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a b s t r a c t

In this study, the dynamic contact angles of a series of viscoelastic fluids were measured through a modified

Wilhelmy plate technique. The advancing and receding contact angles were measured by immersing and

withdrawing a PTFE (Teflon) Wilhelmy plate from a reservoir containing a series of different Newtonian and

viscoelastic test fluids. The viscoelastic fluids that were tested consisted of either solutions of polyethylene

oxide or polyacrylamide in water where the concentration of the polymer was varied to produce solutions

with different amounts of fluid elasticity with and without shear thinning. The advancing contact angles of all

the viscoelastic fluids tested were found to increase with increasing plate velocity. Conversely, the receding

contact angles in each case were found to decrease with increasing contact line velocity. A number of previous

measurements have been performed for shear thinning fluids. The measurements presented here are the first

to probe the response of the dynamic contact angle at large Weissenberg numbers where the elasticity of the

liquid becomes important. For fluids with increased fluid elasticity, the onset of the variation of receding

contact angles was found to be delayed to higher contact line velocities and capillary numbers. It was also

found that, unlike the case of Newtonian fluids, the cube of advancing and the cube of the receding contact

angles were both found to be proportional to the square of the capillary number for highly elastic fluids.

Finally, a simple model was proposed to account for the role of elasticity and shear thinning of the viscosity

on the dynamic contact angle.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamic wetting of a liquid along a solid surface is a phe-

nomenon that occurs in great number of natural and industrially-

relevant processes. Over the last few decades, there has been a great

deal of research performed, both experimental and theoretical, with

the goal of better understanding the dynamic wetting processes over

a wide range of flow conditions, and fluid and solid properties [1–4].

Still, there are a number of open questions that remain. In this paper,

we will investigate the effect that fluid rheology and specifically vis-

coelasticity can have on dynamic wetting. We will demonstrate that

the addition of fluid elasticity can modify the contact line dynam-

ics and have a great influence on the evolution of contact angle with

contact line velocity.

In order to quantify the effect of viscoelasticity on the wetting dy-

namics of a liquid on a non-deformable solid surface, the shape of

the fluid interface can be measured along with the resulting contact

angle made between the fluid and the surface. At rest, the contact an-

gle can exist anywhere between the advancing and receding contact

angles [1]. For a Newtonian fluid under flow, molecular-level adsorp-
∗ Corresponding author. Tel.: +1 413 577 0110.
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ion/desorption processes and macroscopic viscous dissipation can

esult in an increase in the measured advancing contact angle and

decrease in the measured receding contact angle beyond its static

alue [1,2]. The value of the contact angle for a moving three phase

ontact line is thus not fixed, but is dynamic and, depends in a known

ay on the velocity of the contact line.

Through experimental measurements and theoretical develop-

ent, the dependence of dynamic contact angles on the speed of

oving contact line has been revealed for both wetting and non-

etting Newtonian fluids [2] as well as a limited subset of shear thin-

ing and weakly elastic fluids [5,6]. From these results, two different

lasses of dynamic wetting models have been developed; molecular-

inetic models [7] and hydrodynamic models [8–10]. For the

ydrodynamic models, viscous dissipation in the vicinity of the con-

act line has been shown to lead to a deformation of the fluid inter-

ace and a change in the contact angle that scales like θ3
D

− θ3
S

∝ Ca.

his result is known as the Cox–Voinov–Tanner scaling law. Here

D is the dynamic contact angle, θ S is the static contact angle and

a = ηU/σ is the capillary number where U is the velocity of the

ontact line, η is the viscosity and σ is the surface tension. Al-

hough it is widely accepted, the Cox–Voinov–Tanner scaling law

s not universal. It has been observed to fail at extremely low cap-

llary number regime, Ca < 10−4, and at very large capillary num-

ers Ca > O(0.1), where air entrainment, complete coating and the
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Fig. 1. Steady shear viscosity measurements of the test fluids as a function of shear

rate. The data include: 0.01 wt% PAM solution (square); 0.05 wt% PAM solution (trian-

gle); viscoelastic PEO solution (star); and Newtonian PEO solution (circle).
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ffects of inertia have been observed [11]. In the case of molecular-

inetic models, the energy dissipation by a contact line friction re-

ulting from adsorption and desorption of molecules along the mov-

ng contact line is responsible for contact angle changes. In the

odel of Blake and Haynes [7], the dynamic contact angle varies

s θD = cos−1[cos θS − (2kBT/σδ2)sinh
−1(U/2Kωδ)] where kB is the

oltzmann constant, T is the temperature, δ is adsorption distance of

olecules, and Kω is frequency of molecular displacements.

