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Abstract

The flow of a polystyrene Boger fluid through axisymmetric contraction–expansions having various contraction
ratios (2≤ β ≤ 8) and varying degrees of re-entrant corner curvatures are studied experimentally over a large
range of Deborah numbers. The ideal elastic fluid is dilute, monodisperse and well characterized in both shear
and transient uniaxial extension. A large enhanced pressure drop above that of a Newtonian fluid is observed
independent of contraction ratio and re-entrant corner curvature. Streak images, laser Doppler velocimetry (LDV)
and digital particle image velocimetry (DPIV) are used to investigate the flow kinematics upstream of the contraction
plane. LDV is used to measure velocity fluctuation in the mean flow field and to characterize a global elastic flow
instability which occurs at large Deborah numbers. For a contraction ratio ofβ = 2, a steady elastic lip vortex is
observed while for contraction ratios of 4≤ β ≤ 8, no lip vortex is observed and a corner vortex is seen. Rounding
the re-entrant corner leads to shifts in the onset of the flow transitions at larger Deborah numbers, but does not
qualitatively change the overall structure of the flow field. We describe a simple rescaling of the deformation rate
which incorporates the effects of lip curvature and allows measurements of vortex size, enhanced pressure drop and
critical Deborah number for the onset of elastic instability to be collapsed onto master curves. Transient extensional
rheology measurements are utilized to explain the significant differences in vortex growth pathways (i.e. elastic
corner vortex versus lip vortex growth) observed between the polystyrene Boger fluids used in this research and
polyisobutylene and polyacrylamide Boger fluids used in previous contraction flow experiments. We show that the
role of contraction ratio on vortex growth dynamics can be rationalized by considering the dimensionless ratio of
the elastic normal stress difference in steady shear flow to those in transient uniaxial extension. It appears that the
differences in this normal stress ratio for different fluids at a given Deborah number arise from variations in solvent
quality or excluded volume effects. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The flow of a viscoelastic fluid through an axisymmetric contraction–expansion is a complex flow con-
taining regions of strong shearing near the walls, nonhomogeneous uniaxial extension along the centerline
upstream of the contraction plane and nonhomogeneous biaxial expansion downstream of the expansion.
The contraction flow is a long-standing numerical benchmark for computation of non-Newtonian fluids
[1,2] and is the subject of several excellent review articles [3,4]. The present paper, in conjunction with
our previous work focusing on the 4:1:4 axisymmetric abrupt contraction–expansion [5], is intended to
constitute a comprehensive set of quantitative experimental measurements to which theory and numerical
simulations can be rigorously compared. To meet this goal, an ideal monodisperse, dilute Boger fluid
is first thoroughly characterized in both shear and extension. This ideal elastic fluid is then used to in-
vestigate the kinematics of the flow through several axisymmetric contraction–expansions of different
contraction ratios and varying lip curvatures over a wide range of Deborah numbers. The experimental
measurements include global pressure drop and local velocity measurements as well as streak images of
the elastically-enhanced upstream vortex structures.

Experimental measurements of the pressure drop for polymer solutions flowing through abrupt ax-
isymmetric contraction–expansions have shown a substantial extra pressure drop well above the value
observed for a Newtonian fluid with equal viscosity at the same flow rates [5,6]. In neither case was
the observed viscoelastic enhancement of the pressure drop associated with the onset of an elastic or an
inertial flow instability; however, it is not even qualitatively predicted by existing steady-state or transient
numerical computations with simple dumbbell models [7–9]. In fact, these models predict a significant
viscoelasticdecreasein the pressure drop with addition of polymer to a Newtonian solvent. The failure
of these constitutive models to predict the correct evolution in the properties of complex flows with
Deborah number may be due to an inadequate description of the internal molecular conformations of the
polymer chains that arise during rapid stretching. This is evident in measurements of transient uniax-
ial extension where the existence of astress-conformation-hysteresishas been experimentally observed
[10,11] and computed in bead-rod and bead-spring computations [10,12], but has yet to be quantitatively
predicted by any simple closed-form differential constitutive model. A complete discussion of previous
experimental and numerical studies involving pressure drop measurements in contraction flows can be
found in Rothstein and McKinley [5]. One of the major goals of the present study is to determine what
effects systematic changes in the contraction ratio and the curvature of the re-entrant corner will have on
the magnitude and the onset of this enhanced pressure drop. Investigation of the role of lip curvature is
especially important because a major computational impediment to simulations of the viscoelastic flow
through a contraction–expansion is the development of singular stress fields near a sharp re-entrant corner.

Measurements of the evolution in the pressure drop generate information about the global state of
viscoelastic stress in the flow and are an excellent comparative tool when utilized in conjunction with
measurements of the flow kinematics such as streak images and velocity measurements. There have been a
great number of experimental investigations dealing with the kinematics of the flow through a contraction
over a wide range of Deborah numbers, contraction ratios and re-entrant corner curvatures using a large
variety of different viscoelastic fluids [3,4,13]. In experiments with elastic polymer solutions, two distinct
pathways for evolution of the vortex growth with Deborah number have been observed. These lead to flow
structures typically described in the literature as corner and lip vortices. In each case, a weak, Newtonian
‘Moffatt eddy’ is present in the upstream stagnant corner at low Deborah numbers. In the regime of
corner vortex growth, the upstream vortex near the stagnant corner increases in strength and grows
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Table 1
Vortex growth dynamics for several Boger fluids at various contraction ratios (β = R1/R2, whereR1 is the upstream radius and
R2 is the radius of the contraction) and re-entrant corner radii of curvature

