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Flow of a wormlike micelle solution past a falling sphere
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Abstract

With the increasing use of wormlike micelle solutions as rheological modifiers in many consumer products, the
prediction of the behavior of these fluids has grown increasingly important in recent years. In this paper, the flow past
a sphere falling at its terminal velocity through a column of a wormlike micelle solution is experimentally studied.
The working fluid is an entangled wormlike micelle solution of 0.05 mol/l cetyletrimethylammonium bromide and
0.05 mol/l sodium salicylate dissolved in water. The rheology of the fluid is characterized in both shear and transient
homogeneous uniaxial extension. Sphere-to-tube ratios ofa/R = 0.0625 anda/R = 0.125 are investigated over
a wide range of Deborah numbers. The drag on the sphere is initially found to decrease with increasing Deborah
number because of shear thinning effects. As the Deborah number is increased, the establishment of a strong
extensional flow in the wake of the sphere causes the drag to increase to a value larger than that of a Newtonian
fluid with the same viscosity. At a critical Deborah number, the flow becomes unstable and fluctuations in the
sedimentation velocity of the sphere are observed. Particle image velocity measurements are used to analyze the
flow fields around the falling spheres. These measurements show the presence of a strong negative wake. For the
unstable flows, the velocity flow field is observed to fluctuate between a negative and extended wake. Pointwise
and full-field flow-induced birefringence measurements are used to track the evolution in the deformation of the
wormlike micelle chains. Strong evidence is found that suggests that the flow instability is the result of a breakdown
of the wormlike micelle network structure in the wake of the sphere. This breakdown is related to the filament
rupture observed in the extensional rheology experiments.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The motion of a sphere falling through a viscoelastic fluid is one of the most heavily studied problems
in experimental and numerical non-Newtonian fluid mechanics[1–3]. The flow is complex with regions
of shear near the sphere and extension in the wake. Experimental measurements of the terminal veloc-
ity of a falling sphere can be easily made and several techniques have been developed which use the
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motion of spheres through viscoelastic fluids as both a rheometric and flow diagnostic tool. Examples
range from falling ball viscometry to diffuse wave spectroscopy employing submicron spherical beads
as microrheometry probes[4]. The motion of a sphere falling in a bounded cylinder of fluid has been
chosen as a benchmark problem for numerical simulations[5]. The resulting numerical simulations have
lead to a better understanding of constitutive relations and the development of improved computational
methods[6,7].

Several excellent reviews of the numerical and experimental results exist[1–3] and the reader is
encouraged to consult these sources for a more complete discussion of the existing literature. Only the
most pertinent work will be described here. Until very recently, the experiments and numerical simulations
reported in the literature focused on the sedimentation of spheres through viscoelastic polymer solutions
and melts. With the growing use of surfactant solutions and associative polymers as viscosity modifiers
in highly filled materials such as foodstuffs, paints and personal care products, a better understanding of
the sedimentation of spheres through these fluids is needed.

Surfactants are molecules that consist of a hydrophilic head group and a hydrophobic tail. When dis-
solved in water they can spontaneously form several different types of self-assembling aggregates[8–10].
The size and shape of the resulting aggregate morphology can range from spherical micelles, to wormlike
micelles to lamellae depending on surfactant and counterion concentration and interaction. Because of
their extensive use in everything from additives in paints and detergents to enhanced oil recovery and
pesticides, an enormous amount of research has been devoted to investigating the morphology, phase tran-
sitions, and shear and extensional rheology of different surfactant solutions[10–15]. Under the proper
conditions, the micelles, resembling slender rods, can entangle and impart viscoelasticity to the fluid
[12]. The behavior of wormlike micelles solutions is similar to that of polymer solutions and melts. The
primary difference being that, unlike a covalently bonded polymer backbone, micelles are in a state of
thermodynamic equilibrium with the solvent and are continuously broken and reformed under Brownian
fluctuations. This leads to a broad and dynamic distribution of micelle lengths which can change under
an imposed shear or extensional flow[16].

In the regime of linear deformation imposed by small amplitude oscillatory shear flows, the response of
many wormlike micelle solutions can be accurately modeled by a Maxwell model having just one or two
relaxation times making these model fluids for rheological research[10]. Cates proposed that, in the fast
breaking-limit,λbreak � λd, the relaxation time or a wormlike micelle solution,λ = (λbreakλd)

1/2, is a
function of the reptation or disentanglement time of the micelle in solution,λd, and the characteristic time
for the micelle to break and reform,λbreak [12]. The nonlinear viscoelastic response of these entangled
micelle solutions has been shown to be much more complex. Several constitutive models have been
developed specifically for entangled wormlike micelle solutions[17], although, models developed to
describe the behavior of polymer solutions and melts such as the Giesekus model have been shown to
predict the nonlinear viscoelastic behavior of wormlike micelles very well[15].

Filament stretching studies have recently shown that wormlike micelle solutions exhibit significant
strain hardening and a breakdown of the stress-optical rule in transient homogeneous uniaxial extensional
flows [15]. Rothstein[15] showed that a quantitatively fit to the extensional rheology of these wormlike
micelle solutions could be achieved with a multimode FENE-P model having as few as two relaxation
modes. At a critical stress, nearly independent of strain rate, the wormlike micelle solutions filaments
were found to fail through a dramatic rupture near the axial midplane. The filament failure was not the
result of elastocapillary thinning, but rather Rothstein[15] hypothesized that the failure stemmed from the
local scission of individual wormlike micelle chains and a breakdown of the entangled micelle network
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structure. The continuously evolving wormlike micelle network structure has been shown to lead to other
interesting flow instabilities in the past.

Measurements of wormlike micelle solutions in a cone-and-plate, parallel-plate and Couette rheometer
have demonstrated a shear thickening behavior followed by the onset of a flow instability[18–20]. Careful
studies have been performed using stress measurements, birefringence and small angle light scattering to
try and understand the shear thickening mechanism. Several explanations for the observed shear thickening
have been proposed including shear-induced structure formation, shear-induced phase change from an
isotropic to a nematic state and shear-induced transition to a gel-like state[18–20]. Shear-induced structure
formation can also lead to a demixing of the surfactant solution and the formation of banded structures or
slip layers of different surfactant morphologies with dramatically different rheological properties[21–23].

Jayaraman and Belmonte[24] observed an instability in the sedimentation velocity of a sphere falling
through a 9 mmol/l CTAB and 9 mmol/l NaSal wormlike micelle solution. With the exception of the
measurements of Bisgaard[25] which showed a fluctuating velocity in the wake of a sphere falling
through a polyacrylamide solution at high Deborah number that was never independently reproduced, no
other low Reynolds number elastic flow instabilities have been observed for a sphere falling through a
polymer solution or melt. It can be concluded that the instability observed by Jayaraman and Belmonte
[24] must, therefore, be a function of a stress-induced evolution of the entangled wormlike micelle network
structure. We will show that the evidence from detailed experimental measurements of the flow field past
falling sphere suggest that this new flow instability is likely the result of a breakdown of the wormlike
micelle network structure in the strong extensional flow in the wake of the sphere and that this instability
is related to the filament rupture observed in the extensional rheology experiments of wormlike micelle
solutions.

The outline of this paper is as follows. InSection 2, we briefly describe the experimental setup,
the implementation of several measurement techniques including flow-induced birefringence (FIB) and
digital particle image velocimetry (DPIV) and the shear and extensional rheology of the wormlike micelle
solution used. InSection 3we discuss the experimental results and inSection 4we conclude.

2. Experimental

2.1. Flow geometry and experimental setup

A schematic diagram of the flow geometry and experimental setup is shown inFig. 1. The micelle
solution was contained in an acrylic cylinder 91.4 cm in length and with an inner diameter of 10.2 cm. A
rectangular acrylic viewing box with an inner side length 13.0 cm was co-centered with the cylinder. A
glycerol and water solution was prepared with the same index of reflection as the cylinder and was used
to fill the gap between the cylinder and the viewing box to eliminate light refraction at the acrylic–air
interface. A ray tracing algorithm was used to remap the radial position and velocity of the vectors
calculated through DPIV to account for the small index of refraction mismatch between the acrylic flow
tube and the wormlike micelle solution.