The common forced wetting techniques used to measure the dy-

amic contact angles are a capillary tube [3,12,13] and a plunge tank

14–17]. For example, using a glass capillary tube, Hoffman [3] mea-

ured the dynamic contact angle by displacing Newtonian liquids in

he tube filled with air. Petrov et al. [18] and Blake [16,19] measured

ynamic contact angles by plunging a solid surface into a tank of liq-

id. Using a plunge tank, a Wilhelmy plate or a cylindrical strand

f material can be immersed or withdrawn from a reservoir allow-

ng the observer to investigate both advancing and receding contact

ngles. Additionally, in this technique, the effect of gravity and in-

rtial can typically be neglected and the observer can gain access to

he variation of the contact line through high resolution, high speed

maging. For these reasons, we chose the Wilhelmy plate technique

o make the dynamic contact angle measurements presented here.

The dynamic wetting of non-Newtonian fluids is of great inter-

st because of its application to a great number of industrial ap-

lications involving coating flow. That said, there are only a limited

umber of papers in the literature investigating dynamic wetting of

on-Newtonian fluids, none of which probe the range of Weissenberg

umbers, where elasticity becomes dominant, Wi = γ̇ λ > 1. Here γ̇
s shear rate and λ is relaxation time of the fluid. Seevaratnam et

l. [20] studied aqueous solutions of xanthan gum with molecular

eight of 2 × 106 g/mol. At the contact line speeds they studied, the

esponse of their fluids was dominated by shear thinning with neg-

igible impact of elasticity. Shear thinning was shown to reduce the

iscous bending of the air–water interface near the contact line. As

result, a weak dependence of the dynamic contact angle on capil-

ary number was found which did not following classic hydrodynamic

odel, θD
3∝Ca. Prior of the work of Seevaratnam et al. [20], Carre

nd Eustache [21] studied spreading dynamics of shear thinning flu-

ds in wetting and de-wetting modes and generalized the classic hy-

rodynamic model to shear thinning non-Newtonian fluids. They re-

ealed that the dynamic contact angles of power law shear thinning

uids does not follow the classic hydrodynamic model, rather it de-

ends on the spreading rate to the shear thinning power law expo-

ent n such that, cos θs − cos θD = K
γ ( U

θD
)n. Like Carre and Eustache

ase, the classic hydrodynamic theory was normally applied to de-

cribe the dynamic wetting of non-Newtonian fluid. More recently,

iang et al. [22] developed a model to explain the wetting behav-

ors of non-Newtonian fluids based on Blake’s molecular-kinetic the-

ry. Wei et al. [5] tested Boger fluids which are dilute polymer so-

utions dominated by elasticity and with negligible shear thinning.

hey found that the curvature of the advancing air–liquid interface

as enhanced, but that the capillary number dependence of the dy-

amic contact angles was not altered compared to the Newtonian flu-

ds. This is likely because the Weissenberg numbers reached in their

xperiments were all less than one and as a result large elastic effects

re not expected.

In this study, we will present dynamic contact angle measure-

ents of a series of viscoelastic fluids. A hydrophobic surface was

sed so that both dynamic advancing and receding contact angle

easurements can be made. The Wilhelmy plate technique allows

s to reach high speed of a testing substrate, making it possible to

robe the variation of dynamic contact angles over a wide range of

apillary numbers. The test fluids used consists of an extremely high

olecular weight aqueous polyacrylamide solution with a relaxation

ime large enough to make high Weissenberg number experiments
ossible. We will demonstrate that the dynamic contact angle data

t high Weissenberg number do not follow either the expected hy-

rodynamic or molecular-kinetic scaling even if shear thinning of the

uid viscosity is accounted for. Instead, we will show a much stronger

ependence on contact line velocity resulting from the presence of

ignificant elastic stresses in the fluid.

. Description of the experiment

.1. Materials

A series of test fluids were used for this experiment. For Newto-

ian fluid pure water was used. In addition, polyethylene oxide (PEO,

igma Aldrich) with 2 × 104 g/mol was used to increase the viscosity

f the water without making it viscoelastic. Hereafter, this solution

ill be designated as Newtonian-PEO solution. For the viscoelastic

uids used in these experiments, two different water-soluble poly-

ers were used. The first was a commercially-available polyacry-

amide (PAM) with an extremely high molecular weight (Flopaam

630, SNF Floerger®) often used in enhanced oil recovery. Solutions

ith two different concentrations of PAM (0.01 wt% and 0.05 wt%)

ere used in these experiments. As will be shown by detailed rhe-

logical measurements, each of the PAM solutions has a large zero

hear rate viscosity that shear thins with increasing shear rate, sig-

ificant fluid elasticity and a large easily-measured relaxation time.

second viscoelastic fluid was tested consisting of an aqueous solu-

ion 20 wt% of 2 × 104 g/mol PEO and 0.1 wt% of a high molecular

eight (8 × 106 g/mol) PEO. This Boger fluid was designed to have

ignificant elasticity without shear thinning. Hereafter, this solution

ill be designated as the viscoelastic PEO solution. All polymer solu-

ions were prepared in deionized water by mixing gently for at least

4 h at a room temperature to obtain a homogeneous solution. The

urface tension of the PEO solution was measured to be 0.06 N/m us-

ng a pendant drop experiment and the surface tension of both PAM

olutions was measured to be 0.07 N/m.

