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a b s t r a c t

High aspect ratio three-dimensional nanostructures are of tremendous interest to a wide range of fields
such as photonics, plasmonics, fluid mechanics, and biology. Recent developments in capillary force
lithography (CFL) have focused on taking advantage of the formation of menisci to enhance the function-
ality of small size-scale structures. In this study, simulations of the three-dimensional shapes of equilib-
rium menisci formed in capillaries with various cross-section geometries are studied. The capillary cross
sections include regular polygons and equilateral star-shapes with sharp and rounded corners. The char-
acteristic dimension of the physical lithography systems which are simulated is on the order of 100 nm.
At such size-scale, surface-tension-effects are predominant, and as a consequence, our simulations dem-
onstrate that nanometer-sized structures with great application potentials can be fabricated. Specifically,
this study demonstrates that surfaces with three-dimensional nanoscale structures can be fabricated
from templates with micron or sub-micron features through the development of cusps in the corners
of the polygonal capillaries. Quantitatively, the effects of contact angle, corner angle, meniscus confine-
ment, and corner rounding radius are examined and scaling analyses are presented to describe the
dependencies of the height variation across the meniscus on these parameters. These simulations serve
as useful guides for extending the development and implementation of capillary force lithography.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

As the limit of imprint lithography is pushed to smaller length
scales, a great deal of research effort has focused on utilizing cap-
illary forces to the advantage of lithography techniques. Capillary
force, as one of the predominant forces at the nanometer size-scale,
can be used not only to expedite micro- and nano-scale imprint
lithography, but also to enable the formation of interesting and
useful features on the lithographic products with details finer than
those of the original molds [1–8]. These techniques take advantage
of interfacial tension and wettability to control both the rate and
the extent of the rising capillary and the resulting meniscus curva-
ture. For example, Bruinink et al. [3,4] have reported a technique of
using the edge of a meniscus formed by capillary force lithography
(CFL) as a mold of making second-generation stamps with in-
creased resolution. Moreover, it has also been shown in CFL exper-
iments that ring-like structures can be made taking advantage of
the height variations of menisci formed in cylindrical capillaries
[5,6]. However, it should be noted that only linear or ring-like
structures have been reported to date; few experimental results

have been reported with different cross-sectional geometries, even
as simple as triangles or rectangles.

In this work, we extend previous research in this area to exploit
other interesting and potentially useful structures that can be cre-
ated by capillary forces at the nanoscale. Of particular interest, is
the formation of unique structures resulting from the confinement
of the meniscus by capillaries with polygonal and star-shaped
cross sections as seen in Fig. 1a. It has been shown for low-gravity
fluid systems that crown-like menisci, as seen in Fig. 1b, should be
expected in capillaries with polygonal cross sections if the wetting
conditions are properly chosen [9–11]. These studies, which ad-
dressed a very different set of problems, i.e., liquid fuel storage in
the weightlessness of space flight, are an excellent starting point
and proof-of-concept for the work presented here. However, their
focus was primarily the existence criteria for dichotomous behav-
ior of the meniscus and the meniscus shape and height were not
fully quantified.

There is a relatively small number of papers addressing the is-
sues specific to the three-dimensional shape of capillary surfaces
in complex, non-circular, geometries [9–14]. Additionally, it is
important to note that none of these papers specifically addressed
CFL or the issues specific to CFL. In these studies, the contact line
was sometimes neglected [12]. Even when proper boundary condi-
tions were applied, the height variation was usually not specified
[9–11,14], or the geometry was simply too general [13]. For CFL,
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it is of great importance to specifically focus on the height variation
of the meniscus because that dictates the additional functionality
associated with the third dimension, specifically, the contrast of
anisotropic etching if the resulting structures are to eventually
be used as an etching mask. The geometries and wetting properties
implemented in our simulations were chosen to investigate a num-
ber of important practical aspects of CFL, including the impact of
rounding the corners of the polygons. In our study, numerical sim-
ulations were used to minimize the surface energy and calculate
the position of the contact line and the shape of menisci at equilib-
rium. The important factors that govern the geometric characteris-
tics of the resulting structures were investigated. These parameters
included contact angle, surface tension, number of sides of the
polygon or star as well as the radius of curvature and angle of
the polygonal corners. We will show that smaller contact angles,
cross sections with smaller internal angles or smaller corner
rounding lead to taller cusps on the crown-like-menisci. Our re-
sults present the dependence of the height of those cusps on con-
tact angle and cross-sectional geometry. Finally, we will show that
star-shaped capillaries can be used to produce super-fine, high as-
pect ratio, three-dimensional hierarchical structures in capillary
force lithography. It is worth mentioning that, in CFL a viscous li-
quid (e.g., polymer melt) is typically used instead of a Newtonian
liquid. Also, the hydrostatic pressure inside the cavity is changing
with time [15]. These factors play critical roles in the kinetics of
the fluids. In our study, however, since we are mostly interested
in the thermodynamic equilibriums, these factors do not affect
the results. Specifically, the non-Newtonian nature of the fluids
might affect the growth process due to their viscoelasticity the var-
iation of their viscosity as response to shear, but that does not
change the equilibrium states. The hydrostatic pressure inside

the cavity is always isotropic, which means that it could only affect
the height of the fluid column but not the shape of the meniscus.

