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High speed roll-to-roll coating and printing are important in both classical and novel processes, e.g., in
the emergent flexible electronics industry. Gravure in particular is attractive for its application to printing
as well as its high quality and throughput in coating continuous thin films. Despite its long standing use,
gravure is still poorly understood especially in the liquid transfer regime and when the coating liquid has
a complex rheology. As with any coating flow, the dynamics are governed by many complex phenomena
including free surfaces, (de)-wetting, and non-Newtonian rheology; these present observational, model-
ing, and computational challenges. Accordingly, modeling and computational work are usually limited by
the level of detail in describing the physical phenomena. In this work, we compute the influence of vis-
coelasticity on the transfer of polymer solutions in an idealized gravure process: the liquid is held
between a cavity and a flat disk that moves away at a constant velocity, with pinned contact lines on both
the disk and cavity. Our computations show that when the disk separation velocity is sufficiently high as
measured by the Weissenberg number—i.e., the consequent strain rate in the liquid bridge is high com-
pared to the rate of polymer relaxation—large elastic stresses are activated at early times and induce an
adverse drainage into the cavity. Gravity or other forces eventually overwhelm this elastic drainage at
later times when stretching dynamics decay in importance. When gravitational and elastic drainage
act in concert, they compete with the viscous forces that promote liquid transfer; this competition man-
ifests as an optimum disk velocity for maximal liquid transfer. With the appropriate scaling, we find that
the optimal disk velocities over a range of parameters reduce to an optimal Weissenberg number of about
0.1, which agrees well with experiments in the literature.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Gravure is commonly employed as a high speed roll-to-roll
coating or printing (patterned coating) method in a variety of prod-
ucts including magazines and packaging. More recently, it is being
investigated as a potential route for high throughput manufactur-
ing of high tech devices such as printed electronics [1] and solar
cells [2]. Many coating liquids of relevance contain particles and
macromolecules, or are otherwise structured at the nanoscale.
Such liquids exhibit complex rheological behavior such as shear
thinning, extension hardening, and viscoelasticity. The role of
complex rheology in gravure coating is still poorly understood,
and we aim to elucidate the relevant phenomena by computational
modeling.
In the typical gravure process, a pattern of cavities (gravure
cells) engraved on a cylindrical roller (the gravure roll) constitutes
the liquid delivery mechanism and is shown schematically in Fig. 1.
The gravure cells are filled by partially immersing the rotating gra-
vure roll in a bath, then doctoring off the excess liquid with a blade.
The liquid adheres to the web when the gravure roll is pressed onto
it, and the rolling action results in the formation of a stretching and
shearing liquid bridge between the cavity and web. Liquid transfer
is completed by the combination of de-wetting from the cavity
wall and the instability-driven capillary break-up of the liquid
bridge.

Depending on the process configuration, the liquid bridge may
experience a strong shearing motion—not to be confused with
shear flow within the liquid—for example in the extreme case of
reverse operation where the gravure roll rotates counter to the
web (counter-clockwise in Fig. 1). The effects of such shearing mo-
tions during gravure roll separation have been investigated both
experimentally [3,4] and computationally [5–8]. In cases where
the shearing motion is small, e.g., in Fig. 1 when Uweb � Uroll for
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Fig. 1. Schematic of the generic gravure printing process.
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Fig. 2. Schematic of the axisymmetric model gravure system. Geometric param-
eters are fixed: wall angle a = 75�, initial cavity depth h/L0 = 4/3, and initial liquid
bridge aspect ratio L0/R0 = 0.3.
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h� 1, the liquid bridge may be approximated as axisymmetric and
the stretching as uniaxial. A growing number of works takes
this approach to investigate liquid transfer efficiency using fila-
ment-stretching apparatuses [9–11] and analogous computations
[12–16].

There is a substantial body of literature concerning the dynamics
of stretching liquid bridges and jets dating back to the pioneering
works of Rayleigh [17] and Plateau [18]. The dynamic evolution of
the free surface profile up to the instability-driven break-up event
is particularly relevant to the gravure liquid transfer process in
describing the partition of liquid on the cavity and web when the
liquid does not completely de-wet from the cavity walls. Theoreti-
cal works have shown, for example, that the evolution of free sur-
face profiles become self-similar near break-up for viscous liquids
with and without inertia [19–21] and even for viscoelastic liquids
[22]. A consideration of equilibrium liquid bridge configurations
and stability [23] can also be instructive in the context of the qua-
si-equilibrium limit of stretching dynamics [24,25], where surface
tension and gravity dominate viscous and inertial forces.

Following the introduction of extensional rheometry [26–29],
several computational investigations of stretching liquid bridge
dynamics have appeared using diverse numerical strategies and
non-Newtonian rheological models [30–37]. These studies held
liquid between two flat disks and pinned the contact lines—
conditions necessary for extensional rheometry. In the context of
gravure, one of the disks must be replaced with a cavity and the
contact lines may move [10,12–16]. Indeed, experiments have
shown the role of de-wetting—i.e., the solid-liquid interaction be-
tween the gravure roll and the coating liquid—to be important in
determining the transfer of liquid [10]. Computational studies have
taken similar approaches, characterizing the solid-liquid interfacial
properties parametrically as static contact angles [13,14,16].

Moving contact lines, however, present many modeling and
computational challenges, especially for viscoelastic rheologies.
To begin, the details of the physics governing contact line dynam-
ics are poorly understood, as illustrated by the paradox arising
between the moving contact line and the no-slip condition at
solid-liquid interfaces [38]. While numerous theories have been
put forth (Ref. [39] for a recent review), a common modeling strat-
egy is to relax the no-slip condition at or near the contact line using
Navier’s slip law, as has been done in the computational investiga-
tions for gravure liquid transfer cited above.
Viscoelasticity, which arises in many polymeric liquids, has only
recently been explored experimentally in the context of gravure
[9]. While viscoelasticity has been incorporated in several compu-
tational studies of stretching liquid bridges held between flat disks
with pinned contact lines [31,36,40], there have not yet been any
such studies with cavity or moving contact lines characterizing
the gravure process. To our knowledge, computation of non-New-
tonian liquids in gravure liquid transfer have been limited to
purely viscous non-Newtonian rheological models [15,37]. This
limitation is partly due to the compounded difficulty of modeling
moving contact lines with current methods for modeling viscoelas-
ticity, and there are few instances of computing generally (de)-
wetting flows of viscoelastic liquids [41–43].