Boger fluid Sharp re-entrant corner Rounded re-entrant corner

Corner vortex Lip vortex Corner vortex Lip vortex

PIB/PB [13,16] β ≥ 8 2≤ β ≤ 6.8 β ≥ 8 2≤ β ≤ 6.8
PAA/CS [3,13,20] β ≥ 4 β ≤ 2 β > 4 β ≤ 4
PS/PS [5] β = 4

radially inward. Upon reaching the re-entrant corner, the vortex proceeds to grow steadily upstream with
increasing Deborah number. This pathway can be accurately captured by simulations with appropriate
viscoelastic constitutive models [8,14]. By contrast, the lip vortex growth regime is characterized by a
decrease in the corner vortex size as the Deborah number is increased and the formation of a separate,
distinct elastically-dominated ‘lip’ vortex near the re-entrant corner [15]. The vortex spreads radially
outward toward the stagnant corner and subsequently grows upstream in a manner quite similar to the
corner vortex growth described above. At very high Deborah numbers, the large upstream vortex observed
for both of the vortex growth patterns becomes unstable to a global dynamical mode that is a sensitive,
non-monotonic function of the contraction ratio [16,17].

The sequence of flow patterns chosen by the viscoelastic fluid is a complex function of the contraction
ratio and the re-entrant lip curvature. Results prior to 1987 are summarized by Boger [3] and Table 1
summarizes more recent observations for several different Boger fluid formulations. In general, as the
contraction ratio is increased, the flow moves from the lip vortex to the corner vortex flow regime, but
the critical contraction ratio for this crossover in vortex evolution pathway is strongly dependent on the
properties of the test fluid and impossible to predict a priori. So, why do two elastic fluids such as PIB/PB
and PAA/CS Boger fluids, which have very similar viscoelastic properties, act so differently in this and
other complex flows? Many researchers have postulated that the answer must arise from differences in the
transient extensional rheology [5,13,16,18]. Until quite recently, reliable measurements of the extensional
stress of dilute polymer solutions undergoing ideal uniaxial extension were not possible, but with the
advent of the filament stretching rheometer, transient uniaxial extensional rheology measurements are
now attainable [19], making it possible to test the validity of such assertions.

The effect of lip curvature on the vortex growth dynamics is also summarized in Table 1. Boger and
Binnington [13] presented a systematic photographic study using PIB/PB and PAA/CS Boger fluids, while
the vortex growth dynamics observed using a similar PIB/PB Boger fluid were discussed by McKinley
et al. [16]. These previous studies show that, for the PIB/PB Boger fluid at the contraction ratios examined,
rounding the re-entrant corner leads to increases in the critical Deborah numbers for flow transitions, but
does not qualitatively change the kinematics of the flow field. However, rounding the re-entrant corner
of the 4:1 contraction with a radius of curvature equal to 36% of the contraction radius (Rc = 0.36R2)
results in a dramatic change in the vortex evolution for the PAA/CS solution [13]. Streak images recorded
upstream of the sharp re-entrant corner, clearly demonstrate the growth dynamics of a corner vortex.
However, the nature of the contraction flow was completely changed by rounding the re-entrant corner.
The formation of the expected corner vortex is suppressed and supplanted by a lip vortex [13]. Boger
and Binnington thus argue that the evidence suggests that rounding the re-entrant corner is equivalent to
decreasing the contraction ratio.
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In addition to investigating the evolution of the pressure drop, another goal of the present study is to
determine which vortex evolution path is followed by a dilute and monodisperse polystyrene Boger fluid
that has been well characterized in both extension and in steady and transient shear flows. To date, we
have reported measurements for flow through a 4:1:4 contraction–expansion, but a detailed analysis of
the effect of contraction ratio and re-entrant corner radii of curvature will generate additional insight into
the trends observed in the published data on PIB/PB and PAA/CS Boger fluids listed in Table 1 when
analyzed in conjunction with measurements of the transient extensional rheology.

We describe our experimental apparatus and techniques in Section 2 and report both the steady shear
and transient uniaxial extensional rheology of the fluid. In Section 3, we first present observation of the
enhanced pressure drop through several different contraction–expansions. Flow visualization, digital par-
ticle image velocimetry (DPIV) and laser Doppler velocimetry (LDV) are then combined to characterize
the evolution in the kinematics of the fluid motion with increasing Deborah number. LDV measurements
of fluctuations in the fluid velocity are then used to document the onset of an elastic instability that
eventually leads to global oscillations in the flow and the development of an interesting jetting instability
as the Deborah number is increased. Finally, in Section 4, we discuss the implications of our findings for
simulation and modeling of elastic flows through contractions.