The steady shear viscosity of each solution was measured using a

tress-controlled rotational rheometer (TA, DHR3) with a cone-and-

late geometry. The results are plotted as a function of the applied

hear rate in Fig. 1. As seen in Fig. 1, the viscosity of the viscoelas-

ic PEO solution was found to be constant at η = 0.088 Pa s, while the
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Fig. 2. Storage modulus (filled symbols) and loss modulus (hollow symbols) as a func-

tion of angular frequency. The data include: 0.01 wt% PAM solution (square); 0.05 wt%

PAM solution (triangle); and viscoelastic PEO solution (star).

Fig. 3. Schematic diagram of experimental set up showing the modified Wilhelmy

plate method used in these experiments.
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viscosity of the Newtonian PEO solution was slightly lower and mea-

sured to be η = 0.064 Pa s. At low shear rates, the viscosity of both

the 0.01 wt% and 0.05 wt% PAM solutions were found to exhibit a

constant viscosity with value of η0 = 0.2 Pa s and η0 = 5 Pa s, respec-

tively. Beyond a critical shear rate, the viscosity of both the 0.01 wt%

and 0.05 wt% PAM solutions were found to shear thin with increasing

shear rate. The shear thinning of each solution is well described by

a power law model such that η = β γ̇ n−1. The exponent, n, was ob-

tained by fitting the power law model to the viscosity data. A value of

n = 0.45 and n = 0.32 was found for the 0.01 wt% and 0.05 wt% PAM

solution, respectively.

To characterize the viscoelasticity of the PAM solutions and vis-

coelastic PEO solution, small amplitude oscillatory shear (SAOS) tests

were performed using a controlled-stress shear rheometer (TA DHR-

3) using a 40 mm 2° cone-and-plate geometry at T = 20 °C. The stor-

age and loss moduli, G′ and G′′, were measured from high to low

frequency, and the measurements were stopped once the terminal

regime was reached. From the results presented in Fig. 2, the relax-

ation time, λ, can be inferred from the crossover frequency of the

storage and loss modulus, λ = 1/ω. The relaxation times of 0.01% and

0.05% PAM solutions were found to be λ = 0.67 s and λ = 11 s, re-

spectively. Unfortunately, due to the small value of relaxation time

for the viscoelastic PEO solution, as seen in Fig. 2, a crossover fre-

quency could not be observed within the frequency window tested.

Due to the inertia of the aluminum cone used, the frequencies that

could be probed for the viscoelastic PEO solution were limited to ω <

15 rad/s. The crossover frequency was approximated by fitting storage

and loss moduli to a single mode Maxwell model. A reasonable fit to

the data could be established for relaxation times of between 0.03 s

and 0.05 s. To double check this approximation, capillary breakup

extensional rheology (CaBER) measurements were used to measure

the relaxation time of the PEO solution [23, 24]. In CaBER, the relax-

ation time can be calculated by the rate of decay in the diameter with

time. From the CaBER measurements, an extensional relaxation time

of λE = 0.05 s was measured suggesting that the upper limit of the re-

laxation time estimated from the SAOS data for the viscoelastic PEO

solution was the appropriate choice.

2.2. Dynamic contact angle measurements

The modified Wilhelmy plate method was used to measure dy-

namic contact angles of test fluids. A schematic diagram of the Wil-
elmy plate technique is presented in Fig. 3. To create the Wilhelmy

late, a PTFE sheet (McMaster Carr) with 3 cm wide and 6 cm tall was

ttached to an acrylic plate of the same size with epoxy and mounted

o a linear motor. The solid substrate was accelerated from rest to a

onstant velocity between 2 mm/s < U < 200 mm/s. Depending on

he fluid viscosity, this speed range corresponds to capillary num-

er between 10−5 < Ca < 0.3. For all experiments performed below

his upper limit of capillary number, no air was observed to be en-

rained into the liquid bath during the advancing contact angle mea-

urements. As reported earlier in the literature this can be an issue at

arge capillary numbers [16].