The logical first step in modeling liquid transfer is to analyze the
flow in the presence of a cavity but with pinned contact lines. The
latter simplification alleviates the aforementioned uncertainties
associated with modeling the interfacial physics, especially in con-
cert with complex rheologies (i.e. viscoelasticity). This approach
does not appear in the literature though, presumably because the
role of de-wetting is expected to be dominant. In fact, recent exper-
iments by Sankaran and Rothstein [9] have demonstrated that in
certain regimes of material and process parameters, the liquid re-
mains pinned to the outer corner of the cavity. Under this condi-
tion of pinned contact line, viscoelasticity either impedes or
enhances liquid transfer depending on whether the experiment
was inverted, indicating that gravity plays an important role. Fur-
thermore, activation of elastic effects—though only when in con-
cert with gravity—resulted in the observation of an optimal
coating speed for maximum liquid transfer.

Here, we examine computationally the effects of viscoelasticity
on liquid transfer during a model gravure process with the simpli-
fication of pinned contact line. Computations are carried out under
the same conditions as the experiments of Sankaran and Rothstein
[9]—namely with matching system geometry and similar liquid
properties. Results agree quantitatively with experiments for New-
tonian liquids and weakly elastic liquids. The findings and conclu-
sions from the experiments are extended by exploring a larger
parameter space.

2. Problem formulation and methods

2.1. Description of physical system

The model gravure process is an axisymmetric stretching liquid
bridge over a trapezoidal cavity, shown schematically in Fig. 2. Li-
quid is held between this cavity and a disk initially L0 from the cell,
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and is pulled from the cavity by action of lifting the disk with
velocity U, roughly corresponding to coating speed Usep (Fig. 1).
The liquid remains pinned at the gravure cell perimeter and the
disk corner, both with radius R0.

At steady operation, the web in Fig. 1 translates tangent to the
gravure roll from the point of contact, with velocity assumed equal
to the linear velocity of the roll surface Uroll = xRroll where x and
Rroll are the angular velocity and the radius of the gravure roll.
The angular displacement of a cavity on the roll at time t after con-
tact with the web is h(t) = xt, and so the rate of separation between
the cavity and point of contact on the web is Usep = xRroll sin xt.
For hs = xt� 1, the small angle approximation yields
Usep �x2 Rrollt such that in the axisymmetric model, the cavity
translates downward with constant acceleration a = x2Rroll away
from a stationary disk.

The case where the web conforms to the backing roll (with the
same radius as the gravure roll in Fig. 1), can be modeled with cav-
ity and disk that are accelerating away from each other with abso-
lute accelerations ±a and relative acceleration 2a. Because of
inertia, this situation is distinct from one where the cavity trans-
lates downward with acceleration 2a away from a stationary disk;
the two situations are only equivalent in the quasi-steady limit of
vanishing inertia. A simpler model for the separating motion is that
of constant velocity, for which only the relative velocity matters
even when inertial effects are important (except during the brief
initial acceleration from rest).

Previous works using the axisymmetric liquid bridge model for
gravure printing [9,10,12–16] have adopted this latter constant
velocity model, and we therefore focus on this approach. The con-
stant acceleration and constant velocity experiments are not
equivalent, however, except in the further restrictive quasi-equi-
librium limit (negligible dynamics). Nevertheless, our preliminary
experiments (unpublished) showed that results were qualitatively
similar for constant acceleration versus constant velocity experi-
ments. We confirmed this finding by computation for a few test
cases near the quasi-steady limit, and refer to the Supplementary
materials for the results and their discussion.

2.2. Governing equations and numerical method

The governing equations and numerical method parallel those
of previous works [36,44,45] and are only briefly summarized here
for convenience. The incompressible flow of Newtonian and visco-
elastic liquids is governed by the conservation equations for
momentum and mass

q
@v
@t
þ v � rv

� �
¼ r � Tþ qg ð1Þ

0 ¼ r � v ð2Þ

with fluid velocity v, the Cauchy stress tensor T, and gravity g. The
extra stress comprises purely viscous and elastic parts sv and se

such that

T ¼ �pIþ sv þ se ð3Þ

where p is the pressure. The viscous part is modeled by Newton’s
constitutive law

sv ¼ gs½rv þ ðrvÞT� ð4Þ

with gs the Newtonian or solvent viscosity.
The elastic contribution to the stress is modeled within the

framework of the general conformation tensor based constitutive
equations [44,45]. The dimensionless conformation field M embod-
ies the microstructural details of the polymer in solution [45–48]
by averaging the molecular stretch and orientation states in a con-
tinuum representation. We choose the FENE-P constitutive model
based on the finitely extensible nonlinear elastic (FENE) dumbbell
model for microstructured liquids. The free energy associated with
the conformation state a(M) for a FENE-P dumbbell is [45]

a ¼ 3G
2q
ðb� 1Þ ln b� 1

b� tr M
3

ð5Þ

yielding the elastic contribution to the stress [45]

se ¼ 2qðM� IÞ � @a
@M
¼ G

b� 1
b� tr M

3

ðM� IÞ ð6Þ

where b is the finite polymer extensibility parameter and G is the
elastic modulus, or the ratio of polymer viscosity to relaxation time.
Hereafter, the polymer viscosity is put in terms of the solvent vis-
cosity ratio b and the zero shear viscosity g0 = gs + gp so that

G ¼
gp

k
¼ ð1� bÞg0

k
ð7Þ

The constitutive model is completed by specifying the evolution
equation for the conformation field

@M
@t
þ v � rM�M � rv �rvT �M ¼ �1

k
b� 1

b� tr M
3

M� I

 !
ð8Þ

where the right hand side describes the FENE-P model-specific
relaxation toward the equilibrium state (in this case when M = I),
and the left hand side is the upper convected derivative common
to any constitutive model for which the conformation deforms affi-
nely with the flow.