The spheres were held below the fluid surface and released by a three pronged drill chuck which
was precisely centered within the flow cylinder by a micrometer driven three-axis translation stage. The
sedimentation velocity was varied by using a series of six spheres with a wide variation of densities. The
spheres were composed of delrin (DL), Teflon (TF), aluminum (AL), aluminum oxide (AO), stainless
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Fig. 1. Schematic diagram of experimental setup.

steel (SS), and tungsten carbide (TC) (Small Parts). The densities listed inTable 1were determined
by measuring the diameter and the mass of each sphere. Experiments were performed with spheres
having diameters ofa = 6.325 and 12.65 mm resulting in sphere to flow cylinder sphere-to-tube ratios
of a/R = 0.0625 and 0.125.

2.2. Digital particle image velocimetry (DPIV)

DPIV was used to generate a complete and quantitative measurement of the velocity flow field around
each of the falling spheres. The wormlike micelle solution was seeded with 45�m, silver coated, glass
spheres (Potters Industries) having a density ofρ = 1100 kg/m3. Although the tracer particles are more
dense than the surrounding fluid, because of the high viscosity of the micelle solution and the small size

Table 1
Density and resulting Deborah number for each of the sphere materials and sizes used

Material Density
[kg/m3]

Reynolds number,
Re(γ̇) (a/R = 0.0625)

Deborah number,De
(a/R = 0.0625)

Reynolds number,
Re(γ̇) (a/R = 0.125)

Deborah number,De
(a/R = 0.125)

DL 1.39× 103 6.2× 10−6 0.23 4.0× 10−4 0.37
TF 2.14× 103 4.9× 10−5 1.8 1.8× 10−3 1.7
AL 2.73 × 103 4.1× 10−5 1.5 3.0× 10−3 2.7
AO 3.94× 103 6.6× 10−5 2.5 4.1× 10−3 3.8
SS 7.98× 103 1.1× 10−4 4.0 7.5× 10−2 33
TC 1.51× 104 1.7× 10−4 6.6 6.0× 10−1 110
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of the seed particles, their settling time was calculated to be on the order of months. The tracer particles
were mixed at 0.0025 wt.% resulting in a seed density of approximately 60 particles per cubic centimeter.
For the field of view used in these experiments, this seed density is sufficient for acquiring excellent DPIV
vector fields[26,27].

A measurement plane 35 cm from the bottom the flow cylinder and coinciding with the centerline of
the sphere was illuminated with a laser light sheet formed by passing a 500 W argon laser (National
Laser) through a cylindrical lens. The sheet thickness was found to be approximatelyw ≈ 1 mm. The
light scattered from the tracer particles was imaged with a CCD camera (Hitachi KPM22N) and recorded
at 30 frames/s using a digital VCR (JVC SR-VS20U) with a resolution of 720 pixels× 480 pixels. The
images were captured on a PC using video acquisition card (Pinnacle DV200) and processed using Adobe
Premiere. A DPIV algorithm was used to determine the fluid velocity vector field by cross-correlating
seed particle displacements in sequential images[28,29]. Length scale and velocity conversions from the
pixel images to nondimensional values were made by measuring the sphere size as it passed within the
field of view of the camera.

2.3. Flow-induced birefringence (FIB)

The refractive index of a wormlike micelle is different in the directions parallel to and normal to the mi-
celle tube. FIB measurements have been used quite extensively to examine both steady and transient flows
of and wormlike micelles[20,22,30–32]. By passing light of a known polarization state and frequency
through the polymeric fluid sample and measuring the resulting change in polarization state, FIB can be
used to determine the local anisotropy in the conformation of the wormlike micelles�A = A11 − A22

[30]

�n′ cos 2χ

C
= G0

N �A, (1)

where�n′ is the measured birefringence,χ the extinction angle,C thestress-optical coefficient, andG0
N

the plateau elastic modulus of the fluid. The micelle conformation is characterized by the ensemble average
second moment tensor,A = 〈QQ〉/Q2

eq which is made dimensionless by the square of the equilibrium
value of the end-to-end vector of the polymer chain,Q. A modulated FIB technique[33,34]was utilized
for both the extensional rheology measurements and for pointwise birefringence measurements in the
wake of the falling sphere while the Osaki technique[30] was used to facilitate full-field birefringence
measurements of the falling sphere.

The advantages of using a modulation technique over a full-field technique include significantly better
spatial and temporal resolution and the ability to simultaneous measurement both the birefringence and
the extinction angle with no ambiguity in orientation of the micelle[30]. The optical train used to
measure the time evolution of the FIB at the midpoint of a wormlike micelle fluid filament experiencing
a homogeneous uniaxial extension is similar to the system first proposed by Frattini and Fuller[35] and
described in[33,34]. The retardation,δ, and the extinction angle,χ, can be calculated directly from the
first and second harmonic of the modulated laser intensity captured by the photodetector

δ = 2π�n′ d
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whereδ is the optical path length of the light,λlight the wavelength of the laser light andM34 andM32 are
the components of the Mueller matrix given by

M34 = Iω√
2J1(Ac)Idc

, M32 = I2ω√
2J2(Ac)Idc

. (3)

In the above equation,Ac is the amplitude of the electro-optical modulation calibrated such that the order
zero Bessel function of the first kind is equal toJ0(Ac) = 0 [35] and the intensity of the light measured
by the photodetector is given by

I(t) = Idc + Iω sinωt + I2ω cos 2ωt. (4)

For both the uniaxial deformation imposed by the filament stretching rheometer and the pointwise mea-
surements along the centerline or the falling sphere, the orientation angle is found to be aligned along
the axis of the falling sphere,χ = 0, and thusM32 ≈ 0. The minimum resolvable retardation of this
modulated system is approximatelyδ ≈ 1 × 10−2 rad.

FIB has typically been used only in two-dimensional flows because it is a line-of-sight technique.
In the three-dimensional or axisymmetric flows such as the flow past a falling sphere, the kinematics
and the molecular conformation of the wormlike micelle vary along the path of the light resulting in
an spatially averaged measure of the FIB. The pioneering work in this area was performed by Li and
Burghardt[36] who investigated the axisymmetric stagnation flow of a high molecular weight polystyrene
solution past a cylindrical obstruction with a hemispherical cap. Li and Burghardt[36] demonstrated that
even though a spatially resolved measurements of birefringence,�n′(r, z), extinction angle,χ(r, z), and
polymer conformation field�A(r, z) could not be achieved, axisymmetric flow-induced birefringence
(AFIB) is an excellent tool for comparison between the results of numerical simulations and experiments
[36–38]. To perform such a comparison in inhomogeneous flows, the conformations and stresses in the
flow field upstream and downstream of a contraction–expansion can be numerically computed using a
chosen constitutive model. It has also been demonstrated by Rothstein[39] that AFIB is an excellent tool
for qualitative analysis of conformation and stress growth in complex flows of polymer solutions even in
the absence of a direct comparison to numerical simulations.

Following the procedure outlined by Li and Burghardt[36] we can write down an expression for the
spatially averaged version ofEq. (3)

M̄34 = sin δ̄ cos 2̄χ = 1

d

∫ d

0
sin

(
2π�n′(x)d

λlight

)
cos(2χ(x))dx,

M̄32 = [1 − cosδ̄] sin 2χ̄ cos 2̄χ = 1

d

∫ d

0

[
1 − cos

(
2π�n′(x)d

λlight

)]
cos(2χ(x)) sin(2χ(x))dx, (5)

wherex is the position along the path of the light passing through the birefringent material,δ̄ and χ̄

are spatially averaged values of the retardation and extinction angle, andM̄32 andM̄34 are the spatially
averaged Mueller matrices. DeconvolutingEq. (5)in order to calculate local measures of�n′(r, z), and
χ(r, z) is an ill-posed problem, although it has been attempted in the past[40].