2. Simulation

2.1. Simulation setup

Surface Evolver was used to simulate the equilibrium state of a
fluid body inside a capillary. The Surface Evolver is an open-source
computer program which uses a gradient descent method to min-
imize the energy of a surface subject to constraints [16]. Initially, a
bulk of fluid is defined with a fixed volume bounded by a set of ver-
tical planar constraints which represent the side walls (with no
penetration) of the capillary and a horizontal planar constraint at
the bottom (to represent permanent attachment on the substrate).
This simulation technique cannot be used to simulate the dynam-
ics of capillary rise. However, this model will give the correct result
for the equilibrium state of the meniscus because the equilibrium
state is path independent.

To study the evolution of the equilibrium meniscus in capillary
force lithography, two categories of cross-sectional geometries
were simulated – polygons and stars. In each category, geometries
with both sharp corners and rounded corners with a broad range of
radii of curvature were studied. Regular convex polygonal cross
sections were centered at the origin and circumscribed by a circle
corresponding to a radius of physical dimension r = 100 nm. Polyg-
onal cross sections with rounded corners are created by trimming
the corners of the regular polygons into circular arcs with radii of
curvature from R = 0.1r to R = 0.3r. Each of these round arcs is
tangent to both sides of the corner in which it is placed, as seen
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Fig. 1a. Schematic diagrams of cross-sectional geometries: (left) regular triangle and rectangle, with radius of circumscribed circle r; (middle) rounded corner triangle with
various corner rounding radius R; (right) three-armed star with sharp corners, the convex corners of which all lie on the circumscribed circle with radius ro, while the concave
corners all lie on the inscribed circle with radius ri. Additional note for star-shapes: the convex corners can also be rounded just like those of the triangle (figure not shown
here).

Fig. 1b. Schematic diagrams of menisci formed in capillaries with polygonal cross sections.
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in Fig. 1a. To facilitate comparisons between different geometries,
all rounded polygons with the same symmetry order share the
same regular polygonal frame. Similarly for star geometries, the ra-
dius of circumscribed circle is fixed to be ro = 100 nm, while the ra-
dius of inscribed circle (on which all the concave corner vertices
lie), ri, varies between 20 nm and 50 nm. This is shown schemati-
cally in Fig. 1a. The same manipulations are carried out in order
to generate star geometries with rounded corners as described pre-
viously for polygonal geometries.

After a cross-sectional geometry is generated, it is defined to the
Surface Evolver as a set of planar constraints which are applied to x
and y and apply for all values of z. Vertices on the constraint planes
are bounded on the plane at all time (but are allowed to move
along the plane). The tube defined by these constraints is then
filled with a column of fluid with an initial height equal to the cir-
cumscribing radius. As an initial state, the top and bottom surfaces
of the fluid column are both flat and horizontal. During an evolu-
tion, all the side surfaces of this fluid column are in intimate and
permanent contact with the walls of the tube, and its bottom sur-
face is permanently bounded on the plane constraint z = 0. The top
surface is free to adopt any shape that minimize the total energy of
the system consists of both the fluid body and the capillary tube.

2.2. Size effect and contact angle

Typically, surface forces scale with the length of the contact line
and therefore the first power of the characteristic length, which in
our case is the radius of the circumscribed circle. Conversely, body
forces scale with the volume and therefore as the third power of
the characteristic length. As a result, the smaller the length, the
more dominant the surface forces become. For this reason, surface
forces play an important role in material behaviors at small size-
scales while gravitational effects can be neglected [17]. In this
study, the characteristic length scales of the fluid systems are set
between 100 nm and 1 lm. Since the algorithm used by the Sur-
face Evolver is unit independent, the size effects are translated into
the value of the gravitational constant. By using a unit analysis
based on comparing the gravitational force and the surface tension,
it is calculated that the effective gravitational constant for our
characteristic length scale is essentially zero.