The conserved quantities require boundary conditions on three
boundaries, namely the interfaces with the cavity, the moving disk,
and the surrounding air. The axisymmetric domain additionally re-
quires symmetry conditions along the axis. The conformation ten-
sor evolution equation is hyperbolic and therefore requires
conditions only at inflow boundaries, of which there are none in
this system. Boundary conditions for the momentum equations
follow.

Along the symmetry axis, the zero-shear and no-penetration
conditions hold

0 ¼ er � v ð9Þ
0 ¼ ezer : T ð10Þ

where er and ez are unit basis vectors.
For simplicity we assume the surrounding air is inviscid, so the

free surface requires only a normal stress balance given by the La-
place equation

n � T ¼ ð�pamb þ jrÞn ð11Þ

where n is the outward unit boundary normal, j denotes twice the
local mean curvature of the free surface, r is the interfacial tension,
and pamb is the prescribed ambient pressure,

Because the contact line is pinned, the fluid velocity on the mov-
ing disk and cavity are specified by the no-slip and no-penetration
conditions. Consequently, the contact angle is unconstrained and
no additional physics are required. The separation velocity is ap-
plied from rest with a brief acceleration so that the initial condi-
tion corresponds exactly to the equilibrium conditions v = 0 and
M = I. As long as the initial transient is sufficiently brief, the bound-
ary condition can be applied to either the cavity or the disk
without appreciably changing the results (see Supplementary
materials).

The conservation equations for 2D axisymmetric flow are
solved by the finite element method using an ALE formulation to
handle domain deformation due to free surfaces; the evolving fi-
nite element mesh positions obeying an elliptic equation are com-
puted together with the solution of the field equations [49,50]. The
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moving free surface is coupled to the momentum equations by
specifying kinematic (i.e. impenetrability) conditions on the
boundary interface

0 ¼ n � ðvs � _xsÞ ð12Þ

where _xs and vs are the mesh velocity and fluid velocity at the free
surface. The moving solid wall boundary position is specified inde-
pendently as the time-integral of the imposed velocity U.

We adopt the DEVSS-TG formulation [44] to improve numerical
properties of the solution algorithm. An additional field variable

L ¼ rv � ðr � vÞI=tr I ð13Þ

provides a c0-continuous and divergence-free representation of the
velocity gradient used to modify the coupling between the confor-
mation and momentum field equations. Replacing the rv terms
with L in Eq. (8) ensures volume-conservative deformations of the
conformation tensor [44]. The viscous stress term is stabilized by
modifying Eq. (4):

sv ¼ gs½L þ LT� þ ga½rv þ ðrvÞT � L � LT� ð14Þ

where ga is a numerical parameter whose value is of the same order
as gs. The hyperbolic nature of the conformation evolution equation
is addressed by SUPG stabilization [51].

The FEM-discretized equations are integrated in time using the
fully implicit second order Adams-Moulton method (the trapezoid
rule) with variable time steps [36,52].

Finally, the resulting algebraic equations are solved with New-
ton’s method using a combination of analytic and numerical Jaco-
bian. Each Newton step is solved by LU decomposition using a
frontal algorithm parallelized by OpenMP and executed on up to
12 processors in shared memory configuration.

2.3. Relevant parameters and definitions

Liquid transfer is computed as a function of the constant
stretching velocity (disk velocity) U for Newtonian and FENE-P liq-
uids. Experimental results are reported as the fraction / of liquid
removed from the cavity after break-up [9]. In our computations,
this fraction is measured in terms of the liquid above the horizon-
tal plane cutting the filament at the pinch point (region of local
minimum radius) 1 = rpinch/R0. It is possible in certain parameter
regimes for two pinch points to develop, in which case the filament
breaks up at both to produce a free droplet. In gravure, such a drop-
let may fall back toward the gravure roll or onto the substrate (the
latter resulting in the misting defect) depending on the direction of
gravity [9]. The droplet volume is assumed to ultimately be re-
moved from the cavity, and the computed measurement of liquid
transfer is accordingly based on the pinch point closest to the cav-
ity—the principal pinch point. The measurement is made when the
thinnest pinch point (not necessarily the principal pinch point) sat-
isfies 1 < 10�2, which is found to be sufficiently close to break-up so
that any further re-partitioning of liquid is insignificant.

Newtonian liquids are characterized by their viscosity g0, den-
sity q, and surface tension r. The relevant dimensionless numbers
are the capillary number Ca = g0U/r, Ohnesorge number
Oh ¼ g0=

ffiffiffiffiffiffiffiffiffiffiffiffi
qrR0

p
and Bond number Bo ¼ qgR2

0=r. The sign of the
Bond number specifies whether the cavity is on the bottom
(Bo > 0) or top (Bo < 0). Fixing Bo and varying Oh corresponds in
experiments to changing the concentration of short polymer in
solution, which alters viscosity without appreciably affecting the
density and surface tension. Experiments conducted at fixed Ca
are equivalent for any liquids with the same Oh and Bo as long
as the system’s geometric aspect ratios are fixed.

The disk velocity may as well be reported as a Reynolds number
Re ¼ qUR0=g0 ¼ CaOh�2, which measures the importance of
inertia, particularly at early process times when stretching dynam-
ics dominate over capillary-driven thinning dynamics. Near the
pinch point at late times, the relevant velocity scale is the capillary
thinning velocity r/g0 (independent of disk kinematics), and there-
fore the relevant Reynolds number for describing capillary break
up is Re ¼ Oh�2 [20,32] (if Oh� 1, the relevant characteristic
velocity is the inertia-dominated capillary thinning velocity from
which Recap ¼ Oh�1).

