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a b s t r a c t

Solutions of self-assembled wormlike micelles are used with ever increasing frequency in a multitude of
consumer products ranging from cosmetic to industrial applications. Owing to the wide range of appli-
cations, flows of interest are often complex in nature; exhibiting both extensional and shear regions that
can make modeling and prediction both challenging and valuable. Adding to the complexity, the micellar
dynamics are continually changing, resulting in a number of interesting phenomena, such as shear band-
ing and extensional flow instabilities. In this paper, we present the results of our investigation into the
flow fields generated by a controllable and idealized porous media: a periodic array of cylinders. Our test
channel geometry consists of six equally spaced cylinders, arranged perpendicular to the flow. By system-
atically varying the Deborah number, the flow kinematics, stability and pressure drop were measured. A
combination of particle image velocimetry in conjunction with flush mount pressure transducers were
used to characterize the flow, while flow induced birefringence measurements were used to determine
micelle deformation and alignment. The pressure drop was found to decrease initially due to the shear
thinning of the test fluid, and then exhibit a dramatic upturn as other elastic effects begin to dominate.
We present evidence of the onset of an elastic instability in one of the test fluids above a critical Deborah
number manifest in fluctuating transient pressure drop measurements and asymmetric streamlines. We
argue that this disparity in the two test fluids can be attributed to the measurable differences in their
extensional rheology.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Viscoelastic wormlike micelle solutions are currently being used
extensively as rheological modifiers in consumer products such
as paints, detergents, pharmaceuticals, lubricants and emulsifiers
where careful control of the fluid properties are required. In addi-
tion, micelle solutions have also become important in a wide range
of applications including agrochemical spraying, inkjet printing,
turbulent drag reduction and enhanced oil recovery where they
are often used as a polymer-free fracture fluid for stimulating
oil production [1–3]. A fundamental understanding of the behav-
ior of these complex fluids in different flow regimes is therefore
extremely important to a host of industries. Techniques for the
analysis and control of the flow of complex fluids require accu-
rate determination of material properties as well as the ability to
understand and predict changes that occur within the materials as
they are subjected to the flow conditions encountered in industrial
and commercial applications. Shear and extensional rheometers
provide an excellent framework for investigating the behavior of
these complex fluids because the flow kinematics tends to be sim-
ple. Additionally, these rheological measurements can shed light
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on the dynamics of wormlike micelle solutions in complex flows
and phenomena such as elastic flow instabilities, which commonly
occur in many of the industrial and commercial applications men-
tioned above. A number of studies of the nonlinear rheology and the
behavior of these complex fluids in strong flows have recently been
published. To date, no study has been performed on the response
of solutions of wormlike micelles through a periodic array of cylin-
ders.

Surfactants are amphiphilic molecules which have both a bulky
hydrophilic head, which is often charged, and a relatively short
and slender hydrophobic tail typically consisting of an 8-20 car-
bon atom chain. Above their critical micelle concentration (CMC),
surfactant molecules in water will spontaneously self-assemble
into large aggregates known as micelles to minimize the exposure
of their tails to water [4–6]. In oil, reverse micelles are formed
where instead the head-groups are shielded from the oil [7,8].
As seen in Fig. 1, these large aggregates can form into a num-
ber of different complex shapes including spherical and wormlike
micelles, vesicles and lipid bilayers [9]. The morphology of the
aggregates depends on the size of the surfactant head group, the
length and number of tails, the charge on the surfactant, the salin-
ity of the solution, temperature, and the flow conditions [4,9].
We are most interested in wormlike micelle because as suggested
by their pseudonym ‘living polymers,’ wormlike micelles display
many of the same viscoelastic properties of polymers. However,
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Fig. 1. Schematic diagram of a wormlike micelle.

although both wormlike micelle solutions and polymer solutions
can be viscoelastic, wormlike micelles are physically quite dif-
ferent from polymers. Whereas the backbone of a polymer is
covalently bonded and rigid, wormlike micelles are held together
by relatively weak physical attractions and as a result are continu-
ously breaking and reforming with time. In an entangled network,
both individual polymer chains and wormlike micelles can relieve
stress through reptation driven by Brownian motion [5]. However,
unlike polymeric fluids, wormlike micelle solutions have access
to a number of stress relief mechanisms in addition to reptation.
Wormlike micelles can relieve stress and eliminate entanglement
points by either breaking and reforming in a lower stress state [6]
or alternatively by creating a temporary branch point which allows
two entangled micelles to pull right through each other thereby
eliminating the entanglement point and relieving stress in what
has become known as a ‘ghost-like’ crossing [10]. Additionally,
the constant re-organization of the network structure results in
several interesting phenomenon when subjected to strong flows.
Under all but the most extreme conditions, the large viscosities
of these solutions lead to vanishingly small Reynolds number,
Re = UL/� where U is the mass averaged velocity, L is a characteristic
length scale, and � is the fluid’s viscosity. In all of the experiments
presented herein, the Reynolds number was of order Re ≤ 10−3

or smaller.
One such phenomenon subject to much interest and research in

recent years is that of shear banding. This flow induced structural
change is the result of the micellar network coexisting at two dis-
tinct shear rates under an applied stress. When subjected to a shear
flow above a critical stress, such as those generated by a cylindri-
cal Couette geometry, the micellar solution responds by forming
two or more bands, each flowing at a distinct shear rate such that
the fluid experiences a constant average rate of strain across the
geometric gap it fills. There have been several elucidatory investi-
gations into this behavior, making use of mechanical and optical
measurement techniques [11,12]. Another interesting feature of
wormlike micelles is their mechanism of mechanical failure under
an applied stress. Flow curves have shown these solutions to be
both shear thinning [6], and strain hardening in extensional flows
[13]. However, measurements of these non-Newtonian behaviors
are not predictive of their method of failure in extensional flows.
In extensional flow, fluid filaments of wormlike micelle solutions
were observed to fail dramatically at mid plane after accumulating
a significant amount of extensional stress. This behavior has been
observed most recently by Bhardwaj et al. [14], and is believed
to be caused by a scission of individual micelle chains. This type
of dramatic failure can manifest itself as instabilities in not just
extensional flows, but complex flows as well. For example, the
flow around a sphere contains regions of shear as the fluid passes
around the circumference, as well as extension in the wake of the
sphere. Given that the fluid is known to be shear thinning as well
as extensionally thickening, the combination of these qualities and

the complex flow field yields some interesting results. Chen and
Rothstein [15] observed that above a critical Deborah number a
new class of elastic instabilities, related to the rupture of these
micellar solutions in the extensional flow present in the wake of a
sphere occurred. By measuring the flow fields with Particle Image
Velocimetry (PIV) and Flow Induced Birefringence (FIB) they were
able to explore the kinematics of the flow. Similar instabilities have
also been observed by Gladden and Belmonte [16]. A natural exten-
sion of this work is to study the flow of viscoelastic micelle solutions
past periodic arrays of cylinders.