In this discussion, only the partial wetting regime is considered,
where the contact angle between the fluid and the side walls of
the capillary is h < 90�. The contact angle, h, always refers to the
(equilibrium) material contact angle defined by the Young equa-
tion cSG = cSL + cLG cos h [18]. Here cSG is the interfacial tension be-
tween the solid and gas phases, cSL is the interfacial tension between
the solid and liquid phases, and cLG is the interfacial tensionbetween
the liquid and gas phases. The side walls of capillary are always
assumed to be smooth, homogenous, and rigid. Additionally, no hys-
teresis of contact angle is considered, although in the corresponding
experiments the results will likely be dependent on the advancing
contact angle because it is a capillary filling process. Under those
assumptions, contact angle can be determined as a function of inter-
facial energies by cos h = (cSG � cSL)/cLG. Physically, for every unit
area growth of the side surfaces of the fluid column, a unit area of so-
lid–gas interface is replaced by a unit area of solid liquid interface
and resulting in a total change of energy of the system of cSL � cSG .

For every cross-sectional geometry there exists a critical contact
angle due to Rayleigh–Taylor interfacial instability [10,11,14]. Un-
der partial wetting condition, if the contact angle between the fluid
and the wall of the capillary is larger than or equal to that critical
value, the equilibrium extent of the meniscus growth along the
length of the capillary is finite. However, if the contact angle is
smaller than this critical value, the equilibrium meniscus can be-
come infinitely long. Finn et al. [11,14] have shown through a rig-
orous mathematic analysis that at a sharp corner the critical

contact angle is hc = p/2 � a, where a is half of the internal angle
of the corner.

2.3. Evolution and equilibrium criteria

Once the geometry was defined, Surface Evolver was used to
determine the equilibrium shape of the meniscus. Each simulation
consisted of three stages – initiating, approaching, and stabilizing –
to gain faster convergence. In the initiating stage, three refine-
ments to each edge with length greater than 0.05r (or 0.05ro in
the star geometry cases) were performed. Each refinement was
done by putting a vertex at the midpoint of a targeted edge so that
it could be split into two edges each with half the length of the ini-
tial one. At this stage, as many steps as needed were performed to
bring the energy gradient down to less than 1.0 � 10�6 (in simula-
tion unit assumed by Surface Evolver) per 10 steps. In the
approaching stage, conjugate gradient mode is toggled, and an-
other three refinements were performed. At this stage the energy
gradient was brought down to less than 1.0 � 10�8 per 10 steps.
The simulations were continued to the stabilizing stage, where as
many refinements and evolutions as needed were performed to
satisfy a set of equilibrium criteria, which will be described in de-
tail below. The extent and shape of the final, equilibrium meniscus
was extracted and analyzed to understand the trends.

With respect to Capillary Force Lithography, the quantity of
most interest is the difference in elevation between the highest
and the lowest points on a meniscus, which we will refer to as h
from this point on. To match the sign of elevation with that of
the cosine of the contact angle, a convention is used where concave
menisci have positive elevations while convex menisci have nega-
tive elevations. Since the final state of the meniscus is usually a
curved surface, and in Surface Evolver a curved surface is discret-
ized into a union of flat triangular facets, the sizes of these facets,
or grid resolution, can affect the final shape of the meniscus [13].
Finer grid resolutions give more accurate shapes but the simula-
tions take a longer time to converge. Moreover, the change in en-
ergy with each step slows as the system approaches equilibrium.
Thus a threshold of this energy gradient is needed to determine
whether the system has reached equilibrium. A series of conver-
gence tests were performed using the regular polygon geometries.
Based on these test results, a set of criteria according to which
equilibrium is determined are chosen as following: maximum
length of a single edge less than 5.0 nm; minimum length of a sin-
gle edge greater than 0.5 nm; equiangulation is completed; the
change of energy (as evaluated by Surface Evolver) within the last
ten steps is smaller than 1.0 � 10�10. This set of equilibrium crite-
ria corresponds to a less than 1% change in the value of elevation in
all the geometries and contact angle values that have been studied.
Since the maximum elevation we have observed is on the order of
100 nm, one percent of the elevation corresponding to actual
physical dimension less then 1.0 nm. When plotted at a log–log
scale to find the characteristic power index, this error has no mea-
surable effect on the results. The dependence of elevation on the
other parameters studied produced variations in the meniscus
height much larger than the 1.0 nm uncertainty due to resolution
effects.