FENE-P liquids are characterized additionally by the solvent vis-
cosity ratio 0 < b < 1, polymer relaxation time k, and extensibility
parameter b. The relevant dimensionless numbers are the Deborah
number De = kr/(g0R0) and the Weissenberg number Wi ¼ k _c
where _c represents some characteristic process rate, e.g., a dimen-
sionless stretching rate. The Deborah number is defined with re-
spect to the viscous time scale tv = g0R0/r appropriate for liquids
with high Oh where viscous forces dominate inertial forces. The
limits De = 0 and b = 1 correspond to Newtonian liquids. When
Oh and Bo are fixed, De is varied by changing the relaxation time
k; this can be achieved in experiments by adding small amounts
of a high molecular weight polymers of varying length. The solvent
viscosity ratio can be altered in experiments by changing the con-
centration of the high molecular weight polymer additive.

Typical gravure cell sizes are in the range 10–100 lm engraved
on rolls with radius Rroll � 100 mm. A moderate-to-high linear web
speed of Uweb � 60 m/min corresponds to roll angular velocity
x � 10/s. Assuming a liquid bridge may stretch without breaking
to lengths reaching 10 times the gravure cell size, the separation
velocity may reach up to Usep � 100 mm/s. For a water based ink
with 0.1 < g0 < 1.0Pa s, this corresponds to Bo � 0.001, Ca � 1, and
Oh � 10. In comparison, our system size adopted from [9] is scaled
up to be experimentally feasible: lengths are scaled up keeping
other parameters fixed so that the characteristic numbers are
Bo � 1, Ca � 1, and Oh � 0.1. Gravity and inertia thus play greater
roles in our experiments than in a typical gravure operation.
3. Results

3.1. Newtonian liquids

To validate our approach, we compare in Fig. 3 the computed
and experimental results for Newtonian liquids. The experiments
were carried out using aqueous low molecular weight PEG
solutions with cavity size R0 = 2.5 mm (Bo = + 1.2) [9]. Over
the range of PEG concentrations, the viscosity varies between
10 < g0 < 60 mPa s, corresponding to 0.03 < Oh < 0.15. The range
of separation velocities 0.001 < U < 100 mm/s corresponds to
ranges for Ca and Re as indicated in Fig. 3. Agreement between
the experiments and computations is excellent to within uncer-
tainties in the initial relative cavity depth 1.3 < h/L0 < 4, corre-
sponding in experiment to initial separations of just 0.25–
0.75 mm for a cavity depth of h = 1 mm. The plateaus in the
experiment at the highest Ca are likely artifacts of operating the
apparatus at its upper limit of speed.

Hereafter, the geometric parameters are fixed to the values in
Fig. 2. A systematic sweep over the relevant range of material
parameters is summarized in Fig. 4. The Bond number is varied be-
tween �2.4 < Bo < 2.4 in Fig. 4a; the effect of inertia is suppressed
by setting a high viscosity (Oh > 1.6 and Re < 0:5). In Fig. 4b, the
Bond number is fixed to Bo = +1.2 and the Ohnesorge number is
varied in the range 0.03 < Oh < 1.13 (0:0001 < Re < 200).

In the limit Ca ? 0, the free surface profile evolution can be
approximated as a progression of pseudo-equilibrium solutions
to the Young-Laplace equation (although these equilibrium solu-
tions are not necessarily stable). For Bo = 0, this limit implies that
the free surface is always symmetric about the mid-plane, leading
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to symmetric partition of the liquid above the cavity and a limiting
final liquid transfer fraction /0 (which is not half because of the
cavity volume; see Fig. 3 inset). The computed results for Bo = 0
are consistent with this limiting /0 as indicated in Fig. 4a.

For finite Ca, the process is no longer in the pseudo-equilibrium
limit, and Fig. 4a shows that / depends on Ca even in the pseudo-
steady limit Oh ?1 (Re! 0). With increasing Ca, the free surface
recedes into the cavity progressively more severely during early
times (Fig. 4b). The resulting asymmetric free surface curvature
about the mid-plane sets up an adverse capillary pressure gradient
that drains liquid back toward the cavity. The competition between
this viscous pull-out and associated capillary drainage effect man-
ifests as a minimum in / at Ca � 0.01.

The cases where Bo – 0 (negligible inertial effects; Oh > 1) are
also shown in Fig. 4a, where gravity clearly dominates the overall
transfer of liquid, enhancing it when the cavity is above the disk
and vice versa. The effect is most dramatic in the Ca ? 0 limit
where viscous pull-out (and therefore capillary drainage) is inac-
tive. When active at higher Ca, the capillary drainage evidently acts
always against both gravity and viscous pull-out, and again results
in a minimum / at some critical Ca (whose value depends on Bo).
Conversely when Bo > 0, gravity and capillary drainage are cooper-
ative and dominate viscous pull-out in the relevant range of Ca;
thus / increases monotonically with Ca over the entire range
considered.

As Oh is decreased and inertial forces become more important,
the stretching liquid filament can develop two pinch points, lead-
ing to satellite drop formation (see also Ref. [14]). This drop con-
tains an increasingly significant fraction of the total liquid
volume as both Ca increases and Oh decreases, and therefore con-
tributes increasingly to apparent liquid transfer. When Bo = +1.2,
decreasing Oh enhances the final liquid transfer at any Ca
(Fig. 4c); liquid transfer increases monotonically with both increas-
ing Ca and decreasing Oh. When Bo = �1.2, however, the interac-
tions are more complex and do not lead to a monotonic effect on
liquid transfer (Fig. 4d). Results are expected to converge as
Oh ?1, and are practically indistinguishable when Oh > 0.57 at
which point inertia appears to be effectively suppressed.