To obtain full-field FIB measurements of the spheres settling through a wormlike micelle solution, the
Osaki method was used[30]. In order to acquire information about both the retardation and the extinction
angle, the Osaka method requires FIB measurements from two different crossed polarizer arrangements. A
single wavelength light source was used to illuminate the flow between crossed polarizers. A CCD camera
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connected to digital VCR was then used to capture the fringe patterns in the wormlike micelle solution
generated by the falling sphere for each linear polarizer configuration. The images were uploaded to a PC
from the VCR and then processed to determine the spatially averaged retardation and extinction angle
of the wormlike micelle solutions. To achieve a quantitative measure of the retardation, the background
signal of the CCD camera was first subtracted from each image and the intensity was normalized with the
light intensity in the absence of the linear polarizers to generate the following two normalized intensities:

i0◦ = 2I0◦

I0,0◦
= sin2(2χ̄) sin2

(
δ̄

2

)
, i45◦ = 2I45◦

I0,45◦
= cos2(2χ̄) sin2

(
δ̄

2

)
. (6)

These two intensities were then manipulated to generate a full-field description of the spatially averaged
values of the retardation and the extinction angle

|δ̄| = sin−1
√
i0◦ + i45◦, |χ̄| = 1

2
tan−1

√
i0◦

i45◦
. (7)

Note that the sign of the retardation and extinction angle calculated using the Osaki method is ambiguous.
The resolution of this full-field technique is limited by CCD camera to aboutδ ≈ 0.1 rad, an order of
magnitude less sensitive than modulated technique described above.

2.4. Fluid rheology

2.4.1. Shear rheology
The test fluid was a wormlike micelle fluid, a mixture of 0.05 mol/l cetyletrimethylammonium bromide

(CTAB) (Fisher Scientific) and 0.05 mol/l sodium salicylate (NaSal) (Fisher Scientific) in distilled, deion-
ized water. The solution is well above the critical micelle concentration, which for CTAB in pure water is
CMC = 9×10−4 mol/l [8]. At these concentrations, the wormlike micelle solution is concentrated and en-
tangled with significant number of entanglement points per chain[8]. The FIB measurements were aided
by the extremely large value of the stress-optic coefficient of CTAB surfactant solutions which facilitate
accurate measurements of even small changes in the anisotropy of the wormlike micelle conformation.
Following the work of Shikata et al.[32] the stress-optic coefficient of the wormlike micelle solution was
assumed to beC = −3.1× 10−7 Pa−1. The equilibrium surface tension for each of the wormlike micelle
solutions tested was assumed to be consistent with the value ofσ = 0.036 N/m reported in the literature
for CTAB/NaSal solutions above the CMC[41]. The solution was prepared and allowed to equilibrate at
room temperature (T = 23± 1 ◦C) for several days before experiments were performed.

The steady and dynamic shear rheology of the test fluid was characterized using a Bolin cone-and-plate
controlled stress rheometer (Model CVO) with a 4 cm diameter and 1◦ cone. The micelle solutions were
loaded and allowed to equilibrate atT = 25◦C for several minutes. The samples were not pre-sheared.
In the regime of linear deformation imposed by these small amplitude oscillatory shear flows, it has been
shown that wormlike micelle solutions can be accurately modeled by a Maxwell model having just one or
two relaxation times[10]. InFig. 2, the storage modulus,G′, and loss modulus,G′′, of the 0.05 mol/l CTAB
and 0.05 mol/l NaSal wormlike micelle solution are plotted as a function of angular frequency,ω, along
with the prediction of a single mode Maxwell model. The linear viscoelastic data and the single mode
Maxwell model with a viscosity ofη0 = 62 Pa s, a relaxation time ofλ = 5.7 s, and an elastic plateau
modulus ofG0

N = 10.9 Pa are in good agreement for much of the dynamic range of the micelle solution.
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Fig. 2. Linear viscoelastic shear rheology of the 0.05 mol/l CTAB and 0.05 mol/l NaSal micelle solution. The data include: (�)
the storage modulus,G′; (�) the loss modulus,G′′ and (—) the fit from a single mode Maxwell model.

However, deviations are observed at large angular frequencies corresponding to the Rouse-like behavior
of the micelle between entanglement points[42]. This deviation, which has been shown to become more
pronounced as the concentration of surfactant and salt and therefore the number of entanglements per
chain are reduced, is consistent with observations in the literature[43,44].

Although the linear viscoelasticity experiments were performed at a constant temperature ofT = 25◦C,
the temperature in the laboratory was found to fluctuate betweenT = 22 and 24◦C. Thus, in order to
analyze the experimental data, it was first necessary to shift the relaxation time and viscosity to their
values at a reference temperature ofT0 = 25◦C. This was accomplished by employing time-temperature
superposition with a shift factor,aT, defined by the Williams–Landel–Ferry (WLF) equation[45]. The co-
efficients of the WLF equation were determined to bec1 = 0.57 andc2 = 6.94 from linear viscoelasticity
measurements of the wormlike micelle solution at a series of different temperatures.

In Fig. 3, the steady shear viscosity,η, is plotted alongside the dynamic viscosityη′G′′/ω as a function
of shear rate,̇γ, and angular frequency,ω, respectively. At small shear rates and angular frequencies,
the micelle solution behaves like a rheologically simple fluid; the steady and dynamic viscosity plateau
to approximately the same value[45]. As the shear rate is increased, the fluid begins to shear thin. At a
critical shear rate,̇γ ≈ 2 s−1, the viscosity drops precipitously approaching a slope ofη ∝ γ̇−1 Although
the formation of shear-banding could not be confirmed in our experiments, at similar levels of shear
stress, nuclear magnetic resonance (NMR) measurements have shown the appearance of shear-banding
in similar fluids[21,46]. Shear-banding could account for the dramatic reduction in the shear viscosity.
The presence of shear-banding means that the flow between the cone-and-plate is no longer viscometric
and the applied stress divided by the resulting shear rate is no longer a true measure of the viscosity of
the wormlike micelle.

Developing and applying constitutive models that can accurately predict the rheological behavior of
these wormlike micelle solutions is still a challenging issue. Superimposed over the experimental data in
Fig. 3are the predictions of several constitutive models. The solid lines inFig. 3represent the predictions
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Fig. 3. Steady shear rheology of the 0.05 mol/l CTAB and 0.05 mol/l NaSal micelle solution. The experimental data include:
(�) the steady shear viscosity and (�) the dynamic viscosity. The experimental data is compared to the predictions of: (—) the
FENE-PM model, (- - -) the multimode Bird–DeAguiar Model and (-· -) the Giesekus model.

of a multimode FENE-PM model for the steady shear data[47]. The value of the finite extensibility
parameter,b = L2, used in the FENE-PM model can be computed directly from molecular quantities,
thereby avoiding the need to fit the finite extensibility parameter to the shear rheology data, a practice
which has been shown to result in a systematic underprediction of the finite extensibility parameter[28].
Shikata et al.[32] proposed an approximate physical model to describe wormlike micelle solutions in
terms of a rubber elasticity framework. A complete discussion of the Shitaka model and its implementation
can be found in[15]. The FENE-PM model does not accurately predict the onset of shear thinning in the
wormlike micelle solution. However, as will be seen inFig. 4, the FENE-PM model does an excellent job
of predicting the micelle solution behavior in a transient homogeneous uniaxial extensional flow with a
finite extensibility ofb = 47 and just the first two modes of the Rouse–Zimm relaxation time spectrum
are used[15].

To achieve an improved description of the shear thinning of the wormlike micelle solutions, the en-
capsulated dumbbell model of Bird and DeAguiar[48] was used with an anisotropic drag coefficient
of σBD = 0.7, an anisotropic Brownian motion coefficient ofβBD =1, and the first two modes of the
Rouse–Zimm relaxation time spectrum. WhenσBD = βBD = 1, the FENE-PM model is recovered. The
Bird–DeAguiar model is in good agreement with the steady shear data until the onset of dramatic shear
thinning. To accurately predict the slope of the viscosity at large shear rates, a model such as the Giesekus
model is needed. The predictions of the Giesekus model[45] with the nonlinear parameterα = 0.15 is
also shown inFig. 3. Unlike the FENE-PM and Bird–DeAguiar models, the Giesekus model is a good
fit to the data over the entire range of shear rates. However, as will be seen in the following section, it is
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Fig. 4. Transient homogeneous uniaxial extensional rheology of 0.05 mol/l CTAB 0.05 mol/l NaSal wormlike micelle solution
at a Deborah number ofDe = 8.8. The experimental data shows the growth of the tensile stress (�) and average anisotropy
of the wormlike micelle (�) as a function of Hencky strain. The data is compared to the predictions of: (—) FENE-PM model
and multimode Bird–DeAguiar model which are identical in extension forβ = 1, (· · ·) single mode FENE-P model and (-· -)
Giesekus model.

a current limitation of theory that constitutive models that can successfully predict the behavior of these
wormlike micelles in shear, models like the Giesekus model and those developed by Spenley et al.[49,50]
which predict an isotropic to nematic phase transition and shear-banding at a critical shear stress, fail to
accurately predict the response of the wormlike micelle solution in strong extensional flows.