2. Experimental

2.1. Flow geometry

A schematic diagram of the axisymmetric contraction–expansion and the important length scales
associated with it is shown in Fig. 1. The radii of the cylindrical tubes upstream and downstream of

Fig. 1. Schematic diagram of contraction geometry including definitions of important length scales.
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Table 2
Description of orifice plate geometries used in this studya

Description Contraction ratio (β ≡ R1/R2) Re-entrant lip curvature (Rc/R2) Contraction length (Lc/R2)

2:1:2 2 <0.01 0.5
4:1:4 4 <0.01 1
4:1:4 Rounded 4 0.5 Upstream only 1
8:1:8 8 <0.01 2
8:1:8 Rounded 8 0.18 Upstream and downstream 2

a In each case, the value of the upstream radius isR1 = 1.3 cm.

the contraction–expansion are equal and remain constant atR1 (=1.27 cm) while the radius within the
throat of the contraction is given byR2. Several different orifice plate configurations yielding various
contraction ratios (β ≡ R1/R2), contraction lengths (Lc) and re-entrant corner radii of curvature (Rc) are
used in this study and are listed in dimensionless form in Table 2.

In order to quantify the upstream vortex growth dynamics, it is necessary to define several dimensionless
length scales to describe both the size and position of the vortex: the distance to the separation point
(χ ≡ Lv/R2) and the coordinates of the center of the recirculation denoted by the distance from the
contraction plane (ζ ≡ Zv/R2) and from the centerline (ξ ≡ Rv/R2).

As described in Rothstein and McKinley [5], the fluid is forced at a constant volume flow rate,Q, past
two flush mounted pressure transduces, here denotedPu andPd, located at positionszu = −7.62 cm far
upstream andzd = 8.26 cm far downstream of the contraction plane (located atz = 0). Under steady
flow conditions, the pressure difference measured between the upstream and downstream transducers
results from a combination of the pressure drop due to Poiseuille flow in the tube and an extra pressure
drop caused by the presence of the contraction–expansion,1P ud = P u − P d = 1P Poiseuille+ 1P extra.
To isolate the extra pressure drop across the contraction–expansion, the pressure drop resulting from the
Poiseuille flow in the upstream and downstream tubing as well as the Poiseuille flow within the throat of
the contraction–expansion are removed.

1P ′
ud = 1Pud − 8Qη

π

(
L

R4
1

+ Lc

R4
2

)
, (1)

whereL ≡ (zu −zd)−Lc is the total length of straight pipe of radiusR1 between the pressure transducers
andη is the viscosity of the fluid. When the re-entrant corner of the contraction–expansion is rounded,
the flow within the throat is no longer Poiseuille-like over the entire contraction length. An approximate
numerical solution to the flow past the rounded re-entrant corner can be calculated for creeping flow of a
Newtonian fluid using lubrication theory or alternatively the exact value could be computed numerically;
however, for simplicity of presentation, the pressure drop resulting from the Poiseuille flow over the entire
contraction length (Lc) is removed from the experimental pressure drop measurements irrespective of the
degree of re-entrant lip curvature. Finally, we define a dimensionless pressure drop

P(De, Rc, β) = 1P ′
ud(Q, De, Rc, β)

1P ′
ud(Q, De = 0, Rc = 0, β = 4)

, (2)

where the pressure drop resulting from the flow of a Newtonian fluid across a 4:1:4 sharp axisymmetric
contraction–expansion at a given flow rate is1P ′

ud(Q, De = 0, Rc = 0, β = 0). This value is used in
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the denominator to non-dimensionalize the pressure drop resulting from the flow of the non-Newtonian
test fluid across each of the contraction–expansions at the same flow rate, regardless of aspect ratio and
re-entrant lip curvature.

2.2. Measurement techniques

The flow field upstream of the axisymmetric abrupt contraction is investigated using several different
techniques: DPIV, LDV and flow visualization through computer-generated streak images. A complete
discussion of the DPIV and flow visualization techniques used in this paper can be found in Rothstein
and McKinley [5].

In the present study, LDV measurements are used to supplement the global velocity vector field mea-
surements obtained with DPIV. Primarily, we utilize LDV to take pointwise measurements of velocities
near and within the throat of the contraction–expansion where DPIV measurements are not possible due
to the loss of cross-correlation between sequential images in subregions where the velocity or velocity
gradient of the particles become too large. To facilitate these measurements, an acrylic 4:1:4 orifice plate
was created to form the contraction–expansion. LDV can generate time-resolved point velocity measure-
ments which can be used to search for the onset of elastic flow instabilities near the contraction plane
[15]. The test fluid is seeded with the same 50mm diameter silvered hollow glass spheres (Potters Indus-
try) used for DPIV and flow visualization purposes [5]. A spectrum analyzer (Dantec Burst Spectrum
Analyzer). Utilizing a fast Fourier transform technique, is used to compute the velocity from the Doppler
shifted frequency signal collected from a single-colored, fiber optic LDV system (Dantec Electronics,
Inc.) coupled with a 300 mW argon-ion laser (Ion Laser Technologies). A detailed description of the LDV
system used in this research is presented by Arigo et al. [21]. The spectrum analyzer is an excellent tool
for extracting average velocities from ensembles of Doppler bursts for slow flows, even in the presence
of noise, but because of the discrete nature and random arrival times of the Doppler bursts, spectral
analysis cannot always be used to effectively resolve slow time-varying velocity profiles such as those
that develop beyond the onset of flow instabilities. A Doppler frequency tracker (DISA, Model 55 N 21)
is therefore used to lock into and measure the frequency and amplitude of velocity fluctuations resulting
from elastic flow instabilities. These local velocity measurements are a more sensitive indicator of the
critical conditions for the onset of the elastic flow instability than the global measurements of the pressure
drop used in our previous study [5].