The test surface was immersed into and withdrawn from a liq-

id bath. As a result of the large static contact angle of water and

hese aqueous solutions on the PTFE surface, it was possible to probe

oth the dynamic advancing and dynamic receding contact angles.

he bending of the air–liquid interface near a three phase contact

ine was recorded by a high speed camera with sampling rate up

o 200 Hz. A 5 mW diode laser and a cylindrical lens were used to

enerate a laser light sheet perpendicular to the high speed cam-

ra. The deformation of the interface was shown effectively by the

eflection of the ten micron diameter PIV particles (Sphericel, Pot-

ers Industry) added into the liquid. The particles were not surface

ctive and were never observed to come out of solution and de-

osit on the Wilhelmy plate or affect the dynamic contact angle

easurements.

To measure the dynamic contact angles, the high-speed video was

nalyzed using the program ImageJ. The images imported from the

igh-speed video were digitally magnified, and the dynamic contact

ngles were measured by manually fitting a line through roughly the

rst 500 μm of the interface. All the images used for these contact

ngle measurements had a spatial resolution of 30 μm per pixel. As

result, the details of the interface shape and the fluid dynamics

ery close to the wall in the inner region, where the stress singularity

resent at the three phase contact line must be relieved through slip

r the formation of a precursor film or a number of other alternate

echanisms, could not be resolved with our measurements [4]. In-

tead, our measurements were limited to the wedge-like flow region

utside the inner region where viscous and viscoelastic stresses are

till significant and can deform the interface and affect the value of

he measured contact angle. To ensure repeatability of our measure-

ents, the sensitivity of the measurements to the spatial resolution

f the images was studied by varying the optical/digital magnifica-

ion of the contact line by an order of magnitude and making multiple

easurements of the contact angle. No discernible trend in the data
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Fig. 4. Advancing contact angle as a function of capillary number. Note the shear rate

dependent viscosity was used to calculate the capillary number. The data include:

0.01 wt% PAM solution (square); 0.05 wt% PAM solution (triangle); viscoelastic PEO

solution (star); Newtonian PEO solution (circle). Inset shows the several fits to the data

using a second order polynomial to illustrate the method used to determine the static

contact angle.
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as observed with increasing resolution, but a standard deviation in

he data of around 1°was found.

To ensure repeatability of the measurements and that steady-state

as reached in each case, the dynamic contact angles were mea-

ured at the midpoint of the surface as it was immersed into the

iquid. For these low Reynolds number flows, Re<1, in all cases, the

ow becomes fully-developed very quickly as can be observed from

he video images. However, for the viscoelastic fluids, sufficient time

ust be provided for the elastic response of the fluid to fully develop.

his can be characterized using the Deborah number which is the ra-

io of the relaxation time of the fluid to the timescale of the flow,

e = λ/t . For De < 1, the flow can be considered fully developed. This

s the case for all experiments performed with the viscoelastic PEO

olution and the 0.01 wt% PAM solutions. However, due to its large

elaxation time, for some of the high capillary number tests using the

.05 wt% PAM solution, the Deborah number was larger than one and

he flow might not be fully developed even though time-resolved im-

ges of the contact line show no significant changes in the shape of

he contact line past the midpoint of the plate. The uncertainty of the

veraged experimental measurements was about ± 1.0° for advanc-

ng contact angles and ± 1.0° for receding contact angles. The error

ar will not be included in the graphs, however, so that the variation

f dynamic contact angles of all the test fluids can be observed more

learly. Note that the image seen in Fig. 3 is the original image im-

orted from the high speed video without modification.

. Results and discussion

.1. Dynamic contact angle measurements

The variation of advancing contact angles of Newtonian and vis-

oelastic fluids is plotted as a function of the capillary number as seen

n Fig. 4. The capillary number compares the relative importance of

iscous forces to interfacial forces acting near the three phase con-

act line between the various liquids and the PTFE surface. Following

he work of Carre and Eustache [21], the shear rate dependent viscos-

ty, η(γ̇ ), used to evaluate the capillary number of viscoelastic fluids.
or a power law fluid the capillary number can be written as

a = η(γ̇ )U

σ
= βγ̇ n−1γ̇ L

σ
= βγ̇ nL

σ
(1)

In this equation, the shear rate is defined as γ̇ = U/L where L is

he characteristic length scale of the flow. Note that the choice of the

ppropriate length scale to use when evaluating the shear rate is not

bvious. As one approaches the contact line, the film thickness de-

reases and, as a result, the shear rate increases, eventually becoming

nfinitely large at the contact line. As a result, the shear rate depen-

ent viscosity and the first normal stress difference are not uniform

hroughout the flow, but are in fact a function of distance from the

ontact line. Here we will use the capillary length κ−1 = √
σ/ρg as

he characteristic length scale because it is the only natural length

cale to choose. As seen in Fig. 4, this choice of characteristic length

cale does a reasonably good job of collapsing the data with capillary

umber as is expected for Newtonian fluids, although there are some

mportant differences in the response of the four fluids can be seen

n Fig. 4 and will be discussed in detail in subsequent paragraphs.