Fluid flow around a single cylinder in cross-flow has also been
the subject of much experimental treatment. One such study was
performed by McKinley et al. [17] using Laser Doppler Velocimetry
(LDV) to observe the behavior and flow patterns generated by sev-
eral different polymer solutions flowing around a circular cylinder.
They experimentally observed and verified the existence of a flow
instability in the wake of a single cylinder lying perpendicular to
the bulk flow above a critical Deborah number of Decrit = 1.3. The
Deborah number is defined as De = ��̇ , where � is the relaxation
time of the fluid, and �̇ is the shear rate. In similar experiments of
flow of polymer solutions past an array of cylinders at low Reynolds
number, Chmielewski et al. [18] also observed an elastic instability.
They found an enhanced pressure drop for all array configurations
when the Deborah took on a value of order 1 as well as unsteady
flow patterns. There are many other experimental studies in the
canon of investigations into the flow of viscoelastic polymer solu-
tions around a cylinder showing similar results including work
from Talwar et al. [19], Baaijens et al. [20,21], Usui [22], Dhahir [23],
Verhelst [24], Ogata [25] and others [26–28], however no experi-
ments to date have investigated the flow of wormlike micelles past
a single, or periodic array of cylinders.

In a numerical investigation of the flow of viscoelastic fluids past
a cylinder, Hulsen et al. [29] used both Oldryod-B and Giesekus
equations of state to observe the response of the drag coefficient to
varying flow conditions. Over the range of Deborah numbers tested,
they found that the dimensionless drag coefficient was a non-linear
function of Deborah number. Their results show that the drag coef-
ficient initially decreases with increasing Deborah number, then at
a Deborah number of De = 2, it begins to increase, eventually grow-
ing larger than the Newtonian response. Liu et al. [26,27] performed
a numerical study of the flow past a periodic array of cylinders using
both Giesekus, FENE-P and FENE-CR constitutive models. They pre-
dicted similar non-linear trends in the drag as those predicted by
Hulsen et al. [29]. Additionally, their results indicate that above a
critical Deborah number, Decrit ≈ 1.5, the drag coefficient becomes
time variant. These results are relevant not only due to the para-
metric variation of inter-cylinder spacing, but parametric variation
in constitutive models as well. They demonstrated that shear thin-
ning can play a large role in the fluid dynamics and resulting drag
especially when the containment effects of the channel are impor-
tant.
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Smith et al. [30] performed a linear stability analysis of the flow
around an array of cylinders. They predicted an elastic instability
for flows above a critical Deborah number, which depends on the
spacing between cylinders in a continuous array. Moreover, they
predict that the nature of the instability will transition from being
shear to extensionally dominated as the inter-cylinder spacing is
increased. More recently, Oilveira et al. [31] performed a numeri-
cal study employing a FENE-CR equation of state to investigate the
nature of the instability in the wake of a cylinder. Their results show
that in flows where the local Deborah number exceeds De ≥ 1.3
a time dependant drag coefficient emerges. The periodic array of
cylinders is an idealized porous medium which can be useful in
gaining insight into the flow through membranes, rock beds etc.

The flow of viscoelastic solutions through porous media is a
classically studied problem [26–28,32–34]. However, most of the
viscoelastic studies performed thus far have used polymeric fluids.
Understanding the flow of viscoelastic wormlike micelle solutions
through porous media has become an extremely important indus-
trial problem because wormlike micelle solutions are finding use in
enhanced oil recovery where they are often used as a polymer-free
fracture fluid for stimulating oil production [1,2,35,36]. Fracture
fluids are driven into recovery wells at enormous pressure in order
to open up cracks in the sandstone and speed up oil recovery.
Wormlike micelle solutions are ideal for these applications because
they shear thin extremely quickly which allows them to be pumped
relatively easily and at low cost. Additionally, the high zero-shear
viscosity of the fracture fluids allows sand or other proppants to be
suspended in the fluid and transported to the newly induced frac-
ture under pressure where they pack tightly enough to keep the
fracture from fully closing when the well is depressurized, yet with
enough permeability to maintain efficient flow. Wormlike micelle
solutions have found use in a number of other oilfield applications
as well. For a more complete and detailed review, the reader is
directed to the papers by Maitland [35] and Kefi et al. [2]. The flow
through porous media is a tortuous flow with regions of high shear
in cracks and narrow capillaries and regions of strong extensional
flow as the fluid is accelerated into capillaries from relatively large
reservoirs or holes within the rock. Unfortunately, flow through
cores of sandstone or other opaque porous media it is difficult to
analyze because the exact nature of the media is unknown and the
flow cannot be visualized. For that reason, most porous media stud-
ies use an idealized porous media like a packed bed of glass spheres
where the permeability and tortuosity are known a priori and the
flow can be observed to some extent with proper index of refrac-
tion matching [37,38] or in our case the flow through a periodic
array of cylinders.

For Newtonian fluids in porous media, the flow can be described
using Darcy’s law which states that the average velocity through the
media can be determined from V̄ = ��p/�, where � is the poros-
ity of the media, �p is the pressure drop and � is the Newtonian
viscosity [39]. Clearly, when the fluid is viscoelastic, Darcy’s law is
not sufficient to describe the flow rate as a function of pressure
drop. Often, an effective Darcy’s viscosity or a resistance coeffi-
cient, � = �app/�, are measured experimentally or derived through
numerical simulations as a function of flow rate for viscoelastic flu-
ids so that Darcy’s law can continue to be used. For polymers like
polyacrylamide (PAA) which strain harden in extensional flows and
shear thin in shear flows, extremely large effective Darcy viscosities
have been measured demonstrating how dominant the extensional
component of porous media can be to the overall flow [37,40]. Sim-
ilar observations were also made for wormlike micelle solutions
[38,41]. Muller et al. [38] investigated the flow of a CTAT solu-
tion through a packed bed of monodisperse 1 mm glass spheres.
The shear rheology of the CTAT showed a modest shear thickening
while the opposed-jet measurements of the extensional viscosity
showed very little if any strain hardening. Although, it should be

noted that the lack of strain hardening might simply be a result
of scission of the wormlike micelles at the very large extension
rates applied. For relatively low CTAT concentrations, the resistance
coefficient was found to increase quite dramatically with increas-
ing shear rate. The increase is an order of magnitude larger than
the shear thickening observed which the authors hypothesize is a
synergistic interaction between the shear and extensional compo-
nents of this complex flow resulting in the large observed viscosity
enhancement [38]. Further, Rojas et al. [42] recently explored the
relation between the shear rheology of micellar solutions and the
enhanced flow resistance in porous media. That body of work was
conducted at relatively high Reynolds number, but indicated a dra-
matic interplay between the shear thickening behavior of the fluid
and the measured pressure drop. Similar behavior was observed
even for the most dilute solutions that the authors explored even
those not demonstrating shear thickening. Recently, Boek et al.
[43] experimentally investigated the flow of EHAC through a micro
fluidic expansion contraction. Micro particle image velocimetry (�-
PIV) measurements of the flow through this idealized pore showed
large recirculation regions upstream of the contraction. As has been
seen with similar flows of polymer solutions [44,45], these vortices
appeared to be unstable thus demonstrating how complex the flow
through the pore space in natural rock can be.