In summary, gravity and surface tension dominate liquid trans-
fer at low capillary numbers where both inertial and viscous effects
are negligible. At intermediate capillary number when stretching-
induced flow is appreciable, capillary effects drain liquid into the
cavity. Gravity competes with this drainage when the cavity is
on top, resulting in a critical capillary number for minimal liquid
transfer. At high capillary number, viscous forces pull more liquid
out of the cavity, enhancing liquid transfer. As Fig. 4c shows for
Bo > 0, liquid transfer is further enhanced as Oh is lowered and
inertial effects become stronger (although this generalization is
not true when Bo < 0). Depending on the relative importance of
gravity, systems with high inertia also tend to produce large satel-
lite drops; these can be avoided by restricting attention to high Oh
liquids.
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3.2. Viscoelastic liquids

The results of Fig. 4c and d indicate that for a fixed Bond num-
ber and geometry, experiments with Newtonian liquids are practi-
cally equivalent when Oh > 0.57. The viscoelastic PEO solutions
used in experiments correspond to Oh = 0.48 and Oh = 0.65, and
we therefore fix Oh = 0.57 to compute liquid transfer of viscoelastic
liquids. The extensibility parameter is fixed to b = 50 for simplicity,
and only the Deborah number De and solvent viscosity ratio b are
varied.

The effects of varying De fixing b = 0.6 and Bo = +1.2 are shown
in Fig. 5. For comparison to the Newtonian liquid at the same Oh
and Bo, fraction liquid transferred / is plotted against Ca. Two ef-
fects of viscoelasticity are readily apparent from Fig. 5: (1) elastic-
ity decreases liquid transfer for all Ca and De in the range
considered, and (2) there is an optimal capillary number Ca⁄ for
maximal liquid transfer. Both of these results are consistent with
the findings of Sankaran and Rothstein [9], which are also shown
for comparison. Agreement is good for the De � 2.9 liquid, but
computations could not be reliably carried out for De > 5 due to
the well-known numerical difficulties associated with high elastic-
ity flows. The experimentally obtained / appear not to asymptote
to the same limiting value as Ca ? 0, suggesting either uncertain-
ties in the initial separation L0 or possibly detachment of the liquid
from the translating disk.

Fig. 6a shows the effect of varying the solvent viscosity ratio b
with fixed De = 2.0. It is expected that lower b (higher elastic con-
tribution to the total liquid stress) will have the same effect as
increasing De; indeed, both decrease overall liquid transfer and
shift the optimal Ca⁄ to lower values. Conversely when Bo = �1.2,
liquid transfer is enhanced with increasing elasticity (Fig. 6b); this
trend was found also in experiments [9]. In a few experimental
cases, the contact line on the cavity was observed to de-pin from
the corner, additionally enhancing liquid transfer. Although our
computations are restricted to pinned contact line, the results of
Fig. 6b show that the elastic effect is significant enough to account
for most of the enhanced cavity emptying. Similar plots varying
0.2 < De < 5.0 show that the influence of b on liquid transfer is
increasingly dramatic with increasing De (see Supplementary
materials).
10 2 10 1 100

0.10

0.15

0.20

0.25

fra
ct

io
n 

tra
ns

fe
rre

d 

De = 0.0
De = 0.3
De = 0.7
De = 1.0
De = 1.3
De = 1.5
De = 2.0
De  2.9
De = 5.0
De   21

Ca

Fig. 5. Effect of varying De at fixed b = 0.6 on the transfer of a FENE-P liquid with
comparison to experimental results [9] (open symbols; assumed b � 0.8). In all
cases, Bo = +1.2 and Oh = 0.57.
4. Discussion

The main observations of viscoelastic liquid transfer are (1) the
exacerbation of gravitational drainage, and (2) that of an optimal
coating speed for maximum liquid transfer when Bo > 0 (i.e., when
gravity opposes liquid transfer). Below, we discuss these observa-
tions in three parts. The first part splits the process into regimes
and demonstrates that although final liquid transfer is ultimately
determined at late times, there is always an adverse elastic effect
activated at early times for high Ca, independently of gravity. The
second part defines a Weissenberg number Wi based on the pre-
mise that the optimal liquid transfer observed in the Bo > 0 cases
occurs at a critical value Wi⁄. The third part explores quantitatively
the transition at this critical Wi⁄ beyond which the early-time elas-
tic effects are activated, in particular examining the change in
development of the elastic stress and the deformation of the free
surface.
4.1. Process regimes during liquid transfer

The results of Figs. 5 and 6 taken together indicate that the most
apparent effect of elasticity is to assist gravitational drainage. This
drainage is dominant at late times when the axial displacement L
of the disk is high; Sankaran and Rothstein [9] explain this in terms
of the extensional strain rate due to stretching _e ¼ U=L, which de-
cays as L increases. It follows that liquids with higher elasticity are
affected more by gravitational drainage simply because they form
thicker liquid bridges, entrapping a larger fraction of the total li-
quid at the onset of the thinning regime; this is consistent with
the observations. To illustrate, a useful quantity to consider is the
transient liquid partition w, which is defined as the partition of li-
quid above the principal pinch point at any time during the process
so that wjbreak = /. In Fig. 7, this quantity is plotted against the
scaled axial strain for a FENE-P liquid at two values of Ca.

From Fig. 7, the process can be split into three regimes. The
behaviors of Newtonian and FENE-P liquids are qualitatively simi-
lar during the early regime I, although elastic effects appear to gen-
erally suppress liquid transfer especially in Fig. 7a. Regime II marks
the onset of gravitational drainage as determined by the downturn
in w for the Newtonian liquid when Bo > 0. More importantly at re-
gime II, Fig. 7a shows for FENE-P liquids a sudden reduction in w
for both Bo cases. At late times denoted regime III, gravity clearly
dominates liquid partition, reversing the regime II effect for the
Bo < 0 case and enhancing it otherwise.