2.3. Fluid rheology

The viscoelastic test fluid used in these experiments consists of an 0.025 wt.% solution of monodisperse
polystyrene (PS) (Scientific Polymer Products, Inc.) with a molecular weight of 2.25× 106 g/mol and
polydispersity of 1.03 dissolved in oligomeric styrene (Hercules). The solution is a dilute Boger fluid with
c/c∗ = 0.24 [22]. For completeness, a master curve of the rheological properties for the 0.025% PS/PS
solution atT0 = 25◦C, measured with a controlled stress device (TA Instruments, Model AR1000N),
is reproduced in Fig. 2 [5]. The viscoelastic properties of the fluid are characterized in small amplitude
oscillatory shear flow by the dynamic viscosityη′(ω) and the dynamic rigidity 2η′′(ω)/ω while in steady
shear flow, the fluid is characterized by the first normal stress coefficientΨ1(γ̇ ) = (τ11(γ̇ ) − τ22(γ̇ ))/γ̇ 2

and, the shear viscosityη(γ̇ ). The use of the Rouse–Zimm [23] and the FENE-P model [24] fits plotted in
Fig. 2 have been discussed in great detail in Rothstein and McKinley [5]. Table 3 contains the parameters
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Fig. 2. Rheological material functions of the 0.025 wt.% monodisperse polystyrene in oligomeric polystyrene solution. The data
include (j): steady shear viscosity,η(γ̇ ) (Pa s); (h): dynamic viscosity,η′(ω) (Pa s); (s): dynamic rigidity, 2η′′(ω)/ω (Pa s2);
(d): first normal stress coefficient,Ψ1(γ̇ ) (Pa s2) and the corresponding fits of the FENE-P (− · − · −), Bird–DeAguiar (—),
and Zimm model (− − −), respectively.

describing the viscometric properties of the PS/PS solution. As shown in Fig. 2, the viscosity of the
solution is approximately constant over several decades of shear rate. The fluid is strongly elastic and
the first normal stress coefficient shear-thins monotonically throughout the entire range over which data
can be obtained. By contrast, the Rouse–Zimm bead-spring model predicts a constant value of the first
normal stress coefficient as a consequence of the pre-averaging of hydrodynamic interactions [25]. The
dash-dotted lines in Fig. 2 represent the predictions of the FENE-P model for the steady shear data. The

Table 3
Parameters characterizing the viscometric properties of the 0.025 wt.% PS/PS solution

Notation Description Parameter value

Known c Concentration of high molecular weight polystyrene 0.025%
Mw/Mn Polydispersity 1.03
Mw Molecular weight (g/mol) 2.0× 106

β = L2 Extensibility parameter 26900
T0 Reference temperature (K) 298

Fitted η0 Zero shear rate viscosity (Pa s) 22.75
ηs Solvent viscosity (Pa s) 21
λps Solvent relaxation time (s) 2.5× 10−4

h∗ Hydrodynamic interaction parameter 0.1
σ Extent of anisotropy in Stokes’ law 0.63
β Extent of anisotropy in Brownian motion forces 1

Calculated λZ Zimm (longest) relaxation time (s) 3.24
λ̄ Oldroyd relaxation time (s) 0.146
Ψ10 First normal stress coefficient (Pa s2) 6.66
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value of the finite extensibility parameter,L2, used in the FENE-P model is computed from molecular
quantities rather than from fitting and clearly leads to an overprediction of the viscometric properties. An
improved description requires a more detailed treatment of hydrodynamic interactions between segments
of a polymer chain undergoing a steady shearing deformation. One such model that accounts for the
anisotropy in the hydrodynamic drag forces in approximate form is the encapsulated dumbbell model of
Bird and DeAguiar [26]. The evolution equations of the Bird–DeAguiar model can be re-written as

λAAA(1) = −[f (tr AAA)AAA − III ] + 3(1 − σβ)
AAA

tr AAA
− (1 − σβ)III , (3)

τp = −nkBT [f (tr AAA)AAA − III ] + 2nkBT (1 − β)

[
3AAA

tr AAA
− III

]
, (4)

where

f (tr AAA) = 1

1 − (tr AAA/L2)
, (5)

in the above equationskB is the Boltzman constant,n is the number density of dumbells,λ is the relaxation
time of the fluid,L the finite extensibility of the polymer chain and the polymer conformation is given
by the dimensionless second moment tensorAAA = 〈RRRRRR〉, whereRRR is the end-to-end vector of the polymer
chain scaled with the root mean square end-to-end length of the chain. The extent of anisotropy in the
viscous drag on the beads is given byσ and the anisotropy in the velocity distribution of the beads arising
from Brownian motion is given byβ. Whenσ = β = 1, the FENE-P model is recovered. Our exploratory
calculations suggest that to quantitatively describe the viscometric properties of dilute polymer solutions
in viscous solvents, the anisotropy in the viscous drag is the primary effect of importance. The Brownian
motion of the beads can thus be assumed to be isotropic withβ = 1. In this limit, Eq. (4) reduces to the fa-
miliar expression for the stress in an ensemble of FENE-P dumbells while the evolution equation reduces to

λAAA(1) = −
[{

f (tr AAA) − 3(1 − σ)

tr AAA

}
AAA − σIII

]
. (6)

The solid lines in Fig. 2 represent the predictions of the Bird–DeAguiar model fit and are in good agree-
ment with both the viscosity and first normal stress difference measurements.