The outline of this paper is as follows. In Section 2, we briefly
describe the experimental setup, the implementation of several
measurement techniques including flow induced birefringence and
particle image velocimetry and the shear and extensional rheology
of the wormlike micelle solutions used. In Section 3 we discuss the
experimental results and in Section 4 we conclude.

2. Experimental details

2.1. Flow geometry and experimental setup

A schematic diagram of the test geometry can be seen in Fig. 2.
The circular cylinders that serve as the two by three periodic array
were fabricated from acrylic rod, and precisely lathed down to
a uniform diameter of D = 10 mm. The machined cylinders were
mounted transversally in a rectangular channel with a cross sec-
tional area of 46.3 mm × 66.6 mm, measuring 340 mm in length.
This arrangement leads to an effective blockage ratio of 30%, and
a diameter to channel height of 6.5:1. In order to avoid contain-
ment effects, the periodic array was placed such that a cylinder to
channel width of at least 5:1 can be maintained. In this way, the
greatest shear gradient experienced by the test fluid will be around
the cylinder array and not the bounding channel walls. We thus
define the nominal local Deborah number

De = ��̇ = �
U

R
. (1)

where � is the characteristic fluid relaxation time (representative
temperature adjusted values can be found in Table 1), R is the radius
of a single cylinder in the periodic array and U is the mass averaged

Fig. 2. Schematic diagram of periodic array of cylinders experimental flow cell.
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Table 1
Parameters characterizing the rheology of the wormlike micelle solutions at
T = 25 ◦C.

CPyCl–NaSal
(100 mM/50 mM)

CTAB–NaSal
(50 mM/50 mM)

Zero-shear viscosity, 	0 (Pa s) 11 65
Plateau modulus, G0 (Pa) 27 12
Relaxation time, � (s) 0.50 5.3

velocity in the bulk flow about the periodic array. To minimize
the driving pressure fluctuations, a positive displacement piston
pump was fabricated and used to produce a precisely controllable,
constant flow rate through the channel. The piston motion was
controlled with addressable micro-staging, capable of a flow rate
resolution of 4 mm3/s. Due to the precision of the pumping sys-
tem, the Deborah number can be accurately controlled, allowing
for a repeatable and accurate interrogation of the test fluid using
any number of measurement techniques. In this study, a range
of Deborah numbers 0.1 ≤ De ≤ 10, corresponding to flow rates of
(2.25 ≤ Q ≤ 225 cm3/s) was probed to explore the pressure drop,
flow kinematics, and flow induced birefringence as a function of
Deborah number and test fluid. The range of Deborah numbers was
limited at the high end by the capacity of the system and thus the
measurement time available for the artifacts of the experimental
set-up to die out.

In order to measure the fluid’s behavior, the flow cell was
constructed with pressure taps machined into the bounding side
plates. Solutions of viscoelastic fluids have been shown to be very
sensitive to recirculation within tap holes. Accordingly, the pres-
sure taps were mounted flush with the walls and covered with
a fine mesh in order to minimize this effect. Pressure lines were
then plumbed from the taps into a differential pressure transducer
(Omega PX154010-DI). The signal from the pressure transducer
was fed into a data acquisition board and sampled at 100 Hz using
Labview software.

2.2. Particle image velocimetry

In order to quantitatively measure the velocity fields through
the array of cylinders, the fluid was seeded with reflective glass
micro-spheres (Potter Industries Sphericell) at 0.005% by weight,
and allowed to equilibrate in the test geometry for 24 h. The seeded
fluid was then illuminated using a laser light sheet generated
by a monochromatic Argon laser source (National Laser 500 mW
450–515 nm). The lens and fiber optical train used produced a win-
dow of near uniform illumination approximately 75 mm in length
and 0.2 mm in width, allowing for velocity profile measurements
over the full channel height. Upon illumination, the fluorescent
spheres’ motion was captured with a high speed camera (Phantom
v #5.1) at 100 fps, and broken into a sequence of digital images using
Phantom’s control software. The image sequence was then pro-
cessed using LaVision’s Particle Image Velocimetry (PIV) software.
The resulting vector fields were then further analyzed in order to
gain insight into the regions showing potentially interesting flow
phenomenon. In the case of the CPyCl–NaSal test fluid, the flow was
stable at all flow rates tested, and the entire set of 150 computed
vector fields could be statistically averaged to give a single clean
ensemble mean vector field. However, the CTAB–NaSal test fluid
showed some fluctuation in all measurement techniques at Deb-
orah numbers greater than De > 4.5, thus fewer frames could be
averaged together to obtain the time dependant velocity profiles.
Therefore, while the same averaging protocol was used to highlight
temporal and spatially averaged differences between the two flu-
ids, it should be noted that this in does not imply an instantaneous
resemblance of the test fluids at higher Deborah numbers.

In order to capture any deviations from Newtonian flow gener-
ated by the fluids elasticity, digital flow visualization was realized
with the use of DaVis’ image statistics functions. The ability to per-
form image summing, averaging and root mean square averaging,
in a digital format allows for repeatable and efficient generation
of stream- and streak-line photography. Since the test fluid was
already seeded and illuminated to realize particle tracking, the
particle’s tracks could be recorded frame by frame to generate
a composite path history image of the ensemble of illuminated
spheres. By looking for streamline crossing and interaction, it is
easy to see any discrepancy between the images captured and
those expected for vanishingly small Reynolds number creeping
flow. Additionally, they prove useful to compare to other studies of
polymeric solutions through arrays of cylinders [46]. Specifically,
Chmielewski et al. [18] have published a study of fluids in crossflow
past arrays of cylinders, visualized by streakline imagery.

2.3. Flow induced birefringence (FIB)

The refractive index of a wormlike micelle varies depending on
whether the light passes parallel or normal to the micelle’s back-
bone. By passing light of a known polarization state and frequency
through a fluid sample and measuring the resulting change in polar-
ization state, flow-induced birefringence takes advantage of this
fact to measure the deformation of the micelle. Under all flow
conditions, this technique can at least qualitatively elucidate the
regions of large stress in a flow. In the limit of small deformations,
an optical train can be built up using Mueller calculus, and a value of
the micellar deformation can be calculated from a stress-optic coef-
ficient. Flow-induced birefringence measurements have been used
quite extensively to examine both steady and transient flows of and
wormlike micelles [11,15,47–49]. Flow-induced birefringence can
be used to determine the local anisotropy in the conformation of
the wormlike micelles �A = A11 − A22 [47]

�n′ cos 2


C
= G0�A, (2)

where �n′ is the measured birefringence, x is the extinction angle, C
is the stress-optical coefficient, and G0 is the plateau elastic modulus
of the fluid. If the stress-optic rule holds, then the right hand side of
Eq. (2) can be rewritten as the stress within the wormlike micelle.