3. Results

The shape of meniscus formed in a cylindrical capillary is a clas-
sically studied problem [17]. There exists a characteristic length
scale, known as the capillary length Lcap ¼

ffiffiffiffiffiffiffiffiffiffiffi
c=qg

p
, below which

surface tension dominates over gravity and the meniscus formed
inside the capillary adopts a shape very close to a portion of a
sphere. For pure water at standard temperature and pressure, the
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capillary length is about Lcap � 2 mm. Polymeric fluids typically
have much lower surface tensions then water resulting in capillary
lengths on the order of hundreds of microns. For a cylindrical cap-
illary with a radius of r = 100 nm, it can be therefore assumed that
the shape of the meniscus is a spherical cap. In this case the
analytical solution for elevation, h, as a function of cross-sectional
radius, r, and contact angle, h, can be shown to be:
h ¼ rð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h

p
Þ= cos h. In the limit of cos h? 0, we get

h? (r/2) cos h; at the limit of cos h? 1, we get
h ? r½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� cos hÞp �. The predictions of the meniscus height
from our simulation of cylindrical capillaries are superimposed
over the analytical solution in Fig. 2 inset. The simulations match
the theory very well over all the contact angles tested. Plotting h
versus cos h in a log–log scale (Fig. 2), we can see that at small
and medium cos h the slope mostly remains constant, which indi-
cates a power law dependence of elevation over cos h; at the re-
gime where cos h is close to one, however, the slope increases
very rapidly. The power index measure from the linear portion of
the log–log plot is approximately 1.05 (the slope of the fit line var-
ies slightly depending on the range of cos h over which fitting is
performed).

For patterns of lines, the elevation of the meniscus due to the
confinement of parallel walls can be easily calculated analytically:
hL = (1 � sin h)d/2, where d is the spacing between the parallel
walls. This, of course, is only an exact solution for an infinitely long
straight line where the effects on the meniscus from the ends of
the line can be neglected. If, however, we consider a straight line
with finite length, the existence and shape of the line’s endcap
must be accounted for, as it will induce a secondary curvature
along the length of the line. The majority of the meniscus located
towards the midpoint of the line and away from the ends should
remain two-dimensional. However, the exact the shape of the
meniscus near the ends of the lines is more complicated and, as
we will see in the case of regular polygons, is directly related to
the details of the shape of the endcap (polygonal or circular), the
contact angle between the fluid and the walls of the capillary
and the curvature of any sharp corners.

3.1. Sharp regular polygons

The shape of a capillary can have a large impact on the resulting
meniscus shape and height. In this section, we investigate a series
of capillaries with cross sections as regular polygons each of which
is circumscribed by a circle with a radius of r = 100 nm. As before,
gravity is negligible and the fluid partially wets the capillary. For
these geometries it has been shown that these menisci are in fact
sections of a sphere much like the cylindrical capillary if the mate-
rial contact angle is not less than the critical contact angle [20,21].
A simple way to understand this solution is shown schematically in
Fig. 3. Start with a vertical plane P intercepting a sphere S whose
center is point O. Fix the distance, d, between plane P and point
O, while allowing the radius, Rs, of sphere S to vary. When Rs = d,
P is tangent to S, and the normal of P lines up with the local normal
of S at the tangent point, i.e., intercepting angle b = 0�; when
Rs ?1, the intercepting angle b? 90�. For any particular value
of Rs between d and 1, the intercepting angle b is a constant at
every point on the intercepting circle due to rotational symmetry
about every horizontal line that go through point O. The value of
b can be anywhere between 0� and 90�, and it is a function of Rs

only. Since all the sides of a regular polygon have the same dis-
tance to its center, based on the argument above, a spherical
meniscus (here, in fact, only the lower hemisphere is needed; the
upper hemisphere corresponds to cases where contact angle is be-
tween 90� and 180�) can satisfy any specified contact angle at
every point on the contact line on every side wall. Moreover, a
sphere has constant mean curvature at every point, which satisfies
the requirement of uniform Laplace pressure across the interface
under zero-gravity condition.

Changing the cross-sectional geometry from a circle to a regular
polygon is effectively only changing the radius of the spherical sur-
face on which the meniscus lies. This in turn is physically consis-
tent with changing the contact angle h. For a regular polygon, it
can be found that the new radius is Rs = r sin a/cos h, where
a = (n � 2)p/(2n) is half of the internal angle of a corner of an n-
sided regular polygon. The elevation, or the height difference of
the meniscus between the center and a corner of the capillary, is

h ¼ r sina½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcos h= sinaÞ2

q
�= cos h. In the limit that n?1,

the result for a circular cross section is obtained. Fig. 2 shows ele-
vation as a function of contact angle calculated based on this ana-
lytical solution for cross-sectional geometries as triangle,
rectangle, pentagon, and hexagon. It is immediately clear that if
the available contact angles are limited to relatively close to 90�,
which is usually the case for CFL due to the low surface tensions
of PDMS and polymer melts, it is possible to take advantage of tri-
angular geometry to achieve relatively high elevation differences
across the meniscus.

If one defines an effective contact angle, heff, such that
cos heff = cos h/sin a, then all the data for the sharp regular polygons
in Fig. 2 should collapse onto a single master curve. This is shown
in the inset of Fig. 2 which plots h as a function of cos heff. Physi-
cally, this effective contact angle heff is the angle between the dif-
ferential portion of the meniscus at the corner of the cross
section and the side edge of the capillary. Notice that when
0� < h < 90�, heff is always less than h. The instability of a meniscus
formed in a polygonal capillary occurs at the corners first. As a re-
sult, the critical contact angle for a regular polygonal capillary is
reduced to hc = p/n, where n is the number of sides. Specific values
of critical contact angle for regular polygons are listed in Table 1.