2.4.2. Extensional rheology
A filament stretching rheometer capable of imposing either a homogeneous uniaxial extension on a

fluid filament placed between its two endplates was used to make simultaneously measurements of the
evolution of the force, the midpoint radius and the FIB of the fluid filament. A complete description of the
design and operating space of the filament stretching rheometer used in these experiments can be found
in [33,34]. The goal of extensional rheometry is to impose a motion such that the resulting extension rate
is constant

ε̇(t) = − 2

Rmid(t)

dRmid(t)

dt
= ε̇0, (8)

whereRmid(t) is the midpoint radius of the filament.
The total deformation of the system can be described in terms of a Hencky strain

ε =
∫ t

0
ε̇(t′)dt′ = −2 ln

(
Rmid

R0

)
, (9)

whereR0 is the initial radius of the fluid filament. The strength of the extensional flow is characterized
by the Deborah number which is the ratio of the characteristic relaxation time of the fluid,λ, to the
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characteristic timescale of the floẇε0,

De = λε̇0. (10)

The elastic tensile stress difference generated within the filament can be calculated from the total force
measured by the load cell,Fz, if the weight of the fluid and the surface tension are taken into account
while ignoring inertial effects[51]

〈τzz− τrr 〉 = Fz

πR2
mid

+ 1

2

ρg(πL0R
2
0)

πR2
mid

− σ

Rmid
, (11)

whereL0 is the initial endplate separation,σ the equilibrium surface tension of the fluid andρ the density
of the fluid. The principal elastic tensile stress can be further broken down into contributions from the
wormlike micelles,�τe, and its Newtonian solvent

〈τzz− τrr 〉 = �τe + 3ηsε̇, (12)

whereηs is the solvent viscosity of the test fluid. Often the principle elastic tensile stress is nondimen-
sionalized as a Trouton ratio,Tr = 〈τzz − τrr 〉/η0ε̇ = η+

E/η0, whereη+
E is the transient extensional

viscosity.
In Fig. 4, the elastic tensile stress (Eq. (12)) and the average anisotropy in wormlike micelle confor-

mation (Eq. (1)) are plotted as a function of Hencky strain for the 0.05 mol/l CTAB and 0.05 mol/l NaSal
wormlike micelle solution at a Deborah number ofDe = 9.1 and to a final Hencky strain ofεr = 2.7.
The tensile stress demonstrates considerable strain hardening and appears to approach an equilibrium
value of the extensional stress around�τe ≈ 7000 Pa. No significant contribution to the stress from the
aqueous solvent is observed. The response of the wormlike micelle solution is consistent with previous
filament stretching experiments of concentrated and entangled polymer melts[34,52]. The growth of the
elastic tensile stress is well predicted by a multimode FENE-PM model[47] incorporating just the first
two modes of the Rouse–Zimm relaxation time spectrum. In order to achieve such excellent agreement,
the finite extensibility parameter of the FENE-PM model,b, was fit to the extensional data. The resulting
value ofb = 47 is within 20% of the value ofb = 55 predicted by the approximate theory of Shikata
and Kotaka[13]. The data is also well fitted by a two-mode Bird–DeAguiar model, which, because
we assumed that the Brownian motion of the beads is isotropic by settingβ = 1, is equivalent to the
FENE-PM model. For comparison, the prediction of a single mode FENE-P model is also shown. The
FENE-P model strain hardens too quickly. The Giesekus model, which did an excellent job predicting
the shear rheology, significantly underpredicts the growth in the elastic tensile stress.

The average anisotropy in wormlike micelle conformation is also presented inFig. 4. The birefringence
signal is initially quite weak, but grows rapidly at short times. As time progresses and the accumulated
Hencky strain increases, the anisotropy in the wormlike micelle conformation increases exponentially
with time, eventually approaching an equilibrium value of roughly�A ≈ 40 which is more than 90%
of the wormlike micelle’s full extension. The agreement between the growth in the anisotropy in the
wormlike micelle conformation and the predictions of the FENE-PM and Bird–DeAguiar models are
excellent.

In order to predict the behavior of wormlike micelle solutions in both shear and extension, it appears
that a constitutive model which incorporates finite extensibility into the Giesekus model is needed. Such
a constitutive model was developed by Wiest[53]. Unfortunately, the use of a nonzero nonlinearity
parameter(α > 0) in the Wiest model significantly reduces the predicted extensional strain hardening of
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the fluid. As a result, even with the Wiest model the shear and extensional rheology of these wormlike
micelle solutions cannot be accurately predict simultaneously over the entire range of shear and extension
rates. Although the two-mode Bird–DeAguiar model fails to predict the dramatic shear thinning at large
shear rates, it is accurate up to shear rates ofγ̇ ≈ 2 s−1 or, equivalently, Deborah numbers up toDe ≈ 11.
The Bird–DeAguiar model can therefore quantitatively predict the evolution of the shear and extensional
stresses for all but the largest Deborah number experiments presented in the following section, where the
flow is found to be unstable. This wormlike micelle solution does not exhibit anystress-conformation
hysteresis[54]. That is, the elastic tensile stress is found to be a single valued function of the average
anisotropy in the wormlike micelle conformation. This suggests that a model such as the Bird–DeAguiar
model should be capable of predicting the stable flow past a falling sphere even though the extensional
flow in the wake of the sphere is inhomogeneous in nature[33].

The filament stretching experiment comes to an abrupt end at a Hencky strain ofεr = 2.5 with the
dramatic rupture of the fluid filament near its axial midplane. A series of high-speed images showing
the rupture of the fluid filament are shown inFig. 5. As can be seen inFig. 5, the filament failure is not
the result of elastocapillary thinning as is commonly observed in the filament stretching of weakly strain
hardening polymer solutions and melts[55]. Instead, the filament experiences a rupture similar to the
ductile failure of an elastic solid. The characteristic time for the breakup-recombination of these wormlike
micelles,λbreak, has been found in the literature to be on the order of several hundred milliseconds[44]. As
seen inFig. 5, the failure of the fluid filaments occurs on much shorter timescale and thus a micelle which
breaks under thermal fluctuations or the applied extensional stress will not be afforded the necessary time
to reform. This filament failure therefore likely stems from the scission of wormlike micelles resulting in
a dramatic breakdown of the entangle micelle network structure en masse[15]. The energy of wormlike
micelle chain scission was calculated to be roughlyEsciss≈ 4kBT [15]. Furthermore, it has been shown
by Rothstein[15] that for a series of CTAB/NaSal wormlike micelle solutions the scission energy required
to break down the micelle network structure is nearly independent of both the imposed extension rate
tested and the concentration of the surfactant and the salt. The failure of the wormlike micelle entangled

Fig. 5. Series of images showing the rupture of a filament of 0.05 mol/l CTAB and 0.05 mol/l NaSal wormlike micelle solution
in a transient uniaxial extensional flow at a Deborah number isDe = 8.8. The filament achieves a final Hencky strain ofεf = 2.5
before failure.
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network structure observed in these pure extensional flows can lead to new and interesting physics in
complex flows such as in the extensional flow in the wake of a falling sphere.

3. Results

3.1. Sedimentation velocity

The motion of a sphere falling through an unbounded reservoir of a Newtonian fluid at zero Reynolds
number was first investigated by Stokes. By balancing viscous drag with buoyancy force, Stokes was able
to show that the velocity of a sphere of radiusa, and densityρs, moving through a fluid with viscosity
η0, and densityρf , is given byUStokes= 2ga2(ρs − ρf )/9η0. Stokes’ solution does not take into account
the influence of the container walls, non-Newtonian effects or inertia. To quantifies the deviation in the
measured terminal velocity of a sphere,U, from the predictions of Stokes flow, a drag correction factor,
K, is formed[3]

K = UStokes

U
= 2ga2(ρs − ρf )

9η0U
. (13)

In general, the drag correction factor is a function of the Deborah number, the Reynolds number, shear
thinning of the fluid viscosity and the sphere-to-tube ratio,K = K(De,Re, η(γ̇)/η0, a/R).