To obtain full field flow induced birefringence measurements
of the flow through the array of cylinders, the Osaki method was
used. In order to acquire information about both the retardation
and the extinction angle, the Osaka method requires flow induced
birefringence measurements from two different crossed polarizer
arrangements [47]. A monochromatic light source was used to illu-
minate the flow between crossed polarizers. A Nikon D70 digital
camera was used to capture the birefringent patterns in the worm-
like micelle solution generated by the flow for each linear polarizer
configuration. The images were then processed using a Matlab rou-
tine to determine the spatially averaged retardation and extinction
angle of the wormlike micelle solutions. To achieve a quantitative
measure of the retardation, the background signal of the CCD cam-
era was first subtracted from each image and the intensity was
normalized with the light intensity in the absence of the linear
polarizers to generate the following two normalized intensities.

i0◦ = 2I0◦

I0,0◦
= sin2 (2
̄) sin2

(
ı̄

2

)
,

i45◦ = 2I45◦

I0,45◦
= cos2 (2
̄) sin2

(
ı̄

2

)
.

(3)

where the i0◦ intensity is sensitive to deformations due to shear
where 
̄ ∼= 45◦, and i45◦ is sensitive to deformations due to
extensional flow where 
̄ ∼= 0◦. These two intensities were then
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manipulated to generate a full field description of the spatially
averaged values of the retardation and the extinction angle

ı̄ = 2��n′d
�light

= sin−1
√

i0◦ + i45◦ ,


̄ = 1
2

tan−1

√
i0◦

i45◦
.

(4)

where d is the optical pathlength of the light, �light is the wave-
length of the laser light. Note that the sign of the retardation and
extinction angle calculated using the Osaki method is ambiguous.
The resolution of this full field technique is limited by the camera to
about ı ≈ 0.1 rad. Due to the extreme deformation the micellar net-
work undergoes at high Deborah numbers, data analysis becomes
impractical because the birefringence quickly goes through orders.
Further, under the large stresses and deformation rates experi-
enced, the linear relation in the stress-optic rule is no longer valid.
As such, for the purpose of this study, the full field FIB technique is
used only qualitatively to highlight the deformation; it is a visual-
ization tool to aid the observer.

2.4. Fluid rheology

2.4.1. Sample preparation
Wormlike micelle solutions assembled from two different sur-

factant/salt combinations were chosen for this study. The first set of
wormlike micelle solutions that were tested were made up 100 mM
of the cationic surfactant cetylpyridinium chloride (CPyCl) (Fisher
Scientific) and 50 mM of sodium salicylate (NaSal) (Fisher Scien-
tific) dissolved in a brine of 100 mM NaCl in distilled water. The
addition of the salt helps screen the charges on the hydrophilic head
groups of the surfactant making the resulting micelle more flexi-
ble [50]. The electrostatic screening of the salt has been observed to
lower the critical micellar concentration (CMC) for CPyCl in aqueous
NaCl of CMC = 0.9–0.12 mM [51]. CPyCl and NaSal were obtained in
dry form from Fisher Scientific. The CPyCl was dissolved in brine on
a hot plate with a magnetic stirring bar. During mixing, a moder-
ately elevated temperature was applied to reduce viscosity and aid
in uniform mixing. After the solutions were fully dissolved, approxi-
mately 20–30 min, they were allowed to settle at room temperature
for at least 24 h before any experiments were performed to allow
air bubbles introduced during mixing to rise out of solution.

The second test fluid was composed of 50 mM of another
cationic surfactant CTAB (Fisher Scientific) and 50 mM of NaSal in
deionized water. This solutions is well above the critical micelle
concentration, which for CTAB in pure water is CMC = 0.9 mM and
is again significantly lower in the presence of salt [4]. The solution
was prepared in the manner described above. At the concentrations
used, the wormlike micelle solution is concentrated and entangled
with significant number of entanglement points per chain [4].

When analyzing and presenting the experimental data, the
relaxation times and viscosities were adjusted to their values
at a reference temperature of Tref = 25 ◦C using time-temperature
superposition with a shift factor, aT, defined by the Arrhenius equa-
tion [52]. Within the temperature range or our experiments, the
Arrhenius form of the time–temperature superposition shift factor
was found to be in good agreement with the rheological data for
each of the wormlike micelle solutions tested, however, because
of the sensitivity of the underlying wormlike micelle structure to
temperature, every effort was made to maintain the fluid temper-
ature to within plus or minus a few tenths of a degree for all of the
experiments presented herein.

2.4.2. Shear rheology
The steady and dynamic shear rheology of the test fluids were

characterized using a stress-controlled rheometer (TA instruments,

Fig. 3. Small amplitude oscillatory shear rheology of both CPyCl–NaSal solution
in 100 mM NaCl ‘�’ and CTAB–NaSal solution ‘�’ at T = 25 ◦C. The data in includes:
storage modulus, G′ (filled symbols), and loss modulus, G′′ (open symbols), along
with a two-mode Maxwell model fit for each fluid (—).

AR2000) with a 6 cm/2◦ cone-and-plate geometry. The micelle solu-
tions were loaded and allowed to equilibrate for several minutes.
The samples were not pre-sheared. In Fig. 3, the storage modulus,
G′, and loss modulus, G′′, of the CPyCl–NaSal and the CTAB–NaSal
wormlike micelle solutions are plotted as a function of angular fre-
quency, ω. The viscoelastic properties of the fluids including zero
shear rate viscosity, 	0, Maxwell relaxation time, � and the elas-
tic plateau modulus, G0

N, are listed in Table 1. The deviation of the
rheological data from the predictions of the single mode Maxwell
model observed at large angular frequencies in Fig. 3 correspond
to the Rouse-like behavior of the micelle between entanglement
points [53] and can be used to determine both the breakup time,
�br, and the reptation time, �rep, of the wormlike micelle chains.
In the fast breaking limit �rep « �br, Cates showed that the breakup
and reptation time could be related to the measured value of the
Maxwell relaxation time through � = (�rep�br)1/2 [54]. Additionally,
the theoretical mesh size �m = (KT/G0)1/3[55,56] can be determined
in order to gain some information about the proximity of entangle-
ment points and the density of the wormlike micelle mesh.

In Fig. 4, the steady shear viscosity, 	, is plotted as a function
of shear rate, �̇ . At small shear rates and angular frequencies, the
micelle solutions have a constant zero shear rate viscosity. As the
shear rate is increased, the fluid begins to shear thin. At a critical

Fig. 4. Steady shear viscosity of both the CPyCl–NaSal solution ‘�’ and the
CTAB–NaSal solution ‘�’ at T = 25 ◦C.
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Fig. 5. The extensional viscosity as a function total strain for the 50/50 mM
CTAB–NaSal wormlike micelle solution ‘�’ and the 100/50 mM CPyCl–NaSal worm-
like micelle solution ‘�’, stretched at a Deborah number of Deext = 1.3, The
experiments both end with the rupture of the fluid filament before a steady-state
extensional viscosity could be reached.

shear rate, the viscosity drops precipitously approaching a slope
of 	 ∝ �̇−1. For the CPyCl–NaSal solution, this plateau in the shear
stress corresponds to the formation of two or more distinct shear
bands. These shear bands have been recently measured and ana-
lyzed in our lab using particle image velocimetry (PIV) and flow
induced birefringence (FIB) measurements and a specially designed
large Couette flow cell [12]. The critical shear Deborah number
for the onset of shear banding was found to be Decrit = 2.0 for
the 100/50 mM CPyCl–NaSal solution. Although, we have not yet
attempted to observe shear-banding in the CTAB–NaSal solutions,
it could also account for the dramatic reduction in the shear vis-
cosity observed in these systems and has been observed in the past
for other CTAB solutions [57–59]. For the data presented in Fig. 4, a
critical shear Deborah number of about Decrit = 3.5 is suggested for
onset of shear banding in the 50/50 mM CTAB–NaSal solutions.