The equivalency between changing cross-sectional geometry
and rescaling of the contact angle also implies that the upper limit
of elevation of a stable meniscus is the radius of the circumscribed
circle of the cross-sectional polygon, r, because that is the best of
what a circular cross section can provide (with 0� contact angle
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Fig. 2. Elevation of meniscus, h, as a function of contact angle, h, for capillaries
whose cross sections are regular polygons with sharp corners. Data points are from
simulation. Cross-sectional geometries including: (N) triangle, (j) square, ( )
pentagon, ( ) hexagon, (�) heptagon, and (d) octagon. Also plotted are the
analytical solutions of elevation resulted in regular polygonal and circular cross
section as a function of contact angle (solid lines). The inset shows the elevation
curves collapse onto a single line when plotted against cosine of effective contact
angle; discrepancy for any one of those data points is less than 1%.
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so that the meniscus is exactly the lower hemisphere). However,
with a triangular cross section, for example, the stability limit
can be approached with much larger contact angles and such
heights cannot be achieved.

In order to understand the effect of wetability of the meniscus
shape, simulations were performed for material contact angles in
the range between hc and 90�. Fig. 2 plots the simulation results
of the elevation of menisci formed in polygonal cross sections ver-
sus the cosine of material contact angles. All curves for regular
polygonal cross sections follow the same trend, and when h is con-
verted into heff, as shown in the inset, all those curves collapse on
top of the curve for circular cross section. When the simulation re-
sults are compared with the analytical results, the discrepancy of
any individual data point is below 1%, which demonstrates the reli-
ability of the simulation procedure. Notice on the log–log plot,
within the range where cos(heff) from 0.1 up to 0.7, or equivalently
heff from 85� down to about 45�, the response of elevation to the
change of cos(heff) is fairly linear (the portion is fairly straight
and the slope is close to 1.0), and this linear portion covers
about 40% of the elevation range. For the other half of the effective
contact angle range, from 45� to 0�, the height – contact angle
behavior is highly non-linear. As a result, a relatively small reduc-
tion in heff can result in a significant increase of elevation. As a side
note, when the contact angle is between 90� and 180�, it is easy to
prove based on symmetry that the equation

h ¼ r½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcos heff Þ2

q
�= cos heff is still valid, only now the result-

ing elevation is negative because the meniscus lies on the upper
hemisphere, or h(cos h) = �h(cos(p � h)) when 90� 6 h 6 180�.
Practically, this means that if one chooses to use a low adhesion
pair of fluid and solid for easier separation between the mold
and the product after CFL, one needs to also realize that this choice

may also hinder the filling of fluid into capillary especially in small
dimensions and at sharp corners.

3.2. Rounded polygons

Experimentally, it is difficult to fabricate nanoscale capillaries
with perfectly sharp corners. In fact, when doing CFL of nanoscale
features, the corners of the structures on the mold are always
rounded to some degree. To better guide the design of CFL experi-
ments, a series of simulations were performed for geometries with
regular polygonal cross sections and rounded corners. As a first ap-
proach the rounding of polygon corners was chosen to be circular
and tangent to both sides of the included angle. The intuitive
expectation is that the rounding of corners should reduce the ele-
vation of the meniscus when compared to the same geometry with
sharp corners and the same material contact angle. In addition, we
expect rounding the corners will allow the meniscus to be stable
over a larger range of contact angles because as the rounding ra-
dius increases the meniscus formed within the polygonal capillary
should eventually approach that formed in a circular capillary.

The response of meniscus elevation to the change of contact an-
gle is shown in Fig. 4a. The results for triangular cross sections with
rounded corners with rounding radii of 10 nm, 20 nm, and 30 nm
behave similarly with changing contact angle to those of regular
polygons, showing an elevation decrease as the corner rounding
is increased. All curves appear to be qualitatively similar, but
shiftedwith respect to cos(h). One way to quantify the change in re-
sponse is to determine the slopes of the linear portion of curves in
Fig. 4a, which are listed in Table 2. Although they appear very sim-
ilar at small values of cos(h), there are small differences in the func-
tional dependence of h / cos(h)n. The power of the polynomial is

Fig. 3. Schematics of the construction of analytical solution. (a) a hemisphere intercepted by a plane; (b) the intercepting angle between the plane and the hemisphere is the
same at every point due to rotational symmetry; (c) the meniscus formed in a rectangular capillary is part of a hemisphere.