The static contact angle of all the fluids on the PTFE studied was

etermined by extrapolating the initial 5–10 data points to Ca = 0 us-

ng a second order polynomial as shown in the inset of Fig. 4. In this

gure, only two dataset were included to clearly show the determi-

ation of static contact angles. The coefficient of determination, R2,

hich indicates goodness-of-fit was measured to be over 98% in all

ases. Depending on the number of data points chosen, a variation in

he value of the static contact angle of 1–2°was possible. In the cases

f the PAM solutions, the static advancing contact angle of θA,s = 108◦

as found which is roughly 10° larger than the case of Newtonian so-

ution. The Newtonian PEO solution had a static advancing contact

ngle of 97.8° while the viscoelastic PEO solutions had a static ad-

ancing angle of θA,s = 100.4◦.

All fluids tested in Fig. 4 shows a monotonic increase in the ad-

ancing contact angles with increasing plate velocity. The advanc-

ng contact angle was not observed to reach 180°. For the Newto-

ian and viscoelastic PEO solutions, the data was found to approach

plateau near θA = 150◦ at the highest capillary numbers tested. A

imilar plateau was not observed for either of the PAM solutions,

owever, because the shear thinning of the viscosity and the limi-

ations of the maximum speed of linear motor made it impossible to

et to a high enough capillary number to observe the plateau. With

ncreasing fluid elasticity in the two PAM solutions, the expected in-

rease in the advancing contact angles was found to shift to higher

apillary numbers. In addition, there are details hidden in the data

resented in Fig. 4 that are difficult to observe because of the log

cale and choice of axis. For instance, the slope of the variation of

he advancing contact angles appears to grow with increasing fluid

lasticity. This is perhaps most obvious for the case of high molecular

eight PEO solution which shows on upturn in the data around Ca ≈
.07. Because this viscoelastic fluid has a constant viscosity, the ob-

erved deviation from the expected general response of a Newtonian

uid and the specific response of the Newtonian PEO solution also

hown in Fig. 4 suggests that the upturn in the data is likely a direct

esult of the fluid’s elasticity.

To better understand this transition in dynamic contact angle vari-

tion, the advancing contact angles of all three viscoelastic fluids

ere plotted as a function of Weissenberg number, Wi = γ̇ λ, in Fig. 5.

he Weissenberg number compares the relative importance of elas-

ic and viscous stresses. For Wi > 1, elastic stresses are important

hile, for Wi < 1, viscous stresses dominate the flow. As can be ob-

erved in Fig. 5, the sharp transition of the advancing contact angles

f viscoelastic PEO solution occurs at a Weissenberg number of ap-

roximately one, Wi ≈ 1, where the elastic effect of the fluid begin

o become important in the flow. For both the viscoelastic PAM so-

utions, the Weissenberg number was much larger than one, Wi � 1.

s a result, for both these solutions, elasticity should be important
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Fig. 5. Advancing contact angle as a function of Weissenberg number. The data in-

clude: 0.01 wt% PAM solution (square); 0.05 wt% PAM solution (triangle); viscoelastic

PEO solution (star).

Fig. 6. The difference in the cubes of dynamic and static advancing contact angles as

a function of capillary number so that the scaling trends can be observed. Note that

for Tanner’s law, θ3
A

− θ3
A,s

∝ Ca. The data include: 0.01 wt% PAM solution (square);

0.05 wt% PAM solution (triangle); viscoelastic PEO solution (star); Newtonian PEO so-

lution (circle).

Fig. 7. Receding contact angle as a function of capillary number. The data include:

0.01 wt% PAM solution (square); 0.05 wt% PAM solution (triangle); viscoelastic PEO

solution (star); pure water (diamond).

s

l

fl

0

s

i

s

g

g

t

s

r

c

w

w

s

t

e

t

t

c

f

i

a

p

P

o

a

c

t

t

i

a

d

c

r

fl

d

over the entire velocity range and no obvious transition from viscous

to elastically-dominated flow was observed with increasing Weis-

senberg number.

Next, the scaling behaviors of advancing contact angles was in-

vestigated and compared to the classic hydrodynamic and molec-

ular kinetic models. In Fig. 6, the difference between the cube of

dynamic advancing contact angles and static contact angles were

plotted as a function of capillary number. As expected, the scaling be-

havior of the advancing contact angles of the PTFE surface was found

to follow Cox–Voinov–Tanner’s scaling law, θ3
A

− θ3
A,s

∝ Ca, at low to

moderate capillary numbers before approaching an asymptotic value

at large capillary numbers. The Cox–Voinov–Tanner scaling law is

represented by a line of slope one in the log–log plot presented

in Fig. 6.