The presence of the container tube walls will result in an additional contribution to the viscous drag
thereby reducing the terminal velocity of the falling sphere. For a Newtonian fluid at zero Reynolds
number, an analytical expression for the drag correction factor can be derived to account for the presence
of the bounding wall[56]

KN = 1

1 − f(a/R)
, (14)

wheref(a/R) is the Faxen’s series.

f
( a

R

)
= 2.1044

( a

R

)
− 2.0888

( a

R

)3
+ 0.9481

( a

R

)5
+ · · · . (15)

As seen inTable 1, for all experiments performed, the Reynolds number based on the shear rate dependent
viscosity was less thanRe(γ̇) = ρf Ua/η(γ̇) < 1, making it possible to neglect inertial effects and placing
these experiments within the creeping flow regime. The influence of rheological properties on the wall
correction factor was studied by Mena et al.[57]. They were able to show that for an inelastic, shear
thinning non-Newtonian fluid that the drag correction factor could be approximated by

K

(
a

R
,
η(γ̇)

η0

)
= η(γ̇)/η0

1 − (η(γ̇)/η0)f(a/R)
, (16)

wheref(a/R) is again the Faxen’s series fromEq. (15). No analytical expression of the drag correction
factor has been developed which can also incorporate the effect of elasticity and extensional strain
hardening. For such a prediction, a numerical simulation of the flow with the appropriate constitutive
model is required.

A software program was developed to track the center of a sphere as it moves through a series of
sequential video images. Using this program, the terminal velocity of each sphere was experimentally
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Fig. 6. The drag correction factor as a function of Deborah number for series of spheres with sphere-to-wall aspect ratios of
a/R = 0.125 (�) anda/R = 0.0625 (�). The filled symbols represent stable flows while the hollow symbols represent unstable
flows. The solid lines (—) correspond to the value ofKN(a/R) and the dashed lines (- - -) correspond to the solution for an inelastic
shear-thinning non-Newtonian fluid presented inEq. (16).

measured. For all the stable experiments, the spheres were observed to travel along a straight path with
good repeatability and no sphere rotation or movement towards the cylinder wall. In order to obtain
repeatable velocity measurements, it was found that a delay of at least 10 min was needed between
experiments. Failure to wait 10 min resulted in variations in the measured terminal velocities.

In Fig. 6, the drag correction coefficient is presented as a function of the Deborah number. The
Deborah number was calculated from the experimentally measured terminal velocities,De = Uλ/a.
For experiments that demonstrated a flow instability, the Deborah number was calculated from the aver-
age sedimentation velocity. When the density of the sphere is small and the Deborah number is near zero,
the observed flow behavior is Newtonian and the drag correction factor is found to approach the Newto-
nian theoretical limit which for the two sphere-to-tube ratios used in these experiments is calculated to
beKN(a/R = 0.0625) = 1.15 andKN(a/R = 0.125) = 1.35. These limiting values are superimposed
over the data inFig. 6. As the Deborah number is increased, the drag correction factor decreases due to
shear thinning in the fluid shear viscosity1. At a Deborah number of approximatelyDe ≈ 2, the drag
correction factor reaches a minimum. Further increases in the Deborah number result in an increase of
the drag correction factor. This increase is caused by the strong inhomogeneous extensional flow which
develops in the wake of the sphere. The large extension rates and residence times experienced by the
wormlike micelles in the wake of the sphere lead to significant micelle deformation and strain hardening

1 The predictions for an inelastic, shear thinning non-Newtonian fluid is superimposed over the large sphere-to-tube ratio data
in Fig. 6.
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in the extensional viscosity as seen inFig. 4. The extensional stresses in the wake oppose the motion of
the sphere and decrease the terminal velocity. If not for these strong elastic effects the drag correction
factor would decrease monotonically as predicted byEq. (16). Further evidence of the large extensional
deformation and stresses in the wake can be seen from the FIB measurements presented inSection 3.3.
Similar behavior has been observed in both experiments and numerical simulation of the flow of shear
thinning viscoelastic polymer solutions past falling spheres[7,58].

Above a critical Deborah number the flow becomes unstable. The symbols inFig. 6 representing the
unstable flows have been made hollow. The exact onset conditions for the flow instability could not be
determined because of the discrete nature of experimentally obtainable Deborah numbers, however, the
critical Deborah number appears to be approximatelyDecrit ≈ 3.8. For both the large aluminum oxide
sphere(De = 3.8) and the small SS sphere(De = 4.0), the flow was found to be stable for the majority
of the experiment and was observed to exhibit between zero and two unstable flow cycles during the time
it takes to pass through the flow tube. It is important to note that for both sets of spheres, the increase in
the drag correction factor begins before the onset of the flow instability. As will be seen in the PIV and
FIB measurements in the following sections, no significant differences were observed for the evolution of
the flow past the large and small spheres. The differences observed in the evolution of the drag correction
factor for the two sets of spheres arise primarily from the doubling of the sphere-to-tube ratio which
results in different values ofKN(a/R) and an offset in the two sets of data. One advantage of increasing
the size of the spheres was that the range of Deborah number was significantly enhanced. Using the larger
spheres it was possible to investigate the nature of the flow instability far from its onset conditions and
to observe a maximum followed by a precipitous drop-off in the drag correction factor. If more dense
small spheres were available and larger Deborah numbers could be achieved, we believe that the second
downturn in the drag correction factor would be observed for both sets of spheres.

There are several physical arguments which could explain the existence of a maximum in the drag
correction factor. As seen inFig. 4, in a homogenous transient uniaxial elongational flow, the elastic tensile
stress developed by the wormlike micelle solution used in these experiments approaches an equilibrium
value at Hencky strains of aboutε ≈ 2.5. Further increases in Hencky strain do not result in an increase
in the elastic tensile stress. The drop-off in the drag correction factor at high Deborah numbers could
result from a saturation of the extensional viscosity as the wormlike micelles align with the flow and
approach their finite extensibility limit. Beyond this point, even as the Deborah number and subsequently
the Hencky strain accumulated by fluid elements in the wake are increased, the elastic tensile stress
resisting the motion of the sphere will not increase, but remain constant. However, at these shear rates
significant additional shear thinning is still possible. The combination of these two effects could result in
an increase in the terminal sphere velocity and a second decrease in the drag correction factor. An alternate
explanation of the maximum observed in the drag correction factor and, for that matter, the flow instability
is based on the reduction in the extensional viscosity of the fluid in the wake of the sphere resulting from the
scission of individual wormlike micelles and the breakdown of the entangled micelle structure. It has been
theorized by Cates and Turner[16] that the distribution of micelle lengths can change under strong shear
or extensional flows. This has been observed in light scattering measurements of a series of equimolar
tetradecyltrimethylammonium bromide (TTABr)/NaSal solutions in a Rheometrics RFX opposed jet
device which demonstrated a clear decrease in micelle radius of gyration resulting from micelle scission
in the strong extensional flow[59]. This decrease in the micelle radius of gyration was found to coincide
precisely with the onset of significant extensional viscosity thinning of the fluid[60]. It has also been
postulated that the scission of the wormlike micelles is responsible for the experimentally observed ductile
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Fig. 7. The onset of a flow instability during the sedimentation of a tungsten sphere with an sphere-to-tube ratio ofa/R = 0.0625
and a Deborah number ofDe = 6.6 as seen in: (a) measurements of the sedimentation velocity of the sphere as a function of
time and (b) the power spectral density plot of the velocity fluctuations.

failure of these fluid filaments in the transient extensional rheology measurements[15]. A reduction in the
extensional viscosity of the wormlike micelle solution in the wake of the sphere coupled with significant
shear thinning of the fluid could also explain the observed decrease in the drag correction factor.

