicknesses
varying from 50 to 100 nm were acquired. Branching time scales
for this series of films with constant Mw (400 kDa PS) were

collected. The plot of linear branching time scales as a function of
thickness shows that below a critical film thickness the branching
density time scale falls to far less than the expected bulk value
(Figure 6). This critical thickness corresponds to the changeover
to where the initial film is in a confined regime in which chains
have reduced interchain entanglements and thus the film thins,
yields, and undergoes breakup more readily in the subsequent
flow, indicated by a decreased branching density time scale. In
the bulk, τb should be directly proportional to the relaxation time
of the material, which correspondingly is proportional to the
effective Mw. However, once chains have been confined, the
branching density time scale and thus the relaxation time deviate.
The decrease of the branching density time scale clearly shows its
dependence on the effective entanglement molecular weight and
therefore the relative entanglement density at a given thickness,
ν(h), thus τb ∼ ν(h). Jones and co-workers illustrate this same
confinement regime in their work.11 They report the same
transition to reduced interchain entanglements and increased
yielding from films with initial thicknesses below ∼60 nm. This
difference in yielding behavior between thick and thin films is
attributed to a network that is “more loosely entangled”.
The amount of confinement of polymer chains in ultrathin

films can be expressed as a ratio of film thickness versus the
polymer length scale, Ree; thus h/2Ree, where h/2Ree = 1, would
represent a film with the thickness of one chain’s pervaded
volume diameter. 2Ree was calculated to be∼32 nm for 400 kDa
PS according to Ree = N1/2a, where N is the number of polymer
repeat units and a is the monomer length (approximated to be
2.55 Å).3 Considering the confined architecture of a thin film, a
chain at an air/polymer interface is perturbed and reflected by
this boundary such that the pervaded volume of a chain is
reduced.1,11 This perturbation is approximated to be up to 1/2
the bulk pervaded volume. As a chain is perturbed by an interface,
the interchain entanglements will be reduced due to the reduc-
tion in the allowed pervaded volume. Thus, in a film with two
interfaces, such as in a free-standing film, as a film gets thinner,
chains will interact with both interfaces and the reduction in
pervaded volume and entanglement density becomes more
severe. Once a region is entered where films are sufficiently thin,

Figure 5. Normalized branch density, Fb/Fb0, as a function of time, t,
showing the exponential decay of branching (h = 60 nm, 400 kDa PS)
with the initial portion fit with the linear expression, Fb(t)/Fb0∼�t/τb.
The inset shows finer detail of the initial linear region of branch
density decay.

Figure 6. Branching density time scale, τb, as a function of film
thickness, h, Mw = 400 kDa. The red line is shown to illustrate the
deviation from bulk behavior. Thickness is plotted in terms of a
dimensionless ratio, h/2Ree, along the top axis.
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self-entanglements will dominate and few interchain entangle-
ments will exist, resulting in a drastically reduced network of
chains, and thus a more fragile film. Figure 6 shows this reduction
in entanglements corresponding to a dimension approximately
twice the calculated diameter of a chain in the bulk. Below this
dimension perturbation of the pervaded volume of bulk chains is
expected to have a significant contribution, as chains would have
to begin to pack into a confined regime with the influence of the
two air/polymer interfaces. Thus, the entanglement density of
the parent film and therefore the time scale for the breakup of the
fiber network will be greatly reduced.
The reduced interchain entanglement density seen can be

compared to other studies where confinement is shown to affect
the chain order, mobility, and dynamics at the surface boundary
layer. Baumchen et al. show how interfacial entanglement density
affects boundary conditions in polymer flow.12 Slippage is
directly linked to chain entanglements and a reduced interchain
entanglement density at the solid�liquid interface is found. The
onset of slippage correlates to the critical chain length for
entanglements where the slip length dependence on molecular
weight corroborates the description by de Gennes for the sliding
chain end model.4 This reduced entanglement density at the
boundary layer is similar to our study where a suspended film can
be thought of as having two boundaries and thus two surfaces
with reduced entanglements. When a film becomes sufficiently
thin, these boundary layers can overlap, causing reduced en-
tanglements throughout the film, leading to rapid breakup and a
reduced branching density time scale. Bodiguel et al. analyze the
dewetting of thin polymer films on a liquid substrate and show a
reduced viscosity in thin polymer films.41 Bodiguel et al. suggest
that reduced entanglements in the surface layer allow modes
other than reptation, and thus, the viscosity would be reduced in
a single surface layer on the order of the coil size. This viscosity
reduction, attributed to a reduced interchain entanglement
density, is found to depend only on the ratio of film thickness
to coil size of the polymer chain. Thus, we would expect a film
with two surface layers, such as the free-standing films in this
study, to show entanglement reductions near or below a thick-
ness corresponding to two polymer coils as there are two free
surfaces. In free-standing films, Dalnoki-Veress et al. showed
Tg reduction is dependent on Mw but with no direct link to coil
size,2 contradictory to the findings of Bodiguel et al. where
reduced viscosity and thus reductions of entanglements near the
surface were directly dependent on coil radius. These discrepan-
cies on coil dependence indicate that shifts in Tg and entangle-
ment reductions are distinct phenomena which operate on
length scales affected differently by confinement.

’CONCLUSIONS

The thinning of suspended fibers from the melting of free-
standing polystyrene thin films was determined to obey the
model for the capillary thinning of viscoelastic fluid fibers. The
technique of monitoring the evolution of viscoelastic free-stand-
ing polymer fibers in the melt can prove to be a useful tool in the
study of polymer rheological properties, such as the longest
relaxation time of a polymer chain, the apparent extensional
viscosity, and the steady-state extensional viscosity. The decay of
branching in suspended fiber networks formed by the melting of
free-standing polystyrene thin films was determined to be a
useful tool in studying the effects of confinement on chain
entanglement. Fibers produced from thin films in an initial

confined regime, below a critical film thickness, breakup in
response to an exponential strain with a characteristic time scale
in a manner consistent with a drastic reduction in the interchain
entanglement density. The entanglement density was found to
decrease in a regime below a corresponding critical parent film
thickness, comparable to the dimensions of bulk polymers,
h/2Ree < 2. This model agrees with previous explorations and
experiments with models for the perturbation of the pervaded
volume of polymer chains when in contact with interfaces.1,11 As
a film becomes sufficiently thin, interfaces dominate and the
proportion of self-entanglements increases and interchain en-
tanglements decrease, resulting in a much less stable network of
chains. The presented analysis of confinement effects on chain
entanglement extends the understanding of ongoing studies into
suspended nanoscale fiber formation from the melting of free-
standing polymer thin films.

’ASSOCIATED CONTENT

bS Supporting Information. Fiber radii plots of exponential
thinning for all samples; branch density versus time plot for all
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