Table 1
Reciprocal sine of half internal angles, critical contact angles and the cosine of critical contact angles for cross-sectional regular polygons with different orders of symmetry.

Geometry Triangle Rectangle Pentagon Hexagon Heptagon Octagon Circle

1/sin(a) 2.0 1.4142 1.2361 1.1547 1.1099 1.0824 1.0
hc 60� 45� 36� 30� 25.7� 22.5� 0.0�
cos(hc) 0.5 0.7071 0.8090 0.8660 0.9010 0.9239 1.0

390 J. Feng, J.P. Rothstein / Journal of Colloid and Interface Science 354 (2011) 386–395



found to decrease from k = 1.08 for the sharp case to k = 1.04 for the
case where R = 30 nm. In particular, with increasing rounding radii
curves shift to the right, but the shifting becomes slower when
rounding radii get larger. These observations indicate that the effec-
tive contact angle increases with increasing rounding radius. If one
instead looks at the elevation of the meniscus as a function of
rounding radius, as shown in the inset of Fig. 4a, this shifting effect
can be quantified. The characteristic length scale (the radius of cir-
cumscribed circle) is kept to be 100 nm, and the rounding radii are
10 nm, 20 nm, and 30 nm in the simulation results presented here.
As seen in the inset of Fig. 4a, there are clear power-law dependenc-
es of elevation on rounding radius, which vary from �0.29 to �0.45
over the span of cos(h) values from 0.1 to 0.8. The specific values of
the slope of Fig. 4a inset are listed in Table 5. It is worth emphasiz-
ing that the power law relations we present here are useful in
understanding dependencies, however, they should not be extrap-
olated to the regionwhere R (rounding radius) is significantly smal-
ler than 10 nm because they lead to a singularity at R = 0, the case
where corners are perfectly sharp.

For completeness, a series of simulations were performed for
regular polygons with similar rounded corners cross-sectional
geometries. In Fig. 4b, values of h as a function of cos(h) are pre-
sented for rounded triangle, rectangle, pentagon, and hexagon, all
with a rounding radius equal to 10 nm at each corner. As expected,
the elevation decreases in all cases in comparison to the same
polygon with sharp corners shown in Fig. 2 and Table 3. As seen
with triangles, the sharp and rounded data are qualitatively the
same, just shifted to smaller heights. It is worth noticing that the
reduction of elevation for rounded polygons is not only the result
of the reduction of confinement due to corner rounding, but also
due to the fact that rounded polygons have slightly smaller cross
sectional area than the sharp corner ones as a result of the way
they were created, see Fig. 1a. If there were only the dimension

effect contributing to elevation decrease, one would expect that
the menisci resulting from different rounding radii should entirely
overlap on top of each other up to the point that the meniscus con-
tacts the rounded corner. To investigate this hypothesis, the posi-
tion of the contact lines in a series of triangular capillaries with
various degrees of corner rounding and the menisci formed in
them are shown in Fig. 5. As seen in Fig. 5, the effect of the rounded
corner propagates far from the corner itself and changes the shape
and nature of the meniscus well away from the corner. Thus it is
clearly not simply an area effect.

3.3. Sharp regular stars

Polygons, while interesting, are not the only shapes that are
fabricated using CFL. If the goal is to maximize the height varia-
tion, an intriguing geometry is a regular star. In this section, we
present a series of simulations to evaluate elevation of menisci
formed inside capillaries with regular star cross sections. The
arguments presented in Section 3.1 can be applied to regular
star-shaped cross-sectional capillaries, because all the sides of a
regular star also have the same distance to its center. Thus the me-
nisci formed within a star can be described by a section of a sphere
if gravity is neglected. The radius of the sphere on which the
meniscus lies depends on ri, ro, n, and h with the following rela-

tionship Rs ¼ ro sinðp=nÞ=½cos h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðro=riÞ2 þ 1� 2ðro=riÞ cosðp=nÞ

q
�,

where ro is the radius of the circumscribed circle of the cross-sec-
tional star on which all the convex vertices lie and ri is the radius
of the inscribed circle of the cross-sectional star on which all
the concave vertices lie, and n and h are order of symmetry and
material contact angle, respectively. The ratio ro/ri depicts the
slenderness of the arms of the stars, and thus determines the
internal angle of the concave vertices. Similar to polygon cases,
smaller internal angle, or greater ro/ri ratio, gives smaller Rs.
Additionally, if the contact angle geometry combination results
in Rs = ro then it is at the critical contact angle

cos hc ¼ sinðp=nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðro=riÞ2 þ 1� 2ðro=riÞ cosðp=nÞ

q
. Any contact

angle, h, smaller than this critical value hc will yield an elevation
on the meniscus which can be calculated by the equation

h ¼ Rs½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðro=RsÞ2

q
�, where ri and ro are the radii of circles

on which the convex and concave vertices lie, respectively, and
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Fig. 4a. Elevation of meniscus, h, as a function of contact angle, h, for capillaries
whose cross sections are triangles with sharp and rounded corners. Data include:
(N) sharp triangle, triangles with radii of (.) R = 0.1, (J) R = 0.2, and (") R = 0.3. The
inset at the bottom right shows elevation as a function of rounding radius, as cos(h)
increases from 0.1 to 0.8 (from bottom to top), showing a linear dependency of the
meniscus height on the rounding radius.