Unlike Newtonian solutions, a very different scaling behavior was

observed in the case of the viscoelastic solutions. For both PAM
olutions, a deviation from the prediction of Cox–Voinov–Tanner’s

aw was observed. As the Weissenberg number increased with the

uid elasticity, a slope close to θ3
A

− θ3
A,s

∝ Ca2 was observed. For the

.01 wt% PAM solution, the advancing contact angle was found to

cale like θ3
A

− θ3
A,s

∝ Ca1.5±0.15, while for the 0.05 wt% PAM solution

t was found to scale like θ3
A

− θ3
A,s

∝ Ca1.7±0.15. The uncertainty in the

lope was calculated by performing a propagation of error analysis

iven the uncertainty of both the measured advancing contact an-

le and the static contact angle. As we will discuss in detail later,

his scaling make intuitive sense as the flow-induced elastic stresses

hould be proportional to the square of the shear rate, γ̇ 2, and as a

esult proportional to the square of the velocity, γ̇ 2 ∝ U2. For the vis-

oelastic PEO solution, interesting transition in the scaling behavior

as observed. As can be observed from Fig. 6, before reaching Wi = 1,

here fluid elasticity begins to become important in the flow, the

caling behavior of the advancing contact angle was found to follow

he response of a Newtonian fluid, θ3
A

− θ3
A,s

∝ Ca. For Wi > 1, how-

ver, a slope close to θ3
A

− θ3
A,s

∝ Ca2 was observed. This transition in

he data is further evidence supporting our hypothesis that fluid elas-

icity can have a significant impact on the variation of the dynamic

ontact angle.

In Fig. 7, the variation of the receding contact angles with velocity

or all four test fluids on the PTFE surface is shown. The static reced-

ng contact angle was calculated in the same manner as the static

dvancing contact angle above with examples of the second order

olynomial fits superimposed over Newtonian solution and 0.01 wt%

AM solution data presented in inset of Fig. 7. The static contact angle

f Newtonian solution was found to be 80.8° while the static contact

ngle of viscoelastic PEO solution was found to be 82.3°. The static re-

eding contact angles were found to be θR,s = 85◦ and θR,s = 88.5◦ for

he 0.01 wt% and 0.05 wt% PAM solutions, respectively. For all fluids

ested, the receding contact angles were found to decrease monoton-

cally with increasing plate velocity. As was the case for the dynamic

dvancing contact angle, the Newtonian fluid’s response is well pre-

icted by the hydrodynamic model. However, the variation of the re-

eding contact angles was confined to very narrow capillary number

egime compared to that of the advancing contact angle.

Two interesting phenomena were observed for the viscoelastic

uids. First, the onset of decay in the receding contact angles was

elayed to higher capillary number regime with increasing fluid
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Fig. 8. The difference in the cubes of the static and dynamic receding contact angle

as a function of capillary number. Note that for Tanner’s law θ3
R,s − θ3

R ∝ Ca. The data

include: 0.01 wt% PAM solution (square); 0.05 wt% PAM solution (triangle); viscoelastic

PEO solution (star); pure water (diamond).
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lasticity. Unlike the advancing case, this delay is quite dramatic even

hen the shear thinning of the viscosity is accounted for as it is in

ig. 7. This result indicates that fluid elasticity hinders the viscous

ending of the air–water interface when the fluid recesses. Second,

he delay in capillary number for the onset of receding contact angle

ariation appears to be quite sensitive to the elasticity of the fluid. In-

reasing from 0.01 wt% to 0.05 wt% PAM was found to shift the data

o higher capillary numbers by more three decades. Unfortunately,

nlike the advancing case, where measurements of the PEO solution

rossed Wi = 1 and a distinct transition could be observed, in the re-

eding case, flow rates surpassing Wi > 1 could not be reached for

he PEO solution. As such, no distinct flow transition was observed

or the PEO. All measurements for the two PAM solutions were for Wi

1 where elastic effects are expected to be important.