Fig. 7. Transient liquid partition w with respect to axial strain for a FENE-P liquid
with De = 2.0 and 0.3 < b < 0.9 at (a) Ca = 1.2 and (b) Ca = 0.2. From Fig. 6a,
0.2 < Ca⁄ < 0.7 depending on the value of b. The bottom sets of curves is for
Bo = +1.2, and the top sets for Bo = �1.2. Bolded curves indicate the Newtonian limit
b = 1.

Fig. 8. Comparison between the (a) Bo = + 1.2 and (b) Bo = �1.2 cases of free surface
profile evolutions for FENE-P liquid with De = 2.0 and b = 0.4. Stretching conditions
are such that Ca = 0.56 > Ca⁄ (see Fig. 6a). The time between profiles is chosen only
for visual clarity. A gray curve tracks the pinch point.
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The sudden reduction of w in regime II intensifies with decreas-
ing b, indicating that it is a viscoelastically induced drainage. While
its effect is obscured in Fig. 6b when Bo < 0, Fig. 7a suggests that
the same adverse effect is at work during regime II regardless of
the action of gravity. The effect is unobservable in Fig. 7b where
Ca < Ca⁄ (for most values of b). Thus, viscoelastically induced drain-
age in regime II is evidently activated only beyond a critical
stretching velocity.

At late times (regime III), elastic effects evidently exacerbate
gravitational drainage even when the regime II effect is not acti-
vated (Fig. 7b), and indeed this effect eclipses the regime II effect
(it is reversed in the Bo < 0 case; Fig. 7a). This result is perhaps sur-
prising in light of the small local Bond numbers BoL ¼ qgr2

pinch=r
associated with the liquid filament at late times: the filament is
thin and therefore the local curvature and capillary pressure are
high compared to the weight of the filament. However, the rele-
vant quantity to compare against gravitational potential is the gra-
dient of capillary pressure, which is low for nearly cylindrical
filaments with nearly constant curvature (zero for perfectly cylin-
drical filaments). Fig. 8 shows the free surface profile evolutions of
a FENE-P liquid with gravity acting in opposite directions, and
demonstrates that gravity induces sagging even for local Bond
numbers as low as BoL = 5 � 10�3.

With increasing Ca, viscous stretching dominates over capillary
drainage and leads to more persistent liquid filaments, which are
more susceptible to the late time gravitational drainage. Filament
persistence is also more prominent with increasing elasticity due
to extension-thickening. These observations are consistent with
the increasingly dramatic effects (whether enhancement or reduc-
tion) on liquid transfer shown in Figs. 5 and 6 when Ca, De, or
(1 � b) are increased.

Computations were also carried out in the limiting case of
Bo = 0 with all other dimensionless parameters fixed, and the re-
sults are presented as Supplementary materials. In brief, the late
time dynamics exhibit the formation of beads-on-a-string
structures (see also Refs. [53,54]), and lead to a more complex
dependence of final liquid transfer on Ca. Importantly, the results
together with those in Fig. 7 confirm that although final liquid
transfer fraction is ultimately governed by the details of late time
dynamics, there is an elastically induced suppression effect at early
times when the disk separation velocity exceeds some critical
value.

4.2. Weissenberg number governing liquid transfer suppression

In the absence of elasticity, Fig. 4 shows that liquid transfer for
Bo > 0 increases monotonically with coating speed (Ca). The obser-
vation that viscoelastic liquids exhibit optimal coating speeds Ca⁄

(Figs. 5 and 6a) together with the results of Fig. 7, suggests that
early-time elastic effects are activated only if process strain rates
are sufficiently intense. The appropriate dimensionless coating
speed must therefore take the form of a Weissenberg number
Wi ¼ k _c, comparing the polymer’s relaxation time k to a character-
istic strain rate for the relevant process dynamics _c.

Sankaran and Rothstein [9] defined a Weissenberg number in
terms of the transient stretching rate U/L. Noting that stretching
dynamics are strongest when L = L0, the extensional Weissenberg
number is defined as Wie = kU/L0. However, it is evident from
Fig. 5 that the optimal Wi	e depends on De, suggesting that it is
not the appropriate scaling that governs optimum liquid transfer.
Considering the dependence of Ca⁄ on De and b in Figs. 5 and 6a,
we find an empirical scaling for the Weissenberg number

Wi ¼ Ca2Deð1� bÞ ¼ k
U
R0
ð1� bÞ � g0U

r
ð15Þ

The scaling of Eq. (15) is used to recast in Fig. 9a the results of Fig. 5.
Normalizing by the optimal liquid transfer fraction, all computed
and experimental [9] results over the range 0.2 < De < 21 and
0.2 < b < 0.9 (fixing Oh, Bo, and geometry) collapse well onto a mas-
ter curve as shown in Fig. 9b. The experimental data were scaled
assuming a value of b = 0.8, based on shear rheometry revealing
that the polymeric contribution is not strong enough to induce sig-
nificant shear thinning [9].

Importantly, Eq. (15) does not depend on the imposed extension
rate U/L0 but rather on the imposed shear rate U/R0 (the capillary
number can also be interpreted as the comparison of this shear rate
to the viscous time scale). Fig. 10 demonstrates that the optimal
Weissenberg number does not change with initial liquid bridge as-
pect ratios 0.12 < L0/R0 < 0.6, further suggesting that the relevant
dynamics are that of shear rather than extension.



(a)

(b)

Fig. 9. Fraction of liquid transferred (normalized) with respect to Weissenberg
number (Eq. (15)) for all computations with Bo = +1.2 and Oh = 0.57 varying
0.2 < b < 0.9 and 0.2 < De < 5.0. Bold symbols connected by lines are experimental
data [9] with an assumed b = 0.8: triangles represent short chain PEO solutions with
De = 2.9; diamonds represent longer chain PEO solutions with De = 21.5.
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Additional explorations of the proposed scalings in Eq. (15) are
presented in the Supplementary materials. In brief, the results are
confirmed to be independent of Oh (inertia is already negligible),
the results appear relatively insensitive to doubling the extensibil-
ity parameter b, and most of the spread in Fig. 9 is shown to be due
to small values of the term (1 � b).