In Fig. 7a, the instantaneous sedimentation velocity of the unstable Tungsten sphere(a/R = 0.0625)
at a Deborah number ofDe = 6.6 is shown as a function of time. The velocity measurements are taken
far downstream of the release point of the sphere (50 cm) and are not the result of the initial transient
velocity fluctuations observed as the sphere accelerates from rest[61]. Because of the large viscosity of
the wormlike micelle solution, the characteristic inertial timescale for the acceleration of the sphere is
very small,Λs = 2a2ρs/9η0 ≈ 1 × 10−4 s [61]. This means that the transient response to acceleration
is very rapid and is damped out quickly. The spheres initially fall with a steady terminal velocity. The
velocity fluctuations associated with the flow instability do not grow from zero with time, but instead
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Fig. 8. A series of images showing the unstable motion of an aluminum oxide sphere with a sphere-to-tube ratio ofa/R = 0.125
and falling with an average Deborah number ofDe = 3.8.

the fluctuations are triggered by an abrupt acceleration of the sphere. As seen inFig. 7a, the amplitude
of the velocity fluctuations is almost an order of magnitude larger than the steady terminal velocity. A
fast Fourier transform was performed on the velocity fluctuation data inFig. 7a and the resulting power
spectral density plots is shown inFig. 7b. The observed instability is clearly nonlinear with the presence
of several dominant peaks, the strongest being atf = 1.4 Hz.

A series of images of the motion of the large aluminum oxide sphere(a/R = 0.125) are presented
in Fig. 8 to better illustrate the flow instability. The initial motion of the sphere is stable. Att = 2.2 s,
a flow transition occurs and the sphere abruptly accelerates. The timing and location within the fluid
corresponding to the onset of the flow instability appears random and is not experimentally reproducible.
After the initial acceleration, the velocity of the sphere fluctuates for several cycles. In many cases, see
Fig. 8e–i, the spheres have been observed to reverse direction and move back up against gravity. Near the
onset conditions, the amplitude of the velocity fluctuations typically decays with time until the fluctuations
disappear. At this point, the sphere is again observed to fall with a steady terminal velocity equivalent
to its initial value, seeFig. 8j–l. In some cases, as seen inFig. 8i and j, the spheres have been observed
to stop completely for nearly a second before continuing to fall. Inevitably, the sphere accelerates again
and the velocity fluctuation cycle is repeated. At Deborah numbers far beyond the onset conditions, the
sphere does not return to a steady terminal velocity after the initial onset of the velocity fluctuations,
but remains unstable for all time. The instability has, in limited cases, coincided with significant sphere
rotation and migration towards the walls of the confining cylinder.

Jayaraman and Belmonte[24] observed a similar instability in the sedimentation of a sphere through
a 9 mM CTAB 9 mM NaSal wormlike micelle solutions. Jayaraman and Belmonte[24] postulated that
the flow-induced structure formed in the shear regions around the sphere increased the effective viscosity
of the fluid and thus the drag on the sphere. In their work, they hypothesized that the instability was
due to the breakup of these flow-induced structures. However, we do not believe that this is the correct
physical mechanism for the flow instability. First, shear thickening is not observed in the shear rheology
of the micelle solutions used by Jayaraman and Belmonte[24] nor is it observed inFig. 3. Second, shear
thickening is typically observed before the onset of shear thinning. One would therefore expect to see a
growth in drag correction factor inFig. 6 followed by a decay. We observe the opposite trend. As will
be seen from FIB measurements inSection 3.3, the increase in drag on the sphere is a result of the large
extensional stresses developed within the micelle solution in the wake of the sphere. It is our hypothesis that
the flow instability stems from scission of the strongly aligned and deformed micelles in the extensional
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flow present in the wake of the sphere. We believe that the instability is directly related to the dramatic
filament rupture observed in the extensional rheology experiments and seen graphically inFig. 5.

In our experiments, the presence of flow-induced structure is suggested by a region of turbid fluid in
the high shear regions around falling spheres with Deborah numbers aboveDe > 1.5 [20]. As seen in
Fig. 8, the region of turbid fluid separates from the sphere past the equator and is swept downstream.
The flow-induced structure does not appear in the region of extensional flow in the wake of the sphere,
remaining instead in a broad band located between one half to two radii off of the centerline. This is true
even after onset of the flow instability. Upon cessation of the flow, the turbid fluid disappears within a
single relaxation time, suggesting that the relaxation dynamics of the flow-induced structure is similar to
the bulk fluid. In the following sections, it will be shown that the presence of the turbid fluid does not
appear to affect either the velocity flow field or the FIB signal. No evidence of shear-banding or discon-
tinuities in the velocity or birefringence signals is observed. These observations rules out the possibility
of a shear-induced isotropic–nematic phase transition[62], but could be consistent with shear-induced
transition to a gel-like state or another morphology[63]. To clarify the nature of the flow-induced structure
transition, small angle light or neutron scattering experiments are planned in the future.

3.2. Digital particle image velocimetry

Eulerian velocity vector fields were generated using DPIV for all the spheres tested. InFig. 9, velocity
fields for a series of spheres with sphere-to-tube ratioa/R = 0.0625. The vectors inFig. 9are scaled such
that an arrow of dimensionless lengthl/a = 0.5 corresponds to a dimensionless velocity ofu/U = 1.
In Fig. 9a, the velocity field around a Teflon sphere is shown at a Deborah number ofDe = 1.8. The
flow has fore-aft symmetry and appears Newtonian in nature. The velocity vector field of the flow past
a falling aluminum oxide sphere at a Deborah number ofDe = 2.5 is shown inFig. 9b. At these large
Deborah numbers, viscoelastic effects become important. The flow is no longer fore-aft symmetric. A
weak recirculation zone is found beside the sphere and a stagnation point is observed approximately
one diameter downstream of the sphere. Downstream of the stagnation point, the fluid in the wake of the
sphere moves in the opposite direction of the falling sphere producing a ‘negative wake’. It has been shown
through both experimentation and numerical simulation that a negative wake is present for viscoelastic
fluids where the ratio of Deborah number to Trouton Ratio,De/Tr, is large[58,64]. For the wormlike
micelle solution used in these experiments, the Trouton ratio asymptotes to a value ofTr ≈ 80 resulting
in a shear-rate-dependent value of 0.01 < De/Tr < 0.05 which is well within the range fluid properties
shown by Arigo and McKinley[58] to demonstrate a negative wake. For a fluid, such as a high molecular
weight Boger fluid, which can demonstrate even more significant strain hardening and does not shear thin,
the ratio ofDe/Tr, is small. Such fluids do not exhibit a negative wake, but instead they form an ‘extended
wake’ [64,65]. In Fig. 9c, the velocity vector field generated by the sedimentation of a SS sphere at a
Deborah number ofDe = 4.0 is shown. As the Deborah number is increased, the stagnation point moves
further downstream of the sphere and the intensity of the recirculation region beside the sphere increases
significantly. In addition, a considerable amount of strongly pre-sheared fluid is swept into wake of the
sphere upstream of the stagnation point. As the Deborah number is increased further, the flow is found to
become unstable. There is no clear evidence from these DPIV images that the turbid fluid has a significant
effect on the flow. No regions of shear-banding or other flow anomalies are observed[66]. In fact, the
agreement between the DPIV images obtained for these wormlike micelle solutions and those obtained
for shear thinning polymer solutions that do not exhibit flow-induced structure is strong[58].
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Fig. 9. DPIV vector fields of the flow past spheres with a sphere-to-tube ratio ofa/R = 0.0625 at Deborah number of: (a)
De = 1.8, (b)De = 2.5 and (c)De = 4.0. The sphere is moving from left to right.