The scaling behavior of the receding contact angle were studied by

lotting the difference between the cube of dynamic receding con-

act angles and the cube of static receding contact angles, θ3
R,s

− θ3
R

,

gainst the capillary number. As seen in Fig. 8, the prediction of the

ox–Voinov–Tanner’s law, θ3
R,s

− θ3
R

∝ Ca, fits the data for the Newto-

ian fluid over the entire capillary number range. For the viscoelas-

ic PEO solution, the receding contact angle was found to scale like
3
R,s

− θ3
R

∝ Ca1.1±0.1. This scaling is not obviously deviated from the

esponse of Newtonian solutions, indicating that the effect of elastic-

ty was not apparent in the receding contact angle for the viscoelastic

EO solution because as we noted before, the Weissenberg number

ever becomes greater than one. However, even though no change

as observed in scaling with capillary number, a significant delay in

he onset of changes to the receding contact angles were observed

or the viscoelastic PEO solution. A similar delay was not observed for

he advancing contact angle measurement and the cause of this shift

emains an open questions. It should be pointed out, however, that

lthough we are representing each flow with a single Weissenberg

umber based on the shear rate evaluated with the plate velocity

nd the capillary length, the shear rate is not constant throughout the

ow field. In fact, as one approaches the contact line, the shear rate

lows up to infinity. In fact, the shear rates are so large near the con-

act line that it is possible that the viscoelastic PEO solutions, which

he rheology measurements presented in Fig. 1 show to have a con-

tant viscosity up to shear rates of 100 s−1, could in fact be shear

hinning at still higher rates. As a result, even though Weissenberg

umber as we have defined it here is less than one, there are regions
lose to the contact line where elasticity and shear thinning can still

ecome important perhaps causing the delays in the onset of reced-

ng contact angle changes observed here.

As observed in advancing contact angle cases, the scaling behav-

or of the receding contact angle of each the viscoelastic PAM solution

as found to deviate from the prediction of Cox–Voinov–Tanner’s

aw. As to the case of the advancing contact angle, the scaling for the

iscoelastic fluids approached θ3
A

− θ3
A,s

∝ Ca2. With increasing fluid

lasticity the resulting scaling increased from θ3
R,s

− θ3
R

∝ Ca1.2±0.1

or 0.01 wt% PAM solution to θ3
R,s

− θ3
R

∝ Ca1.7±0.1 for 0.05 wt% PAM

olution.

.2. Viscoelastic scaling analysis

In order to understand the scaling behavior of dynamic advanc-

ng and receding contact angles for the viscoelastic fluids, a simple

caling model was developed using a similar approach to Tanner’s

odel. The main difference is of course that the elastic normal stress

f the fluid, τ xx, cannot be neglected for the viscoelastic fluids. By in-

roducing the first normal stress coefficient, we can arrange the two-

imensional momentum equation as follows:

dP

dx
= ∂τxx

∂x
+ ∂τyx

∂y
= ∂

∂x
(ψ1γ̇

2) + ∂

∂y
(ηγ̇ ) + ∂τyy

∂x
(2)

here dP/dx is the pressure gradient, ψ1(γ̇ ) = (τxx − τyy)/γ̇ 2 is first

ormal stress coefficient, γ̇ is the shear rate, and u is the velocity of

he main flow direction (x-direction). Here we assume that variations

f the normal stress, τ yy, are small compared to variations in the nor-

al stress, τ xx, allowing us to neglect the last term in Eq. (2). Using a

imensional analysis, a scaling for dynamic contact angle can be de-

ived from Eq. (2) for a viscoelastic fluid. For the viscoelastic fluids

tudied here, both the first normal stress coefficient and the viscosity

an modeled using power law equations ψ1 = αγ̇ m−2and η = βγ̇ n−1,

ith different power, law dependence, m and n, on the shear rate.

ere, α[Pa sm] and β[Pa sn] are indices that set the magnitude of the

ormal stress and viscosity of the power law fluid. Substituting into

q. (2) and differentiating we get

dP

dx
= αmγ̇ m−1 dγ̇

dx
+ βnγ̇ n−1 dγ̇

dy
(3)

y non-dimensionalizing Eq. (3) using characteristic variables, xc,yc,U

nd pcwe get

Pc

xc

dP̄

dx̄
= αm

(
U

yc

)m 1

xc

d

dx̄

(
dū

dȳ

)m

+ βn

(
U

yc

)n 1

yc

∂

∂ ȳ

(
dū

dȳ

)n

(4)

ecause all dimensionless quantities, represented by variables with

n over bar, are by definition order one in magnitude we can conclude

hat

Pc

xc
= ±α1mUm

yc
mxc

+ β1n
Un

yc
n+1

(5)

ere α1 and β1 are fitting constants that are not necessarily the same

s α and β , but should be of the same order of magnitude. The non-

imensional pressure variable can be assumed to the Laplace pres-

ure at the air–liquid interface, Pc ∝ σ( 1
R1

+ 1
R2

) ≈ σ d2y

dx2 . In addition,

or small contact angles the slope of the interface, yc/xc, can be rep-

esented to the dynamic contact angle, θD. The result is a scaling for

ynamic contact angle of viscoelastic liquids.