2.4.3. Extensional rheology
These particular solutions of wormlike micelles have been the

subject of many experiments in extensional flow in recent years.
Most recently, Rothstein et al. [60] have studied the effects of
pre-shear on the extensional viscosity of solutions of varying con-
centrations. A filament stretching extensional rheometer (FiSER)
capable of imposing a homogeneous uniaxial extension rate, ε̇, on a
fluid filament placed between its two endplates was used to make
simultaneously measurements of the evolution in the force and
the midpoint radius, Rmid. The transient extensional viscosity, 	+

E ,
may be extracted from the principle elastic tensile stress and is
often non-dimensionalized as a Trouton ratio Tr = 〈�zz − �rr〉/	0ε̇ =
	+

E /	0. The deformation imposed upon the fluid filament can be
described in terms of a Hencky strain, ε = −2 ln(Rmid/R0) where R0
is the initial midpoint radius of the fluid filament. The strength
of the extensional flow is characterized by the Deborah number,
Deext = �ε̇ where � is the relaxation time of the fluid and ε̇ is
the extensional rate. For a detailed description of the extensional
rheometer used in these experiments see Rothstein [13].

The extensional rheology of the solutions tested have been pre-
viously investigated and published by Bhardwaj et al. [14,60] and
Rothstein [13]. However, for completeness and for the purposes
of direct comparison between the two wormlike micelle solutions
tested, a representative set of extensional rheology data is repro-
duced here in Figs. 5 and 6. In Fig. 5 the extensional viscosity of
the 50/50 mM CTAB–NaSal and 100/50 mM CPyCl–NaSal wormlike
micelle solutions are plotted as a function total strain for similar

Fig. 6. Trouton ratio as a function of extensional Deborah number for both the
100/50 mM CPyCl–NaSal solution ‘�’, and the 50/50 mM CTAB–NaSal solution ‘�’.

Deborah numbers of De = 1.3, which we will show approximates
the extension rates experienced by the fluid in the wake of the
cylinders for the CTAB–NaSal solutions at the onset of an elastic
instability. The extensional viscosity of both fluids was found to
increase monotonically with increasing Hencky strain and demon-
strate reasonably strong strain hardening with final Trouton ratios
of Tr = 165 and 330 for the CTAB–NaSal and CPyCl–NaSal solutions
respectively. The CPyCl–NaSal solution was consistently found to
strain harden more than the CTAB–NaSal solution, however, the
CTAB–NaSal solution strain hardened much more quickly, achiev-
ing maximum extensional viscosity at ε ∼= 2.0, as opposed to ε ∼= 3.5.
At large extension rates, De » 1, the fluid filaments were all found to
rupture. For all of the experiments that ended with a filament rup-
ture, the final maximum elastic stress that was achieved in the fluid
filaments of each solution was found to be constant independent of
extension rate [14]. It has been hypothesized that the tensile stress
of rupture corresponds to the maximum stress that the micelles
can withstand before they begin to fail en masse [13]. For the
100/50 mM CPyCl–NaSal solutions the tensile stress at rupture was
found to be ��E ∼= 7100 Pa while for the CTAB–NaSal solution ten-
sile stress at rupture was found to be lower at about ��E ∼= 2500 Pa.
The dynamics of the filament rupture have been captured with
high-speed photography in the past and the interested reader is
referred to Chen and Rothstein [15] or Bhardwaj et al. [14] for
details.

In Fig. 6 the maximum Trouton ratio measured before filament
rupture is plotted as a function of Deborah number. All of the exper-
iments presented in Fig. 6 correspond to stretches which ended
with a filament rupture. Owing to the constant elastic tensile stress
achieved at rupture for the high Deborah number experiments,
the maximum extensional viscosity achieved prior to rupture is
found to decrease linearly with increasing imposed extension rate,
	E ∝ ε̇−1. As seen previously in Fig. 5, one observes that the Trouton
ratio of the CPyCl–NaSal solution is consistently larger than that of
the CTAB–NaSal solutions. We will see in the following sections that
the differences in the extensional rheology of these two wormlike
micellar solutions have a significant effect on the response of the
fluids as they flow through a periodic array of circular cylinders.

3. Results

3.1. Pressure drop

By measuring the pressure drop across the array of cylinders
as a function of Deborah number and micellar solution, several
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Fig. 7. Time transient pressure signals from differential pressure transducer during
controlled mass flow rate experiment of the CTAB–NaSal solution. Increasing Debo-
rah number flows appear sequentially higher, in order from bottom to top, De = 0.5,
De = 4.5, De = 10.

interesting phenomenon present themselves. In the case of the
CTAB–NaSal, the characteristic of the transient response of the fluid
varies as the Deborah number is increased. Above a critical Deborah
number of Decrit ≈ 4.5, the pressure drop response becomes tem-
porally periodic, with the magnitude of the fluctuations increasing
with increasing Deborah number. In Fig. 7 the effect of increas-
ing Deborah number on the character of these transients is shown.
At low Deborah numbers, the transient pressure drop signal is
seen to remain nearly constant, with no long-time fluctuations.
It is apparent that increasing the Deborah number qualitatively
changes the response for De > 4.5. Thereafter, the signal exhibits
sharp spikes. These spikes appear to be chaotic, exhibiting both
high frequency deviations as well as longer-term dominant low
frequency transients of roughly f = 0.2 Hz. Such chaotic fluctuations
are not observed for the CPyCl–NaSal at any Deborah number, and
remain approximately constant over the period of observation, typ-
ically on the order of hundreds of relaxation times.

In order to investigate the effects of the viscoelasticity of the
wormlike micelle solution, the steady state value of the pres-
sure drop was measured. The pressure drop, normalized by the
response of a Newtonian fluid with the same zero shear viscosity,
˘ ≡ �Pmeasured/�PNewtonian, was calculated from the time averaged
pressure traces seen in Fig. 7 and is plotted in Fig. 8. Since no analytic
solution for a Newtonian fluid through our flow geometry exists,
the low-Deborah number pressure drop (De « 1), which increases
linearly with increasing flow rate was used to approximate the
Newtonian response. A line was fit to the low Deborah number
pressure drop measurement curve, and used to normalize the entire
range of Deborah numbers tested. The normalized pressure drop
curve was found to exhibit four distinct regimes. In the low Deb-
orah number regime, the normalized pressure drop is constant,
corresponding to a normalized pressure drop of ˘ ∼= 1. Although
the zero-shear viscosities of the two solutions differ by a factor of
approximately three, and the characteristic relaxation times differ
by a factor of almost five, when the flow is cast in terms of Deborah
number and pressure drop is measured at low Deborah numbers,
the resulting plots collapse onto an apparent master curve, and are
nearly identical. At a Deborah number greater than De > 1, where
the bulk flow deforms the micelles faster than they can relax, a devi-
ation in the pressure drop from a Newtonian response is observed.
At moderate Deborah numbers (1 < De < 4), the normalized pres-

Fig. 8. Normalized pressure drop as a function of Deborah number for both test
fluids , (�) CTAB–NaSal solution, and (�) CPyCl–NaSal solution.

sure drop decreases linearly with increasing Deborah number as a
result of the shear thinning of the micelle solutions. As the flow rate
is increased further (4 < De < 7), the normalized pressure drop lev-
els out. In this regime, the solution is both shear thinning as well
as extensional thickening and it would appear that the competi-
tion between the two effects roughly offset each other. Thereafter,
a sharp upturn in the normalized pressure drop is observed with
increasing Deborah number for the CPyCl–NaSal solution, but not
for the CTAB–NaSal solution. This upturn in the pressure drop, as
will become more apparent in the FIB measurements, is due to the
onset of thickening of the extensional viscosity of the CPyCl–NaSal
solution. However, before significant hardening of the CTAB–NaSal
solution could occur, the onset of a flow instability was observed
at a Deborah number of De = 4.5. The CPyCl–NaSal solutions were
found to remain stable for all the experiments presented here.