To illustrate the effect of the transient motion of the spheres on the velocity flow field, a series of three
DPIV images are presented inFig. 10for a single unstable oscillation cycle of the Tungsten sphere with
a/R = 0.0625 falling at a Deborah number ofDe = 6.6. The DPIV images inFig. 10correspond to
times just prior to the onset of the flow instability, during the acceleration of the sphere and during the
deceleration of the sphere. The velocity vectors inFig. 10are scaled such that an arrow of lengthl/a = 0.5
corresponds to a velocity ofu/Ū = 1, whereŪ is the average sedimentation velocity of the Tungsten
sphere. The exact time of each of the DPIV images are highlighted on the plot of velocity fluctuations
presented inFig. 10a. Before the onset of the instability, the velocity vector field of the pseudostable flow
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shows a strong recirculation pattern and the presence of a negative wake. As the sphere accelerates, the
recirculation zone intensifies and the stagnation point moves further downstream to a point nearly five
radii from the sphere. During deceleration, the flow is dominated by the extensional stresses generated in
the wake of the sphere and the negative wake disappears in favor of an extended wake. This suggests that
during decelerationDe/Tr is small and the behavior of the fluid is similar to a highly elastic Boger fluid.

This behavior is quite different from observations of the transient evolution of the negative wake for
sphere accelerating from rest in a shear thinning fluid[58,67]. Arigo and McKinley[58] found that the
negative wake was a large strain phenomenon. During the initial stages of the transient motion of the
sphere, as it accelerates from rest, neither a negative wake nor an extended wake was observed. Arigo and
McKinley [58] observed that it took several cycles of the initial transient for the polymer molecules to
build up enough molecular deformation and stress for the flow to exhibit a negative wake. At no point did
the flow exhibit an extended wake. In our experiments, the wormlike micelles are deformed sufficiently
to demonstrate a negative wake before onset of the flow instability. The DPIV measurements clearly
demonstrate a transition from a shear dominated to an extension dominated flow during the completion
of a velocity fluctuation cycle.

3.3. Flow-induced birefringence

The Osaki technique was used to take full-field FIB measurements for the stable sedimentation of
spheres through the wormlike micelle solutions. Since this technique requires two independent measure-
ments of the flow field, it was not possible to use this technique to measure full-field birefringence of
the unstable sphere sedimentation. The technique is demonstrated inFig. 11for the sedimentation of an
aluminum oxide sphere with an sphere-to-tube ratio ofa/R = 0.0625 at a Deborah number ofDe = 2.5.
In Fig. 9a and b, the normalized light intensity is shown for the polarizer arrangements of 0◦/90◦ and
45◦/135◦, respectively. The 45◦/135◦ polarizer arrangement highlights the extensional flow in the wake
and the compressive flow ahead of the sphere while the 0◦/90◦ polarizer arrangement highlights the shear
flow around the sphere. The spatially averaged values of the retardation,δ̄, and extinction angle,̄χ, were
calculated fromEq. (7) and are presented inFig. 9c and d. Strong deformation is found in the wake
of the sphere where the extensional flow exists. The fluid is also strongly deformed within a region of
biaxial compressive just upstream of the sphere and shear regions around the sphere. Because the flow is
axisymmetric, it can be difficult to satisfactorily interpret the birefringence data, however, a qualitative
description of the state of micelle deformation and stress can be garnered from the spatially averaged
values of retardation and extinction angle. In addition, these spatially averaged values of the retardation
and the extinction angle can then be compared directly to predictions of numerical simulations using a
constitutive model of choice[37,68].

The development of the retardation and extinction angle are shown inFig. 12for two additional spheres
with sphere-to-tube ratioa/R = 0.0625. The data inFig. 12is split such that the top have of each subfigure
is the spatially averaged retardation,δ̄, and the bottom half of each subfigure is the spatially averaged
extinction angle,̄χ. In Fig. 12a, the FIB measurements in the flow field around the Teflon sphere at a
Deborah number ofDe = 1.8 show very little fluid deformation, only a weak shearing very close to
the sphere. As the Deborah number is increased toDe = 4.0 in Fig. 12b, a significant increase in the
extensional deformation of the fluid in the wake of the sphere and the shear deformation around the sphere
is observed. In none of these full-field birefringence measurements is any evidence found that indicates
the region of turbid fluid is a flow-induced phase transition from an isotropic to a nematic phase. Such
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Fig. 11. Full-field FIB measurements for the sedimentation of an aluminum oxide sphere with sphere-to-tube ratio of
a/R = 0.0625 at a Deborah number ofDe = 2.5 demonstrating the application of the Osaki technique. The figure includes:
(a) normalized intensity of light for crossed linear polarizers arranged at 0◦/90◦and (b)−45◦/45◦ along with the values of: (c)
retardation and (d) extinction angle integrated along the line-of-sight of the interrogation laser.

a transition would result in a significantly enhanced birefringence signal from within the nematic phase.
In addition, the birefringence signal from the nematic phase should decay over timescales much longer
than the relaxation time of the fluid[62].

To obtain a more detailed understanding of the fluid deformation, pointwise FIB measurements were
taken using the modulated technique described inSection 2.3. The path of the laser was aligned to
cross the axis of the falling sphere. In each case, the extinction angle was found to align along the axis
of the falling sphere such thatχ̄ ≈ 0◦. The results of the pointwise FIB measurements are shown in
Fig. 13for the stable spheres of both sphere-to-tube ratios. As a means of comparing with the full-field
birefringence measurements inFig. 13, the abscissa has been scaled in terms of a dimensionless distance
x/a = U/a(t − t0), wheret0 is the time at which the laser is centered on the sphere.

As expected, far upstream of both the large and small spheres, the retardation is found to be vanishingly
small and thus the micelles are not significantly deformed from their equilibrium conformation. Closer to
the sphere, a region of positive retardation is observed. This region corresponds to a combination of both
the biaxial compression and the shearing of the wormlike micelles as they approach the sphere. As the
Deborah number is increased, the intensity of the fluid deformation increases and the region of influence
moves further upstream. It should be noted that for many of the large sphere-to-tube ratio spheres, the
FIB measurements were found to go through at least one order. The FIB signal was ‘unwrapped’ and
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Fig. 12. Full-field FIB measurements of retardation and extinction angle integrated along the line-of-sight of the interrogation
laser for the sedimentation of spheres with sphere-to-tube ratio ofa/R = 0.0625 and Deborah numbers of: (a)De = 1.8 and
(b) De = 4.0.

the resulting values of the retardation are shown inFig. 13b. Downstream, in the wake of the sphere,
a negative retardation characteristic of an extensional flow is observed. The magnitude of the spatially
averaged retardation in the wake of the sphere is found to be slightly larger than the retardation upstream of
the sphere. It is not possible to determine if this is a result of the spatially averaged nature of axisymmetric
FIB measurement (i.e. the path length of the light through the compressed fluid is longer than through the
extended fluid) or if the strength of the compressive flow upstream of the sphere is on the same order as
the extensional flow in the wake. At a given Deborah number, the retardation signal is found to increase
with increased sphere diameter. This is in part because of the doubling of the path length of the laser light
through highly deformed fluid, but also because it can be shown that the strength of the extensional flow
in the wake of the sphere grows roughly with the sphere radius,ε̇ ∼ a.

At moderate Deborah numbers, the largest extension of the wormlike micelles is observed just down-
stream of the sphere and is found to decay smoothly with increased distance from the sphere. However,



228 S. Chen, J.P. Rothstein / J. Non-Newtonian Fluid Mech. 116 (2004) 205–234

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6(a)

(b)

re
ta

rd
at

io
n 

[r
ad

]

-15 -10 -5 0 5 10

-4

-2

0

2

4

 

re
ta

rd
at

io
n 

[r
ad

]

x/a

Fig. 13. Pointwise FIB measurements of retardation taken along the centerline of steady falling spheres. The figure includes:
(a) spheres with a sphere-to-tube ratio ofa/R = 0.0625 and Deborah numbers ofDe = 0.23 (—), De = 1.5 (- - -), De = 1.8
(· · ·), De = 2.5 (- · -), andDe = 4.0 (- ·· -) and (b) spheres with a sphere-to-tube ratio ofa/R = 0.125 and Deborah numbers of
De = 0.37 (—),De = 1.7 (- - -), De = 2.7 (· · ·), andDe = 3.8 (- · -).

at larger Deborah numbers, a maximum in the absolute value of the retardation is observed in the wake.
This maximum correlates precisely to the location of stagnation point observed in the negative wake of
the spheres, moving downstream with increasing Deborah number. At the stagnation point, wormlike
micelles experience the largest extension rates in the flow coupled with very long residence times. The
result is a significant extensional deformation. In the absence of a negative wake, the maximum extension
rates occur just downstream of the sphere. Because FIB measurements are a line-of-sight technique, the
retardation reported inFig. 13represents an integral over all the wormlike micelle microstructures along
the propagation path of the interrogation laser. Thus, upstream of the stagnation point, the magnitude of
the retardation decreases because the birefringence signal contains information about both the extension-
ally deformed fluid and the pre-sheared fluid being swept into the wake. As the stagnation point moves
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further downstream and more pre-sheared fluid is swept into the wake of the sphere, birefringence just
downstream of the sphere decays further, eventually even becoming positive.