D
3 = ±α1mUm

σyc
m−1

θD + β1nUn

σyc
n−1

(6)

he power law dependence capillary number of the viscosity, n, and

rst normal stress coefficient, m, were taken from the rheological

easurements presented in Figs. 1 and 2. Because of the low elastic

ormal forces produced by these samples in steady shear, the first
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Fig. 9. The difference in the cubes of the static and dynamic receding contact angle as

a function of plate velocity. The experimental data include (a) advancing (filled square)

and receding (void square) contact angles for the 0.01 wt% PAM solution and (b) ad-

vancing (filled triangle) and receding (void triangle) contact angles for 0.05 wt% PAM

solution. Superimposed over the data is the theoretical prediction of Eq. (6).
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normal stress coefficient was estimated from the linear viscoelas-

ticity measurements using Cox–Merz Rule, ψ1 ≈ 2G′/ω2. The re-

sult was a power law scaling of ψ1 = 0.01 γ̇ −1.2and m = 0.8 and

η = 0.07γ̇ −0.55 and n = 0.45 for the 0.01 wt% PAM solution, and a

power law scaling of ψ1 = 0.62 γ̇ −1.5 m = 0.5 and η = 0.36γ̇ −0.68 and

n = 0.32 for the 0.05 wt% PAM solution.

To validate this model, the predictions of Eq. (6) were superim-

posed over the measurements of the difference between the cube

of dynamic receding contact angles and the cube of static reced-

ing contact angles for the PAM solutions in Fig. 9. The viscoelas-

tic scaling model predicts the scaling of the dynamic contact an-

gles for the limiting cases of a Newtonian fluid, θ3
D

− θ3
D,s

∝ Ca, and

a elasticity-dominated fluid with a constant first normal stress co-
fficient, θ3
D

− θ3
D,s

∝ Ca2. For the viscoelastic fluids tested here, the

ata resides somewhere between these two limits. For the case of

he dynamic advancing contact angle, the scaling model does a nice

ob of fitting the experimental data over the entire range of capil-

ary number for both the 0.01 wt% and the 0.05 wt% case. The only

xception is within the region at high velocities where the contact

ngle approached the asymptotic value. For the receding case, the

caling model also fits the data very well, especially at high veloci-

ies. Some deviation at low velocities can be seen. This is could be

ue to the uncertainty with which the static receding contact angle

an be quantified. There is a ± 1° uncertainty in the data which be-

omes more significant at low velocities when there is only a small

eviation from the static contact angle. Or, alternatively, it could be

ecause the data is so close to 90° that the small angle assumption

hat has been used breaks down. Finally, if we compare the predic-

ions of our scaling model to that of Carre and Eustache, which only

akes shear thinning effect into consideration, the fit from our model

s significantly better. The model of Carre and Eustache [21] cannot

atch the slope of either the dynamic advancing or receding con-

act angle when fluid elasticity is important. Note a fit to the dynamic

ontact angle data of the viscoelastic PEO solution was also attempted

sing the simple scaling model. Unfortunately, the rheological mea-

urements of this fluid were not sufficient enough to allow it to be fit

y a power law fluid. What is clear is that a more sophisticated model

eeds to be developed if one wishes to predict the dynamic contact

ngle for a fluid across the transition from low to high Weissenberg

umbers observed for the viscoelastic PEO case.

. Summary

In this study, the dynamic advancing and receding contact angles

f viscoelastic fluids were measured through the use of a modified

ilhelmy plate technique. A PTFE surface was used as the testing sur-

ace. Aqueous polyethylene oxide and polyacrylamide solutions with

ifferent fluid elasticity were prepared as test fluids. The advancing

ontact angles of both the Newtonian and viscoelastic solutions were

ound to increase with increasing plate velocity, while the receding

ontact angles were found to decrease with increasing plate veloc-

ty. However, significant differences were observed in the variation

f the dynamic contact angles with capillary numbers between the

ewtonian solution and viscoelastic solutions. Fluid elasticity was

ound to delay the onset of variation of dynamic contact angles to the

igher capillary numbers. In addition, the dynamic contact angles of

iscoelastic fluids were found to scale like θ3
D

− θ3
D,s

∝ Ca2. This is a

ignificant departure from the scaling of the dynamic contact angles

f the Newtonian solution which were found to follow Cox–Voinov–

anner’s hydrodynamic scaling law, θ3
D

− θ3
D,s

∝ Ca. The effect of fluid

lasticity becomes more transparent when the data was recast in

erms of the Weissenberg number. A transition in the growth of the

dvancing contact angle was observed at Wi = 1, above which, the

uid elasticity becomes important in the flow. Below Wi < 1, where

iscous stresses dominate the flow, the variation in dynamic advanc-

ng contact angles were found to scale like θ3
D

− θ3
D,s

∝ Ca, in agree-

ent with the prediction for a Newtonian fluid. For Wi > 1, where

lastic effects are important, the variation of advancing contact angle

as found to scale like θ3
D

− θ3
D,s

∝ Ca2. A simple scaling model was

eveloped to predict scaling behaviors of the dynamic contact angles

f viscoelastic fluids. This model was capable of describing the be-

avior of the dynamic contact angles well over a wide range of plate

elocities.
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