The Weissenberg number in Eq. (15) is thus representative of
the early-time shear-dominated stretching flow regime and not
of the late-time extension-dominated thinning flow regime. The
relevant process strain rate _c includes Ca, indicating that the
dynamics are governed by an interaction of elastic, viscous, and
capillary forces.
Fig. 10. The initial liquid bridge aspect ratio L0/R0 has little effect on the critical
Weissenberg number for optimal liquid transfer, indicating that the extension rate
U/L0 is not the relevant strain rate. Liquid transfer fraction / increases with L0/R0

because the total amount of liquid above the cavity is also increasing.
4.3. Elastic stress activation near the critical Weissenberg number

The critical Weissenberg number Wi⁄ � 0.1 marks the optimal
coating speed for maximal liquid transfer when Bo > 0; no such
optimum is apparent when Bo < 0. Here we demonstrate that Wi⁄

marks a transition where elasticity become important relative to
the early-time shear. Viscoelastic extension-hardening dominates
only at later times, prolonging the life of the filament and provid-
ing opportunity for other forces to determine final liquid transfer.

Liquid transfer is proximally governed by the free surface pro-
file evolution, which is in turn governed by Eqs. (11) and (12).
Thus, a principal quantity in determining the characteristics of vis-
coelastic liquid transfer is the dimensionless elastic contribution to
the free surface normal stress

sfs
e ¼

R0

r

� �
nn : se ð16Þ

where n is the outward normal to the free surface and se is the elas-
tic contribution to the total stress. It is made dimensionless by the
characteristic stress scale r/R0, which is the capillary pressure jump
across the free surface at the initial equilibrium configuration with-
out the influence of gravity. Although this characteristic stress does
not contain the viscosity g0, it is equivalent to the viscous stress
scale when the characteristic velocity is defined in terms of the ini-
tial liquid bridge radius R0 and viscous time scale tv. The complete
space-time evolution of sfs

e for a specific set of material parameters
is illustrated in Fig. 11, along with free surface profiles at selected
time steps.

A series of free surface normal elastic stress evolutions with
increasing Wi is shown in Fig. 12. The behavior of sfs

e changes qual-
itatively at the critical Weissenberg number, and the direction of
gravity appears relatively inconsequential. When Wi < Wi⁄, the
largest elastic stress grows monotonically in the late-time
regime due to strong extensional flow stretching out the polymer
in the thinning filament. Conversely, when Wi > Wi⁄, the near-
mid-filament elastic stress peaks at early times; the peak occurs
0.
0

0.0

0.5

−
0.
5

τ
fs e
=
( R

0
/σ

) n
n
: τ

e

Fig. 11. Contour plot (top) representing the evolution of the free surface normal
elastic stress sfs

e along the interface (s/stot is the normalized length of arc from the
cavity side contact line) with respect to the reduced pinch point radius 1. Negative
normal stresses act into the liquid (surface normal is defined as outward pointing).
Free surface profiles (bottom) correspond to the vertical slices depicted in the
contour plot. The case shown is for De = 1.0, b = 0.6, and Wi = 0.05.



(b)

(a)

Fig. 13. Migration of the dimensionless axial pinch point location v (on the cavity
side v = 0) with respect to the pinch point radius 1 as a proxy for time (see Fig. 8).
The viscoelastic properties are fixed to De = 2.0 and b = 0.4. Upward pinch point
migration indicates partitioning of liquid toward the cavity (adverse drainage).
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consistently when the dimensionless pinch point radius achieves a
critical value 1⁄ � 0.3. This early-time maximum sfs

e appears at a
critical stretching velocity corresponding to Wi �Wi⁄ (Fig. 12),
and is representative of elastic effects during the early-time
stretching flow regime.

The action of the free surface normal elastic stress is evident
also by its influence on the evolution of the free surface, specifically
the migration of the dimensionless axial position of the principal
pinch point v = zpinch/L (shown in Fig. 8 as a locus). Fig. 13 com-
pares the pinch point migration v(1) of the Bo > 0 and Bo < 0 cases
over a range of Wi.

When Wi < Wi⁄, increasing Wi pulls the pinch point toward the
cavity, effectively enhancing liquid transfer by partitioning more li-
quid away from the cavity—this is the same viscous stretching ef-
fect illustrated in Fig. 4b with increasing Ca. As Wi increases
beyond the optimal Wi⁄, the pinch point is pulled increasingly
away from the cavity—regardless of the direction of gravity—
impeding liquid transfer. The effect is illustrated by plotting
against Wi the rate of pinch point migration at the critical pinch
point radius dv=d1j1	 (Fig. 14). Before activation of the elastic
stress, pinch point migration is unaffected by increasing Weiss-
enberg number and dv=d1j1	 � 0. The downturn in dv=d1j1	 indi-
cates activation of the elastic effect, and occurs at Wi �Wi⁄ as
expected. Fig. 14 further demonstrates that the action is indepen-
dent of gravity for all computed cases.

Because the early-time elastic suppression and free surface nor-
mal elastic stress development has been shown to be independent
of the gravitational asymmetry, it must be attributed to the asym-
metry associated with the cavity. To probe the influence of the cav-
ity, liquid transfer is calculated for Newtonian and FENE-P liquids
(Oh = 0.57, Bo = + 1.2, De = 2, b = 0.5) fixing Ca = 1 and varying cav-
ity wall angle a (Fig. 15). The liquid transfer fraction / for Newto-
nian liquids decreases with increasing cavity angle because the
cavity volume increases (fixed cavity volume computations cannot
be carried out of a large range of a due to geometric restrictions).
The free surface recedes more strongly into the cavity as the wall
angle is made steeper (insets in Fig. 15) analogously to increasing
Ca for a fixed geometry. In fact, the fraction of liquid transferred
relative to the initial liquid bridge volume (which is the same
regardless of the cavity volume) increases with a, indicating that
the same viscous pull-out effect illustrated in Fig. 4b is at work.