To understand the kinematics of the complex flow through axisymmetric contraction–expansions, it is
important to characterize the behavior of the test fluid in both shear and extension. The filament stretching
rheometer and techniques developed by Anna et al. [27] were used to measure the transient extensional
viscosity of the PS/PS solution. In Fig. 3, the Trouton ratio,Tr = η̄+/η0, is plotted against the Hencky
strain,ε = ε̇t , for a strain rate oḟε = 9.1 s−1. One important point to note is that at high Deborah
numbers,De = λzε̇ = 29.5, the Trouton ratio is relatively insensitive to changes in extension rate. At low
Hencky strains, the extensional viscosity behaves in a Newtonian-like manner and the Trouton ratio is
approximately equal toTr ∼= 3ηs/η0. As the Hencky strain increases, the PS/PS solution strain-hardens,
reaching an equilibrium at a Trouton ratio ofTr ∼ 1000. The FENE-P and Bird–DeAguiar model fits are
plotted with the experimental data. Neither of these models fit the experimental data well, overpredicting
the critical Hencky strain for the onset of strain-hardening and both the equilibrium value of the extensional
viscosity. It is interesting to note that the anisotropy introduced by the Bird–DeAguiar model has very
limited effect in uniaxial extension even though it has a profound effect on the prediction of the first
normal stress differences in shear.
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Fig. 3. Measurements of the dimensionless transient uniaxial extension,η̄+/η0, as a function of Hencky strain,ε = ε̇t . The data
include (s): experimental measurements of the 0.025 wt.% PS/PS solution taken at a strain rate ofε̇ = 9.1 s−1 and (− − −):
FENE-P model prediction. The maximum strain achieved along the centerline of the three contraction ratios tested is also shown.

2.4. Dimensionless parameters

In this research, the characteristic Reynolds number based on the flow conditions at the contraction
plane is given byRe= 2ρ〈vz〉2R2/η0, where〈vz〉2 = Q/πR2

2 is the average axial velocity in the throat
of the contraction,Q is the volume flow rate andρ = 1.026 g/cm3 is the density of the fluid. For all the
experiments performed here the Reynolds number isRe< 1 × 10−2, thus inertial effects are negligible.

The Deborah number,De = λ/T , characterizes the relative importance of elastic effects to viscous
effects in the flow. To determine the Deborah number, a characteristic flow timescale,T , and a character-
istic relaxation time of the fluid,λ, must be selected. The characteristic convective timescale of the flow
can then be taken to be the inverse of the deformation rate in the vicinity of the throat of the contraction
plane,T = R2/〈vz〉2 = γ̇ −1. The choice of the appropriate relaxation time of the fluid is discussed
in depth in Rothstein and McKinley [5]. Present work will follow the same convention, choosing the
zero-shear-rate relaxation time,λ0 = Ψ10/2η0. Thus, the Deborah number used in presentation of the
results of this research is given byDe = λ0〈vz〉2/R2. As we show in Section 4, the qualitative effects
of lip curvature can also be incorporated by a simple reconsideration of the residence time of the fluid
element near the contraction plane.

3. Results

3.1. Pressure drop measurements

The evolution in the total pressure drop (1Pud) of the 0.025% PS/PS solution flowing through the
four contraction–expansion geometries described in Section 2.1 was measured for Deborah numbers
De ≤ 10.5. In our previous study [5], it was shown that the Stokes flow solution provided by Sampson for
the pressure drop through an infinitesimally thin circular hole in an unbounded rigid wall [28] was in good
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agreement with the pressure drop measurements for the flow of the Newtonian oligomeric polystyrene
into a 4:1:4 contraction–expansion (corrected using Eq. (1))

1P ′
ud(Q, De = 0, Rc = 0, β = 4) ∼= 1PSampson= 3η0Q

R3
2

, (7)

and this value was thus used to generate the dimensionless pressure drop defined in Eq. (2).

3.1.1. Effect of contraction ratio
The effect of contraction ratio on the dimensionless extra pressure drop is shown in Fig. 4. In the

absence of elasticity, the pressure drop across the various contraction–expansions should be equal to that
of a Newtonian fluid. In other words, in the limitDe → 0, we expectP → (β/4)3. This is true for
both the 4:1:4 and 8:1:8 contraction–expansion, however, for a contraction ratio ofβ = 2, the Sampson
flow assumption of upstream and downstream fluid reservoirs with infinite lateral extent is no longer
a good approximation. The presence of the upstream and downstream walls result in a dimensionless
pressure drop considerably smaller than expected,P(De � 1, β = 2) ≈ 0.08. As the Deborah number
is increased, the measurements for each of the contraction ratios examined show a monotonic increase
in the dimensionless pressure drop beginning at a critical Deborah number. The value of the critical
Deborah number increases slightly with contraction ratio, 0.3 ≤ Decrit ≤ 0.8, but is consistently close
to the Deborah number at which the coil-stretch transition occurs in a homogeneous extensional flow,
De = 0.5. As the Deborah number is increased still further, the rate of increase in the dimensionless
pressure drop is greatly reduced. These trends in the evolution of the entrance pressure drop have been
observed previously in experimental studies of polyacrylamide-based [6] and polystyrene-based fluids
flowing [5] through 4:1:4 axisymmetric contraction–expansions, the latter being reproduced in Fig. 4. As
stated previously, these large additional pressure drops associated with the addition of very small amounts

Fig. 4. Dimensionless pressure drop measurements,P(De, β, Rc) = 1P ′
ud(De, β, Rc)/1P ′

ud(Q, De = 0, Rc = 0, β = 0), of the
0.025 wt.% PS/PS solution across several axisymmetric contraction–expansions as a function of Deborah number,De = λ0γ̇ .
The figure includes (s): β = 8; (h): β = 4 and (4): β = 2. The hollow symbols represent stable flow conditions while the
filled symbols represent unstable flow conditions.