The trends in the pressure drop data and the form on the insta-
bility match well with a recent study of the drag correction factor on
a sphere falling through a solution of wormlike micelles performed
by Chen and Rothstein [15]. These trends also match very well with
recent observations by Talwar et al. [19] who studied the flow of
polymer solutions through periodic arrays of cylinders as well as
others [17,19,24,26,27,46,61–63]. They reported a dimensionless
drag in terms of the product of the friction factor and the Reynolds
number fRe. At low Reynolds number they found fRe to remain con-
stant at fRe = 1. At moderate Reynolds numbers, the drag decreased
before trending upward with further increase in Reynolds number.
These results are in good qualitative agreement with the pres-
sure drop trends seen in Fig. 8 for the CPyCl–NaSal solution. This
observed upturn occurred at Reynolds numbers that were not van-
ishingly small, but were small enough that the effects of inertia
were negligible. Similar observations of non-linear drag have also
been reported by Liu et al. [27]. By investigating the effect of the
finite extensibility parameter in the FENE-CR model, they went on
to show that the upturn in the drag is likely the result of large exten-
sional deformations of the fluid in the wake of the circular cylinders.
In the channel geometry used by Liu et al. [27] confinement effects
were present. They comment that these confinement effects serve
to couple the shear-thinning and extensional properties of the fluid.
Although the highest shear rate in out flow geometry occurs around
the cylinder, the confining walls can cause the fluid to be sheared
prior to flowing around the cylinders in the periodic array. As such,
the interaction of the shear-thinned fluid with the extensionally
hardened fluid may well explain the trends in pressure drop. The
extensional rheology measurements of Bhardwaj et al. [60] showed
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Fig. 9. Composite time averaged PIV vector fields for CPyCl–NaSal solution.

that wormlike micellar solutions are very susceptible to the effect
of pre-shear. They found that pre-shear forestalls strain hardening
to larger Hencky strains and reduces the critical stress for filament
rupture. In our geometry the shearing might therefore reduce the
effect of strain hardening and increase the susceptibility of these
fluids to elastic instabilities resulting from the breakdown of those
wormlike micelle solutions in the strong extensional flow present
in the wake of the circular cylinders. These findings are in good
agreement with Chmielewski et al. [64] who also found the flows
of polymer solutions past cylinders to be unstable above a critical
Deborah number.

3.2. Particle image velocimetry (PIV)

Velocity vector fields were constructed using particle image
velocimetry (PIV) for each representative regime of the pressure
drop parameter space and each test fluid. These velocity fields are
presented in Fig. 9. As with the pressure drop results, the vector
fields are similar at comparable Deborah numbers less than De < 1,
before the effects of the fluid’s elasticity become important. How-
ever, at moderate to large Deborah numbers, the elastic effects
dominate resulting in interesting flow phenomenon. At low Debo-
rah numbers, both micellar solutions exhibit nearly perfect fore-aft
symmetry about all of the cylinders. In this regime, the magnitude
of the velocity vectors scale linearly with Deborah number. Addi-
tionally, because both fluids behave as Newtonian in this regime,
no apparent differences in the vector fields are observable between
the two micellar solutions. As the Deborah number is increased,
the shear thinning effects of the two fluids dominate, and devi-
ations from the Newtonian regime become apparent. Comparing
Fig. 9b and c it can be seen that at higher Deborah numbers, the
velocity vectors are no longer mirror symmetric about a plane half-

way between successive cylinders. In the case of the CPyCl–NaSal
solution, velocity vector fields become more anti-symmetric as it
flows around each subsequent set of cylinders. Larger velocity gra-
dients are observed downstream as additional previously sheared
and deformed fluid interacts and is swept into the bulk flow before
it has had a chance to relax back to a stress equilibrium state. In
the case of the CTAB–NaSal solution, the deviations from symme-
try are manifest in an enhancement of the low velocity extensional
flow in the wake of the cylinders, and a resulting velocity gradient
increase in the spanwise direction. These gradients increase with
increasing Deborah number, as observed in Fig. 9a–c which show
measured Deborah numbers of De = 0.5, De = 5 and De = 7 respec-
tively. As these velocity gradients increase, the shear thinning and
strain hardening effects become more prominent.

At large Deborah numbers, De ≥ 4.5, the CPyCl–NaSal solutions
are stable and the pressure drop increases with increasing Deborah
number. At these large Deborah numbers, the CTAB–NaSal solu-
tions become unstable. As the fluid is sheared by passing around
the cylinders, and then stretched in the wake, large elastic stresses
are built up in both fluids. This effect can be seen explicitly in the
FIB measurements presented in the next section. Under the strong
flows present at higher Deborah numbers, the velocity vectors of
the CTAB–NaSal solutions begin to show large deviations from the
bulk flow, as the flow becomes temporally unstable. This effect can
clearly be seen in the PIV results where the vectors oscillate back
and forth at a frequency of approximately f ≈ 0.66 Hz.

Presented in Fig. 10 are a series of three PIV computed vec-
tor fields, each at equal time spacing (�t = 0.66 s). It can be seen
that over a period of 1.5 s, the vectors complete one full cycle of
dominance in the +y to −y directions. This frequency of oscilla-
tion roughly matches the dominant frequency found by taking the
Fourier Transform of the transient pressure drop data, though no
further correlation between Deborah number and dominant fre-
quency was found. In order to further explore the nature of this
instability in the CTAB–NaSal fluid, streakline images are presented
in Fig. 11, wherein the streaklines at high Deborah numbers, De = 10,
cross and exhibit what appears to be elastic recoil. Such images fol-
low the work of Chmielewski et al. [18], who reported an elastic
instability in the crossflow of polyisobutylene solutions through
periodic geometries. They found that their Boger fluids began to
exhibit asymmetric streamlines above a critical Deborah number
of Decrit = 1.5 for one configuration and Decrit = 0.5 for the other even
though the Reynolds number was negligible. It should be noted that
the velocity fluctuations observed my Chmielewski et al. [18] were
significantly smaller than those observed here and were confined
to a region in close proximity to the trailing edge of the cylinder.
The instabilities observed herein appear to affect the flow glob-
ally and do not have a well defined periodic nature even very close
to the critical Deborah for onset. These observations suggest that
this instability may not be the same elastic instability observed in
the flow of polymer solution, but might stem from the breakdown
of wormlike micelle solutions under large stresses similar to that
observed by Chen and Rothstein [15] during the sedimentation of
a sphere. These stresses are continually built after the successive
sets of cylinders whereby the fluid has a chance to sample regions
of high shear as well as extension. As we will see in the subsequent
section, these kinematic effects combine to generate large stresses
in the micelle chains, which are known to fail in extensional flows
above a critical value of stress.