As expected, the FENE-P liquid exhibits decreased liquid trans-
fer for all a compared to the Newtonian liquid. More importantly,
the reduction of liquid transfer relative to the Newtonian limit
(/Newt � /FENE-P)//Newt increases with increasing a (right axis in
Wi = 0.0038 Wi = 0.047

τ fs
e = (R 0/σ )nn : τe −

g

g

Bo = − 1.2

Bo = + 1.2

Fig. 12. Free surface normal elastic stress evolution with increasing Wi at fixed De = 2.
regardless of the direction of gravity. The vertical axes are oriented as indicated by the
Fig. 15). This result—namely that the severity of early-time elastic
drainage increases with increasing wall angle a—suggests that the
elastic free surface normal stress development is intimately related
to the early-time free surface recession into the cavity.

The relationship is further demonstrated by the Ca term in Eq.
(15), inasmuch as Ca was shown in Fig. 4b to govern free surface
recession during the stretching regime. In other words, increasing
either a (steepening cavity walls) or Ca enhances the early-time
adverse elastic stress. Conversely, a = 0 corresponds to the flat disk
(no cavity) case and Ca = 0 corresponds to the pseudo-equilibrium
limit, both of which prevent free surface recession into the cavity
and therefore the asymmetric elastic stress development that ulti-
mately hinders liquid transfer. Accordingly, the early-time elastic
stress should be less important at small Ca, even as Wi > Wi⁄.
Indeed, additional computations (Supplementary materials)
varying De at fixed Ca demonstrate that the elastically induced
0.20.0

Wi = 1.2Wi = 0.096 (� Wi �) Wi = 0.65

0.4

0 and b = 0.7. The time evolution transitions qualitatively in behavior at Wi⁄ � 0.1
cartoon.



Fig. 14. Summary of elastic activation for all computed results with conditions in
the figure legend. The elasticity-activated pull on the free surface (as in Fig. 13) is
quantified as the rate of pinch point migration dv/d1 when 1 = 1⁄. For all the cases
computed at various viscoelastic parameters and the direction of gravity, there is a
clear transition in the free surface profile evolution at Wi �Wi⁄ in accordance with
observations of optimal liquid transfer in Fig. 9.

Fig. 15. Liquid transfer (left axis) for Newtonian and FENE-P liquids with Oh = 0.57
and Ca = 1 with varying cavity wall angles a (the cavity vanishes in the limit a ? 0;
see Fig. 2). Newtonian liquid transfer fraction decreases with increasing a because
the cavity volume increases (L0/R0 is held constant). For the FENE-P liquid, De = 2
and b = 0.5. The relative reduction in liquid transfer for the FENE-P liquid
(/Newt � /FENE-P)//Newt (right axis) increases with increasing a.
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reduction of liquid transfer with respect to Wi diminishes with
decreasing Ca.
5. Conclusion

This study examined computationally the role of viscoelasticity
on liquid transfer during a model gravure process with the pinned
contact line condition. We computed the fractions of Newtonian
and FENE-P liquids transferred from an axisymmetric cavity to a
disk as a function of the disk’s axial displacement velocity, and
demonstrated quantitative agreement between computations and
earlier experiments [9].

With increasing disk velocity, strong free surface normal elastic
stresses develop at early times and act to pull liquid back into the
cavity. This action is always adverse to liquid transfer, independent
of gravity, and is governed by the early-time stretching dynam-
ics where flow is dominated by shear. The final fraction of
transferred liquid is decided ultimately during the late-time
extension-dominated thinning regime where viscoelastic exten-
sion-hardening delays filament break-up and allows prolonged
drainage, gravitational or otherwise. In the case where gravity rein-
forces the early-time viscoelastic drainage, the competition with
viscous forces manifests as an optimal disk velocity corresponding
to a critical Weissenberg number.

Because a typical gravure cell is smaller than our model system
as measured by the Bond number, gravity will be less important in
a real system. According to the adverse elastic effects activated at
the critical Weissenberg number, the practical implication for a
real gravure coating or printing process with viscoelastic liquid is
the existence of an operating window for coating speed. This win-
dow shifts to lower speeds with increasing polymer relaxation
time (higher molecular weight polymer) or increasing elastic con-
tribution to the zero-shear viscosity (higher polymer concentration
in the liquid). Without significant gravity, however, the stretching
viscoelastic liquid filament may break up into satellite drops
(misting defect). The details of this late time behavior may ulti-
mately enhance or reverse the early-time elastic suppression effect
to determine the final efficiency of liquid transfer. More studies are
therefore needed to understand the late time behavior of persistent
liquid filaments during gravure processes, especially regarding the
formation of beads-on-a-string.

Further investigations should also explore the effect of applying
a more realistic model for the separation of the cavity and disk—
the constant acceleration model works well at small separations.
In such cases, absolute motions of the cavity and disk, which essen-
tially models the angle of departure of the web from the gravure
roll, will be important for low Ohnesorge number liquids due to
inertial effects.

A more complete model for gravure requires a systematic inves-
tigation of viscoelastic effects on the de-wetting of liquid undergo-
ing extension from a gravure cavity. Observing the contact line is
challenging in experiments due to the cavity geometry [9]. Com-
puting de-wetting viscoelastic flows requires modeling the contact
line physics—which are still poorly understood—and more robust
numerical methods to reconcile outstanding issues that arise when
modeling both viscoelasticity and dynamic (de)-wetting. Once
these challenges are overcome, computations promise to comple-
ment the ongoing efforts in understanding the role of complex rhe-
ology and interfacial phenomena in gravure processes.
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