Table 2
Slopes of the linear portion of the h versus cos(h) log–log curves for sharp and
rounded triangular cross sections.

Sharp R = 10 nm R = 20 nm R = 30 nm

Slope, k 1.082 1.056 1.043 1.037
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Fig. 4b. Elevation of meniscus, h, as a function of contact angle, h, for capillaries
whose cross sections are polygons with rounded corners (where R = 0.1 in all cases).
Data include rounded: (4) triangles, (h) rectangle, ( ) pentagon, and ( ) hexagon.
The inset at the top left shows elevation h as a function of 1/sin(a), as cos(h)
increases from 0.1 at the bottom to 0.8 at the top.
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n is the order of symmetry. The effective contact angle, in
this case, can be determined by cos heff = l cos h/[ri sin(p/n)],

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o þ r2i � 2rori cosðp=nÞ

q
, then similarly,

h ¼ ro½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcos heff Þ2

q
�= cos heff . Thus, as can be shown for

polygons, changing the cross-sectional geometry of a capillary
from a circle to a regular star effectively only changes the
radius of the sphere on which the meniscus lies. In terms of
elevation, it is equivalent to rescaling the cosine of contact
angle, and the scaling factor is determined by the cross-
sectional geometry. The critical contact angle becomes

hc ¼ cos�1½ri sinðp=nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o þ r2i � 2rori cosðp=nÞ

q
� and is tabulated

for various three-armed and four-armed stars in Table 4.
The simulation results of meniscus elevation, h, for a series of

three-armed stars where the radius of the inscribed circle, ri, was
varied from 20 nm to 45 nm, while keeping the radius of the cir-
cumscribed circle ro = 100 nm, are presented in Fig. 6a as a function

of contact angle. For comparison, the predictions of theory are
superimposed over the simulation data. The simulation results
agree very well with the analytical solution. The error of any indi-
vidual data point is found to be less than 1%. The same level of
accuracy is observed with results of four-armed star cross sections
as well. As seen in Fig. 6b, after rescaling the contact angles into
effective contact angles, all data points of three-armed and four-
armed star cross sections collapse on the theoretical curve of cylin-
drical capillary just as expected.

3.4. Rounded regular stars

As mentioned before, some degree of corner rounding is gener-
ally inevitable for the nanoscale features on the mold used in CFL
experiments. On the other hand, star-shaped cross-sectional geom-
etries provide appreciable capability of producing large elevations
at relatively large contact angles. It is useful to find out whether

Table 3
Comparison of elevations resulting from sharp and rounded polygonal cross sections with different material contact angles.

cos(h) Triangle Rectangle Pentagon Hexagon

Sharp R = 10 nm Sharp R = 10 nm Sharp R = 10 nm Sharp R = 10 nm

0.1 10.10 6.74 7.11 6.07 6.20 5.70 5.79 5.49
0.2 20.87 13.69 14.44 12.27 12.56 11.52 11.71 11.10
0.3 33.33 21.10 22.26 18.79 19.22 17.59 17.87 16.92
0.4 49.99 29.31 31.00 25.82 26.45 24.07 24.48 23.11
0.5 38.96 41.42 33.71 34.60 31.23 31.78 29.88
0.6 51.32 55.48 43.06 44.39 39.45 40.25 37.57
0.7 70.27 86.58 55.23 57.63 49.63 50.86 46.82
0.8 74.58 86.07 63.95 66.79 59.20
0.9 95.74 81.50

Fig. 5. 3D scatter plot of equilibrium contact lines resulting from capillaries with rounded triangular cross sections, rounding radius, R, from 0.05 to 0.30 with 0.05 increments
top to bottom. The triangular frame which shared by all cross-sectional rounded triangles is also shown at the bottom. Notice that the Z coordinate is stretched compared to X
and Y coordinates to accentuate the deformation of the meniscus.

Table 4
Cosine and angular values of critical contact angle for regular stars.