By examining the plots of the shear and extensional rheology
(Figs. 4 and 5) it becomes clear that the CTAB–NaSal solution shear
thins to a lower viscosity than the CPyCl–NaSal and is less capable of
supporting elastic tensile stresses before rupturing in extensional
flows. It is instructive to use the calculated PIV vector fields to map
out where the flow field lies in the rheological space of the two
fluids. The local extension rate, ε̇, and shear rate, �̇ , can be cal-
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Fig. 10. Sequential PIV images highlighting unstable flow of the CTAB–NaSal solu-
tion at a Deborah number of De = 10. Each image represents a time step of 0.66 s.

culated by spatially differentiating the velocity profiles around the
circular cylinders. Additionally, the accumulated extensional strain
can be calculated by temporally integrating the extensional strain
rates in key areas like between the circular cylinders and in their
wake where extensional effects will dominate shear at large Debo-

Fig. 11. Composite image of streaklines in CTAB–NaSal solution for Deborah num-
bers of De = 0.5 (a), De = 5 (b) and De = 10 (c).

rah numbers. By doing so, trends in pressure drop and flow stability
can be more closely compared to the shear and extensional rheol-
ogy of each fluid. As the Deborah number is increased, the extension
rate downstream of the circular cylinders is found to increase. How-
ever, the total strain experienced by a fluid element remains fixed
at approximately ε ≈ 2.5 over all Deborah numbers tested. The con-
stant value of strain is due to the decrease in residence time as the
Deborah number and extension rate are increased. These results are
in good agreement with those reported by Chmielewski et al. [64]
where they argue that in the wake of a cylinder, nominal strains of
ε = 3 can be built up.

Fig. 12. FIB measurements of the CPyCl–NaSal test fluid flowing through the periodic array of cylinders. The measurements were taken at De = 4, and include polarizers
aligned at 0◦ and 90◦ (a), cross polarizers aligned at 45◦ and 135◦ (c) , calculated x (d), and calculated ı (b).
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Fig. 13. FIB results showing ı (left) and x (right) for the CPyCl–NaSal test solution at Deborah numbers of De = 1 (a and b), De = 3 (c and d) and De = 8 (e and f).

Fig. 14. FIB images for the CTAB–NaSal test fluid highlighting shear flow on the right column and extensional flow on the left at Deborah numbers of De = 1 (a and b), De = 2
(c and d), De = 4 (e and f) and De = 8 (g and h).
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At a Deborah number of De = 4.5, where the CTAB–NaSal
solutions become unstable an extension rate of ε̇ = 0.21 s−1, or
equivalently at an extensional number of Deext = �ε̇ = 1.2, present
in the wake of the cylinder. At this extension rate and a strain
of ε ≈ 2.5, the extensional rheology in Fig. 5 indicates that the
CTAB–NaSal solutions will have built up enough extensional stress
to rupture. This extensional flow induced failure of the wormlike
micelle solution is likely the cause of the flow instability. Addi-
tionally, pre-shear of these wormlike micellar solutions prior to
extension has been shown to result in filament rupture at a sig-
nificantly smaller extensional stresses and accumulated strains,
making micelle failure even more likely in the wake of the cylinders
[60]. From Fig. 5, it can clearly be seen that the CPyCl–NaSal solu-
tion requires much more strain, or a significantly larger extension
rate than the CTAB–NaSal to rupture. The upturn in the pressure
drop for the CPyCl–NaSal solutions is thus linked to the extensional
thickening that occurs at the rates without micelle failure. Even at a
Deborah number of De = 8, the CPyCl–NaSal solutions experience an
extension rate of ε̇ = 1.75 s−1 (Deext = 1.0) and a strain of ε ≈ 2.5 in
the wake of the circular cylinder, which the extensional rheology in
Fig. 5 shows that should not cause the micelle to rupture. This is evi-
dence that the breakdown of the wormlike micelles in the strong
extensional flow in the wake of the circular cylinder is likely the
cause of the flow instability. If this was a purely elastic flow insta-
bility, one would expect these two fluids to become unstable at
roughly the same Deborah number and mirror the results found in
the literature for polymer solutions. It can therefore be concluded
that the high Deborah number pressure drop measurements can
be directly correlated to the extensional rheology of the two test
solutions.

3.3. Flow induced birefringence

The Osaki crossed polarizer technique described in Section 2.3
was used to produce flow induced birefringence measurements at
different Deborah numbers in each of the distinct flow regimes. At
low Deborah numbers in the Newtonian response regime, where
the flow field is spatially and temporally stable and reversible,
identical conditions could be repeatably reproduced for both test
solutions. This reproducibility allows for a complete FIB analysis
using the Osaki method and Eqs. (2) and (3). The CPyCl–NaSal
solution remains completely stable and reproducible for all Deb-
orah numbers tested, allowing for a complete analysis, while the
CTAB–NaSal solution exhibits an instability, making analysis diffi-
cult at higher Deborah numbers. The areas of large deformation for
each orientation of the polarizers are clearly seen in Fig. 12. In the
case of 0◦ and 90◦, the regions of deformation due to shear appear
as relatively light areas in Fig. 12a, and precisely where expected, at
45◦ normal to the bulk flow. This pattern is nearly the same for each
proceeding cylinder as the fluid travels downstream. In the case
of 45◦ and 135◦, the regions of extensional deformation appear as
bright areas directly in the wake of each cylinder, growing in length
as the flow proceeds downstream as seen in Fig. 12c.

By using an image analysis algorithm, the values of the retar-
dation, ı, and extinction, x, can be calculated from Eq. (4) and
are presented in Fig. 12b and d respectively. By calculating these
values and comparing the two test fluids, we see that at com-
parable Deborah numbers, the CTAB–NaSal is considerably more
birefringent than the CPyCl–NaSal. Even taking into account the
difference in the stress-optical coefficient (C = 4.5 × 10−7 Pa−1 for
the CTAB–NaSal vs. C =3.1 × 10−7 Pa−1 for the CPyCl–NaSal solution)
[47] it is clear that the CTAB solution experiences considerably more
deformation and stress. This is most clearly noticeable in comparing
Figs. 13 and 14. It is readily apparent that the CPyCl–NaSal solution,
shown in Fig. 13 exhibits stable birefringent patterns, which change
little in form as the Deborah number is increased. The CTAB–NaSal

on the other hand, shown in Fig. 14, experiences so much defor-
mation that the birefringence quickly goes through orders, as the
Deborah number is increased, making determination of the retar-
dation angle difficult. More specifically, as seen in Fig. 14e due to
increasing deformation of the micelles near the second set of cylin-
ders the birefringent bands transition quickly from light to dark
to light again. As such, only values of i0◦ and i45◦ are presented.
Additionally, it is observed that the birefringent patterns change
characteristics as the Deborah number is increased; the instability
presents itself as large deformational deviations from the steady
patterns observed in the CPyCl–NaSal solution. A bright, birefrin-
gent band in the extensional wake of the cylinder is seen to grow
with increasing Deborah number. The length of this band increases
until it reaches the next cylinder, at which point, it bends towards
the centerline. This extensional deformation directly corresponds