J.P. Rothstein, G.H. McKinley / J. Non-Newtonian Fluid Mech. 98 (2001) 33–63 43

of high molecular weight polymers to Newtonian solvents have yet to be even qualitatively predicted by
numerical simulations numerically [7–9].

The onset of an elastic flow instability is also indicated in the pressure drop data in Fig. 4. A complete
discussion of the nature of this elastic flow instability is presented in Section 3.4. A hypothetical sketch
of the line of neutral stability motivated by previous studies of PIB/PB fluids [16] is superimposed over
the 4:1:4 and 8:1:8 data. Limitations in the hardware and the sensitivity of our measurement techniques
made it impossible to reach Deborah numbers large enough to observe an elastic instability in the 2:1:2
contraction–expansion. It is important to note that in each case, the enhanced pressure drops measured
experimentally are not directly connected with the onset of any elastic instabilities. Thus, regardless of
whether a numerical simulation can predict the onset of an elastic instability, the constitutive model should
still be able to predict the large enhanced pressure drops associated with steady viscoelastic entrance flow
before any flow instabilities occur.

3.1.2. Effect of re-entrant corner curvature
The effect of re-entrant corner curvature on the dimensionless pressure drop is shown in Fig. 5 for the

4:1:4 contraction–expansion with sharp (Rc < 0.01R2) and rounded (Rc = 0.5R2) re-entrant corners.
The resulting plots are very similar to Fig. 4, showing all the same qualitative features. At low Deborah
numbers, the dimensionless pressure drop is Newtonian-like for both re-entrant corner curvatures. The
limiting value of the dimensionless pressure drop at low Deborah number for the rounded re-entrant
corner is small,P ≈ 0.35, because the presence of the re-entrant corner curvature has essentially been
ignored in Eqs. (4) and (5). The regions of strong enhanced pressure drop and the onset of the elastic
instability are still present even when the re-entrant corner has been rounded. In fact, the only noticeable
effect is a shift of onset conditions for different flow regimes to higher Deborah numbers with increasing
re-entrant corner curvature. This is consistent with an overprediction of the characteristic deformation

Fig. 5. Dimensionless pressure drop measurements,P (De,β,Rc), of the 0.025 wt.% PS/PS solution across two 4:1:4 axisym-
metric contraction–expansions with different entrance lip curvature as a function of Deborah number,De = λ0γ̇ . The figure
includes (h): β = 4,Rc = 0 and (s): β = 4,Rc = 0.5R2. The hollow symbols represent stable flow conditions while the filled
symbols represent unstable flow conditions.
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rate near the throat, which is at present taken to be the deformation rate within the contraction throat,
γ̇ = 〈vz〉2/R2, independent of re-entrant corner curvature. We return to this shift in onset conditions in
Section 4.

These experiments show that the existence of enhanced pressure drop measurements above and beyond
the Newtonian pressure drop (P > 1) do not depend qualitatively on re-entrant corner curvature nor on
the onset of elastic instabilities. Thus, numerical simulations should be able to remove the singularity
associated with the sharp re-entrant corner and without hindering the ability of the constitutive model to
predict the large enhanced pressure drop seen in experiments.

3.2. Vortex growth dynamics

Flow visualization was used to observe the vortex growth dynamics upstream of the contraction for
the four geometries describe in Section 2.2 for Deborah numbersDe ≤ 11. A detailed description of the
vortex growth and development in the 4:1:4 contraction–expansion with increasing Deborah number has
been presented in Rothstein and McKinley [5] and here we focus on changes resulting from varying the
lip curvature and the contraction ratio.

3.2.1. Effect of re-entrant corner curvature
The pseudo-streak images on the left-hand side of Fig. 6 show the vortex growth and development of

the vortex upstream of the sharp 4:1:4 contraction–expansion at Deborah numbers ofDe = 1.6, 2.6 and
3.6 while the images on the right-hand side show the vortex development upstream of the 4:1:4 rounded
contraction–expansion at the same Deborah numbers. These images demonstrate the dramatic delay in
corner vortex development that results from the introduction of curvature to the re-entrant corner. At
low Deborah numbers, the PS/PS solution is essentially Newtonian and small, weak recirculation zones
known as ‘Moffatt vortices’, which characteristically have concave dividing streamlines, exist in the
stagnant corners just upstream of the contraction plane. An example of the flow patterns observed before
the vortex growth and the increase in the pressure drop is shown in Fig. 6(d). As the Deborah number is
increased, the corner vortices increase in size and strength, Fig. 6(a) and (e). The corner vortex ‘fingers’
out towards the contraction entrance and the dividing streamline becomes convex. As the Deborah number
is increased still further, a pronounced increase in the dimensionless pressure drop is observed and the
corner vortex begins to grow upstream, Fig. 6(b) and (f). In Fig. 6(c), the presence of a global instability
in the flow is evident from the non-symmetric corner vortex. Visual observations and LDV measurements
of this vortex show that the vortex boundary precesses in the azimuthal direction so that fluid elements
in fact follow a helical path into the orifice.