For the small spheres, the magnitude of extension in the wake increases with increasing Deborah
number, however, for the large spheres the retardation appears to approached an asymptotic limit of
δ̄ ≈ −4.5 rad for the stable flows aboveDe ≥ 2.7. This suggests that the micelles in the wake of the
large spheres are approaching their finite extensibility limit. Although the retardation increases only very
slightly with increasing Deborah number, it is evident fromFig. 4 that as the finite extensibility limit
is approached substantial increases to the tensile stress can be achieved with minimal changes to the
anisotropy in the wormlike micelle conformation. As shown inFig. 4, both the micelle deformation and
stress approach a plateau at large strains. Upon reaching this plateau, no additional extensional stress can
be built up in the wake of the falling spheres, however, the fluid will continued to shear thin with increasing
Deborah number. This observation could explain the precipitous drop-off in the drag correction factor

Fig. 14. FIB measurements of the unstable sedimentation of a tungsten sphere with an aspect ratio ofa/R = 0.125 and an
average Deborah number ofDe = 110. The figure includes: (a) measurements of the spatially averaged retardation in the micelle
solution as a function of time and (b) the power spectral density plot of the retardation fluctuations.
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observed at high Deborah numbers inFig. 5, although it is possible that the drop-off is directly related to
the onset of the flow instability. As the flow becomes unstable, the deformation in the wake of the sphere
initially continues to grow towards its asymptotic limit, but for the most dense spheres the retardation is
found to decay dramatically.Fig. 14shows the retardation measured as a function of time for the tungsten
sphere witha/R = 0.125 falling at a Deborah number ofDe = 110. The retardation signal oscillates
between compressive to extensional deformation in the micelles. These deformation waves persist for
some time after the sphere has come to rest at the bottom of the tank. A fast Fourier transform of the
retardation signal shows a strong peak at a frequency off = 1.7 Hz which is close to the strongest peak
observed in the unstable sedimentation velocity measurements inFig. 6which were taken for the small
spheres at a significantly reduced Deborah number.

4. Discussion

It is our belief that the physical mechanism responsible for the flow instability is related to the filament
rupture observed in extensional rheology experiments of wormlike micelle solutions[15]. The strongest
evidence for our hypothesis can be found in the full-field FIB measurements of the unstable sphere
sedimentation. To highlight the regions in the flow with strong extensional deformation of the micelle,
the intensity of light passing through crossed polarizer oriented at 45◦/135◦ is shown in the wake of the
unstable tungsten sphere with sphere-to-tube ratioa/R = 0.0625 falling with an average Deborah number
of De = 6.6 in Fig. 15a. Because birefringence is a line-of-sight technique, quantitative calculation
of microstructural deformations implicitly assume that the kinematics are homogeneous or along the
propagation direction of the interrogation laser. This is clearly not true following the onset of the flow
instability; and it is not possible to quantitatively measure the resulting three-dimensional variations in
the microstructure. In addition, it is not possible to acquire a second image under precisely the same
conditions with the polarizers reoriented at 0◦/90◦. The spatially averaged values of the extinction angle
and the retardation thus cannot be separated unambiguously, seeEq. (6). A meaningful analysis can still
be achieved if there are regions in the flow where the extinction angle is known a priori. If the extinction
angle is assumed to beχ = 0◦ along the axis of the sphere, an assumption that is validated by the
pointwise measurements, then an approximate value of the spatially averaged retardation of the wormlike
micelle solution can be calculated along the axis of the sphere as a function of position in the wake of the
sphere from a single intensity image. This approximate value of the retardation is presented inFig. 15b.
Unlike the retardation in the wake of all the stably falling spheres which grows and decays smoothly in
the wake, the retardation in the wake of the unstably falling spheres is found to undergo a series of sharp
jumps. These jumps vary in magnitude, but are found to correspond to the dominant frequency of the
flow instability. Direct observations of the evolution of the wake as a function of time reveal that regions
of highly birefringent material are ‘pinched off’ as the sphere accelerates and begins each new velocity
fluctuation cycle. These pockets of highly deformed fluid remain in the wake of the sphere, unaffected
by the continuing motion of the sphere, and their birefringence decays smoothly to zero with time[69].

We believe that the instability is the result of a breakdown or rupture of the entangled micelle net-
work resulting from a build-up of extensional stress in the wake of the sphere which exceeds a critical
value. Similar rupture dynamics were observed in the failure of wormlike micelle filaments in transient
extensional rheology measurements[15]. A simple physical argument exists which can explain the flow
instability and the presence of the discontinuous regions of low birefringence inFig. 15. Although individ-
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Fig. 15. Unstable sedimentation of a tungsten sphere with a sphere-to-tube ratio ofa/R = 0.0625 and falling with an average
Deborah number ofDe = 6.6. The figure includes: (a) the intensity of light passing through crossed linear polarizers arranged at
−45◦/45◦ from the vertical and (b) the resulting retardation along the centerline of the sphere as a function of position assuming
χ̄ = 0◦.

ual micelles break and reform continuously under Brownian dynamics, at elevated stresses it is possible
for the wormlike micelles comprising the entangled elastic network to fail en masse. The dynamics of
the failure are much faster than the characteristic time for breakup and recombination of the wormlike
micelles. At the point of rupture, inhomogeneous pockets of smaller wormlike micelles or even possibly
spherical micelles are left behind in the wake of the falling sphere. These short wormlike micelles and/or
spherical micelles contribute little to the spatially averaged retardation signal, thus accounting for the
discontinuities observed inFig. 13. In addition, once the micelle network has been ruptured it is incapable
of carrying a significant extensional load. With the birefringent strand in the wake severed, the sphere
accelerates. As the sphere continues to fall it passes through unaffected fluid and begins to rebuild the
extensional stress in the wake. These stresses in turn decelerated the sphere until the critical rupture
stress is again reached and the cycle repeats itself. This instability mechanism is further reinforced by the
development of the velocity field and the disappearance of the negative wake during deceleration of the
sphere.
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In order to directly compare the instability observed for a falling sphere with the filament rupture
observed in transient extensional rheology measurements, it would be useful to determine the maximum
anisotropy in the micelle conformation in the wake of the falling sphere. Because FIB is a line-of-sight
technique and the micelle conformation varies along the path of the polarized light, a qualitative estimate
of the maximum conformation can only be calculated fromEq. (1)after making several key assumptions.
First, the entire birefringence signal is assumed to be generated by a strongly deformed thread of wormlike
micelles chains in the wake of the sphere. The full-field birefringence measurements inFigs. 9 and 10
suggest that the conformation of the wormlike micelles can be approximated to be constant and isolated
within a region of thickness equivalent to one half the radius of the sphere. By substituting this assumed
constant birefringence profile intoEq. (5) and integrating, a value for the FIB in the thread can be
calculated in terms of the spatially averaged retardation,�n′ = δ̄λlight/πa. Substituting this value of the
birefringence back intoEq. (1), an expression can be derived for the maximum anisotropy in the wormlike
micelle conformation as a function of the spatially averaged retardation along the centerline

�Amax
∼= δ̄λlight

πaCGN
0

. (17)

The maximum anisotropy in the wormlike micelle conformation is calculated to be approximately
�Amax

∼= 41 for a large sphere falling with a Deborah number just below the critical conditions for
the onset of the flow instability. This corresponds to more than 80% of the finite extensibility limit of
the fluid and is within 5% of the critical micelle conformations observed at the point of filament rupture
in transient extensional rheology[15]. Although this agreement might be fortuitous, it strongly suggests
that these two flow instabilities are linked and lends additional credence to the physical mechanism put
forth to explain the flow instability observed for a sphere falling through a viscoelastic wormlike micelle
solution.
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