Fig. 15. FIB focusing on the unsteady deformation between the cylinders for the
CTAB–NaSal test fluid at a Deborah number of De = 6. Here, cross polarizers are ori-
ented at 0◦ and 90◦ . Local deformation and alignment appear as thin ‘wispy’ bands
of light and dark. The images are separated by a �t = 1.0 s.
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to the enhanced necking seen in the PIV results of Fig. 9. Addition-
ally, it can be seen that the number of orders the birefringence goes
through appears to scale linearly with Deborah number; by dou-
bling the Deborah number from two to four, the number of bands
of light and dark seen in the extensional wake double. This obser-
vation is in good qualitative agreement with studies by Kim et al.
[65] who report contours of constant stress and negative wake gen-
eration in a FENE-CR constitutive model. Although we are unable
to calculate a value of stress, the patterns of observed birefringence
match closely with the calculated contours of stress. Similar obser-
vations were recently reported by Afonso et al. [66] who studied the
flow past a falling cylinder with several constitutive models. Their
reported contours of normalized normal stress �xx with a FENE-
CR model match the birefringence highlighting extensional flow,
shown in Fig. 14 quite well.

In order to further capture the nature of the instability, a
sequence of tight zoom photographs into the space between the
cylinder array is presented in Fig. 15, with polarizers oriented at 0◦

and 90◦, to emphasize the deformation due to shearing. It can be
seen that the birefringent patterns are unstable, and undergo large
scale changes of stress and thus micelle deformation. These changes
fluctuate not only in direction, but number of bands, implying that
structural order is being built up by the flow, and then broken down.
This time sequence is representative of the periodic motion of the
CTAB–NaSal micelles as they flow through the cylinder array at high
Deborah numbers.

4. Conclusions

In this paper, we have presented the results of our investiga-
tion into the flow fields generated by two different solutions of
wormlike micelles flowing through an idealized porous media: a
periodic array of circular cylinders. By systematically varying the
Deborah number, the flow kinematics, stability and pressure drop
were measured and used to investigate the distinct differences in
the response of two fluids to the cylinder array. The pressure drop
was found to initially decrease due to the shear thinning of the test
fluid, before increasing at large flow rates as extensional effects
begin to dominate the flow. An elastic instability in one of the test
fluids was observed above a critical Deborah number, while the
other fluid was found to remain stable for the flow rates tested in
our experiments. The kinematics of both fluids were fully inves-
tigated using PIV and FIB to elucidate the nature of the flow and
the observed elastic instability. The disparity in the response of the
two test fluids can be attributed to the measurable differences in
their extensional rheology. At the Deborah numbers investigated
in this study, the elastic instability and the resulting kinemat-
ics observed through PIV, FIB and pressure drop measurements
were only observed in the CTAB–NaSal solution. Although the
CTAB–NaSal shows strain hardening, and can exhibit large Trouton
ratios, the CTAB–NaSal micellar network is incapable of supporting
the same level of extensional stresses as the CPyCl–NaSal solution.
The differences in the rheology of the two fluids are apparent in
Figs. 3 and 5. The CTAB–NaSal solution strain hardens more quickly
than the CPyCl–NaSal at any measured strain rate, but ruptures at
a considerably lower elastic tensile stress. It is this behavior that
provides the clearest insight into the fluctuating pressure drop, the
time sensitive PIV and complex FIB results.

At low Deborah numbers, both fluids exhibit similar responses:
symmetric streamlines, and a linear increase in pressure drop with
increasing Deborah number. The FIB measurements likewise show
similarity, as seen in Figs. 12 and 14. At moderate Deborah num-
bers, where the response is dominated by shear thinning, the steady
shear rheology of the two fluids seen in Fig. 4 explains the proxim-
ity of their normalized pressure drop response, seen in Fig. 8, as the

extent of the change in viscosity over two decades in shear rate is
quite similar. The streaklines and PIV results of the two fluids in this
regime are very similar, and the FIB patterns reveal that at compara-
ble Deborah numbers, the two fluids show similar levels of micelle
configurational changes. However, at higher Deborah numbers the
extensional rheology begins to become increasingly important to
the fluid dynamic response of the fluids. The time transient pres-
sure drop of the CPyCl–NaSal shows no temporal instability, and
the PIV and FIB reinforce this; even over a large time period of cor-
relation the PIV results remain constant. The FIB indicates a growth
of a strong extensional wake behind the cylinders as the fluid pro-
gresses downstream, indicating that the effects of strain hardening
should impact the flow as the Deborah number is increased. This
rheological prediction is born out in the normalized pressure drop
data, where after a Deborah number of De = 6, there is an inflection
point and the normalized pressure drop begins to increase sharply
for increasing Deborah number. This is strong evidence that the
influence of strain hardening is outpacing the shear thinning of the
fluid. In the case of the CTAB–NaSal solution, the time transient
pressure drop measurements begin to fluctuate with large excur-
sions from an average value which increases with Deborah number.
By examining the FIB, it is clear that under such flow conditions,
the fluid does indeed experience large deformation. So much, in
fact, that it becomes impossible to calculate a quantitative value
of micellar deformation because the birefringence goes through
so many orders. However, the birefringence does show that the
patterns are no longer similar between the two fluids with increas-
ing Deborah number, but instead the CTAB–NaSal solution exhibits
spatio-temporal dependence. Examining the extensional rheology,
a dramatic rupture event is observed following significant strain
hardening of that filament. However at the extension rates and
strains accumulated by the micelle solutions in the wake of the
cylinder only the CTAB–NaSal solution was observed to rupture.
The CPyCl–NaSal solution continues to strain harden for extension
rates and strains well beyond the flow conditions tested in these
experiments. If this were a purely elastic flow instability as has
been observed for polymer solutions flowing past a single cylinder
one would expect both fluids to become unstable at roughly the
same Deborah number [16,20,21,23,25,29,34]. Our test solutions
do not go unstable at a similar Deborah number, indicating that
the instability observed is not purely elastic in nature, and is thus
related to the rupture of the wormlike micelles in the wake of the
circular cylinders. In a confined flow such as this, these discrete rup-
ture events would lead to fluctuations of the pressure drop. Similar
instabilities were observed during the sedimentation of spheres in
wormlike micelle solutions [15,16]. Further evidence for this comes
from the PIV results obtained, where it can be seen that the bulk
flow direction changes over a period of time on the order of the
dominant frequency of oscillation seen in the pressure drop data.
In conclusion, our complete characterization of the two fluids has
allowed for the observation of the interplay of fluid properties and
kinematics generated by the flow of micellar solutions through a
periodic array of cylinders.
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