The vortex growth dynamics of the 4:1:4 rounded contraction–expansion are quantified in Fig. 7 through
measurements of the dimensionless reattachment length and coordinates of the vortex center as a function
of Deborah number. To motivate the discussion of re-entrant corner curvature effects, the reattachment
length of the 4:1:4 sharp contraction–expansion has been superimposed over the complete set of 4:1:4
rounded contraction–expansion data. At low Deborah numbers, the dimensionless reattachment length
is constant with the expected value for creeping Newtonian flow. As the flow rate is increased, the
reattachment length and the axial location of the vortex center begin to increase monotonically with
Deborah number. The radial location of the vortex center moves inward from the stagnant corner to
a positionξ ∼ 2 which then remains constant as the vortex grows upstream with increasing Deborah
number. Upon the onset of the elastic flow instability, all of the measured lengths begin to oscillate with
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Fig. 6. Streak images comparing the flow upstream of a 4:1:4 axisymmetric contraction–expansion with (a)–(c) a sharp entrance
lip, Rc = 0, and (d)–(f) a rounded entrance lip,Rc = 0.5R2, taken at identical Deborah numbers of (a), (d)De = 1.6, (b), (e)
De = 2.6 and (c), (f)De = 3.6.

the unsteady motion of the vortex. These data show the same general functional dependence on Deborah
number as our earlier measurements for the sharp 4:1:4 contraction–expansion [5]. The principal result
of rounding of the re-entrant corner is to cause a delay of the vortex growth dynamics to higher Deborah
number.

3.2.2. Effect of contraction ratio
In Fig. 8, the dimensionless reattachment length and coordinates of the vortex center are shown for the

8:1:8 contraction–expansion. The vortex growth dynamics for the 8:1:8 contraction expansion are similar
to those described above; dominated by the presence and upstream growth of an elastic corner vortex.
The principal difference arises from the onset conditions for the transitions into different vortex growth
regimes. For both the 4:1:4 and the 8:1:8 contraction–expansions the critical Deborah number for the
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Fig. 7. Characteristics of the upstream vortex growth dynamics as a function of Deborah number for the 4:1:4 axisymmetric
contraction–expansion with rounded entrance lip,Rc = 0.5R2 — (d): vortex reattachment length,χ = Lv/R2; (4): radial
location of the vortex center,ξ = Rv/R2; (h): the upstream location of the vortex center,ζ = Zv/R2 and (r): vortex
reattachment length for the 4:1:4 contraction–expansion with sharp entrance lip,Rc = 0.

onset of observable corner vortex growth is approximately 20% larger than that for the onset of enhanced
pressure drop growth. The kinematics of these two effects appear to be quite strongly correlated.

In Fig. 9, pseudo streak images upstream of the 2:1:2 contraction–expansion are shown for Deborah
numbers ofDe = 0.6, 0.9, 1.1 and 1.5. As observed for both the 4:1:4 and the 8:1:8 contraction–expansions,
at low Deborah numbers a Moffatt vortex is present in the upstream stagnant corner (Fig. 9(a)). However,
in contrast to the results presented for the previous contraction ratios, as the Deborah number approaches

Fig. 8. Characteristics of the upstream vortex growth dynamics as a function of Deborah number for the 8:1:8 axisymmetric
contraction–expansion (d): vortex reattachment length,χ = Lv/R2; (4): radial location of the vortex center,ξ = Rv/R2 and
(h): the upstream location of the vortex center,ζ = Zv/R2.
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Fig. 9. Streak images of flow upstream of a 2:1:2 axisymmetric contraction–expansion for Deborah numbers of (a)De = 0.6,
(b) De = 0.9, (c)De = 1.1 and (d)De = 1.5 showing the development and growth of the lip vortex.

unity, the corner vortex decreases in size and a separate and distinct ‘lip’ vortex forms near the re-entrant
corner, Fig. 9(b). The lip vortex then proceeds to grow outward, Fig. 9(c), until it reaches the stagnant
corner at which point it grows upstream in a manner consistent with the corner vortex growth dynamics
described above for larger contraction ratios.

DPIV measurements for Deborah numbers ofDe = 0.9 and 1.5 are shown in Fig. 10. These velocity
vector field measurements correspond to the streak images shown in Fig. 9(b) and (c). The vectors are
scaled such that an arrow of lengthl/R2 = 0.25 corresponds to a velocity magnitude ofv/〈vz〉2 = 1.
The DPIV measurements in Fig. 10(a) demonstrate the complete suppression of the corner vortex with
the presence of the lip vortex. In fact, the fluid flows into the stagnant corner and then reverses direction in
order to flow back upstream, around the lip vortex and into the contraction. The vector field in Fig. 10(b)
is very similar to the vector field measurements of elastic corner vortices upstream of a 4:1:4 sharp
contraction–expansion presented previously [5]. This reinforces our previous observations which indicate
that once the lip vortex has reached the stagnant corner, the dynamics of the subsequent elastic vortex
growth are identical to those observed in contraction ratios that do not demonstrate formation of a distinct
lip vortex.