10 nm 20 nm 30 nm 40 nm 50 nm 60 nm 70 nm

Three-armed stars 0.091 0.189 0.292 0.397 0.500
85� 79� 73� 67� 60�

Four-armed stars 0.076 0.163 0.260 0.367 0.480 0.593 0.700
86� 81� 75� 68� 61� 54� 46�
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the star-shaped geometry can offer significant elevation improve-
ment in the cases where corners are rounded. Therefore, simula-
tions were performed to study the effects of corner rounding to
regular star cross-sectional geometry. Similar to what was ob-
served in the polygon cases, when the convex corners of a star-
shape are rounded, the elevation achieved at the point of each
arm of the star decreases with increasing degrees of rounding. As
mentioned before, this reduction in elevation is the combined re-
sult of two effects – slight decrease in length scale and reducing
of confinement at the corners due to rounding. The overall re-
sponse to corner rounding of a three-armed star is plotted in
Fig. 7. Similar results were achieved for the four-armed stars. For
cases where rounding radius is moderate, the elevation has a
power law dependence on rounding radius. The power law expo-
nent is found to become more strongly negative with decreasing
contact angle, ranging from �0.7 at cos(h) = 0.1 to �1.1 at
cos(h) = 0.7. These slopes are tabulated in Table 5.

Considering the sum total of these simulations allows us to focus
on some very interesting questions. For instance, what should one

do if one wants to fabricate a novel and useful three-dimensional
nanostructure that has tunable rotational symmetry and large
height variation utilizing capillary effects in lithography? Both poly-
gons and stars will work. However, the star is clearly the optimal
geometry. Even when the corners are inevitably rounded due to
the limitation of fabrication tools, high elevations can still be
achieved owing to the large confinement effects. Let’s take a close
look at Fig. 7 and the elevations corresponding to different rounding
radius for a certain set of three-armed stars with ro = 150 nm and
ri = 50 nm. Notice that for a fluid–solid pair with contact angle of
about 53� and a corner rounding of 20 nm in diameter, an elevation
of approximately h = 116 nm can be achieved along the meniscus.
For comparison, a triangular cross section with the same character-
istic dimension and corner rounding and same contact angle would
result in an elevation of only 77 nm. These two surfaces are pre-
sented in Fig. 8a for comparison. This represents just one example
of nanoscale claw-like structure that can be formed. If one wants
to push the limit to maximize elevation, one could simply choose
geometries with higher ro/ri ratios, so that the internal corners of
the convex vertex of the star-shape gets sharper or minimize the
corner rounding. Moreover, since confinement factor is indepen-
dent of symmetry order, one can make nano-claws with arbitrary
number of fingers (Fig. 8b) without having to sacrifice elevation.
Specifically, for a regular polygon the internal angle is directly re-
lated to the number of sides, and the elevation on the meniscus, h,
decreases significantlywith the increase of number of sides, n, when
n ranges from 3 to 6. For a regular star, on the other hand, the inter-
nal angle at the convex corners ismostly dependent on the ro/ri ratio
and is rather insensitive to the order of symmetry. Clearly, the ele-
vation difference between the four-armed star and the rectangle
geometries shown in Fig. 8b is much more significant than the ele-
vation difference between the three-armed star and the triangle
geometries shown in Fig. 8a.

4. Conclusion

In the work described within this paper, simulation results were
presented which demonstrated that high aspect ratio three-dimen-
sional nanostructures can be achieved by CFL with proper choice of
cross-section geometries. A series of regular polygons and star-
shapes with both sharp and rounded corners were studied. For
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Fig. 6a. Elevation as a function of cosine of contact angle for three-armed stars with
sharp corners. Data points represented by different symbols correspond to
simulation results with different ri values, while keeping ro to be 100 nm. Solid
lines are based on analytical solutions for respective cases.
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cross section (solid line) as expected.
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to top.
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sharp corner polygons and stars, the simulation results were
shown to match the analytical solutions for elevation of the
meniscus, demonstrating the accuracy of the simulations. It was
shown that, as far as the elevation and the shape of the meniscus
are concerned, altering the cross-sectional geometry from a circle
to a regular polygon or to a regular star is effectively equivalent
to simply changing the contact angle between the fluid and the
capillary wall. Numerical solutions for elevation of the meniscus
formed in rounded corner polygons and stars cross sections were
calculated based on simulation results. The rounding of corners
not only reduced elevation but also modified the shape of the
meniscus. At a given contact angle, elevation decreased as round-
ing radius increased, following clear power laws within the regime
of rounding radius between 10 nm and 30 nm. The specific power
index, which ranged from �0.3 to �1.1, varied with geometry, con-
tact angle, and degree of corner rounding. The sharp-corner cases
are good starting point for understanding the effects of different
parameters on the equilibrium meniscus, while the rounded-cor-
ner cases capture a rather important practical aspect in CFL exper-
iments; namely the inability to fabricate perfectly sharp corners at
the nanometer length scales. It is shown in this study that even
with moderate corner rounding, large elevations on the meniscus
can still be achieved especially when using star-shaped capillaries.
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