The dimensionless reattachment length and coordinates of the vortex center are shown in Fig. 11.
These measurements quantify the spatial characteristics observed in the pseudo streak images. At low
Deborah numbers, the dimensionless reattachment length is again constant with the expected value for
the Newtonian Moffatt vortex. As the Deborah number is increased, the reattachment length decreases
drastically as the lip vortex begins to develop. At this point, the coordinates reported in Fig. 11 shift
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Fig. 10. Particle image velocimetry (PIV) measurements of the vector fields for the recirculating flow upstream of a 2:1:2
axisymmetric contraction–expansion at Deborah numbers of (a)De = 0.9 and (b)De = 1.5.

from the disappearing Moffatt vortex to the center of the now-dominant and topologically-distinct lip
vortex. As the lip vortex grows outward, the reattachment length remains quite small and the axial
position of the lip vortex center remains relatively constant. Once the lip vortex has reached the stagnant
corner, the radial location of the vortex center saturates atξ ∼ 1.5 and the large elastic corner vortex
begins to grow upstream. Previous experimental measurements [16,17] indicate that the lip vortices
are unsteady in time and three dimensional in nature, but within the sensitivity of our velocity and
pressure measurement techniques, the lip vortex resulting from the flow of a PS/PS solution through a
2:1:2 contraction–expansion is found to be steady in time. The difference may be a consequence of the
difference in operating procedure; earlier studies imposed a constant pressure difference1Pud across the
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Fig. 11. Characteristics of the upstream vortex growth dynamics as a function of Deborah number for the 2:1:2 axisymmetric
contraction–expansion — (d): vortex reattachment length,χ = Lv/R2; (4): radial location of the vortex center,ξ = Rv/R2

and (h): the upstream location of the vortex center,ζ = Zv/R2.

contraction geometry and determined an average flow rate or velocity, whereas in the present experiments
we use a fixed displacement rate and measure the ensuing pressure drop.

3.3. Laser doppler velocimetry measurements

Axial velocity measurements taken along the centerline of the 4:1:4 axisymmetric abrupt contraction–
expansion are shown in Fig. 12. The dimensionless velocity measurements,vz/〈vz〉2, are plotted from
locations far upstream of the contraction plane,z/R2 ≈ −10, to positions inside the throat,z/R2 = 0.25.
In a Poiseuille flow, the velocity on the centerline is equal to twice the average velocity in the tube
vz(r = 0) = 2〈vz〉. Therefore, one would expect that for a constant viscosity fluid the dimensionless
centerline velocity well upstream of the contraction plane would be equal tovz/〈vz〉2 = 2/β2 = 0.125,
while the dimensionless velocity within the throat would be equal tovz/〈vz〉2 = 2. This is confirmed
far upstream, where the shear rate is quite low and where there are no extensional effects influencing
the velocity profile. As the fluid approaches the contraction, the velocity increases to conserve mass as
the radius of the tube abruptly contracts. At low Deborah numbers, this increase is observed to occur
smoothly, beginning at an axial position ofz/R2 ≈ −2.5. With the initial increase in Deborah number,
the velocity increase shifts slightly downstream towards the contraction plane; however, as the flow
rate is increased further, the velocity gradient along the centerline is reduced and the influence of the
contraction is felt by the flow further and further upstream. This latter effect takes place in conjunction
with the elastic vortex growth observed in Section 3.2. As the fluid enters the throat, there is a sharp elastic
overshoot in the velocity at all Deborah numbers, including a small jump in the low Deborah number
case,De = 0.5. The magnitude of this overshoot increases with Deborah number, but the location of the
maximum does not change. Further downstream, the centerline velocity reduces to a value consistent with
Poiseuille flow, for all but the highest Deborah numbers in which the velocity remains slightly higher than
vz/〈vz〉2 = 2 for the range of axial positions that can be measured with the present apparatus. Additional
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Fig. 12. Laser doppler velocimetry (LDV) measurements showing the dimensionless axial velocity along the centerline,vz/〈vz〉2,
as a function of dimensionless axial position,z/R2, for the flow through a 4:1:4 axisymmetric contraction–expansion. The figure
includes (h): Deborah number ofDe = 0.5; (s): De = 1.0; (4): De = 1.5; (5): De = 2.0; (e): De = 3.0; (G): De = 4.0 and
(F): De = 5.0.

LDV measurements show that the non-monotonic trend in the evolution of the centerline velocity profile
is independent of contraction ratio and re-entrant corner curvature.

3.4. Flow stability

While studying the flow of the PS solution into both the 4:1:4 and the 8:1:8 contraction–expansions,
a slow non-symmetric precession of the enlarged corner vortex was visually observed at large Deborah
numbers. It should be reiterated here that within the sensitivity of our LDV and pressure measurements
the 2:1:2 contraction–expansion was found to be stable at all Deborah numbers tested. This does not
preclude the possibility of observing the instability at a higher Deborah number or possibly with more
sensitive measurement techniques.

The onset of an elastic instability is first indicated by small amplitude oscillations in both the global pres-
sure drop and the local velocity measurements which are observed to grow in magnitude with increasing
Deborah number. In Fig. 13(a), the temporal variation of the radial,vr(t), and axial,vz(t), velocity for the
flow of the PS/PS Boger fluid into the 4:1:4 sharp contraction–expansion are shown at Deborah numbers
of De = 3.5 and 7.0. These two measurements were taken at a position,(r/R2, z/R2) = (0.63, −1.26),
just above the re-entrant corner. A fast Fourier transform (FFT) of the velocity data allows a quantitative
determination of the frequency and amplitude of the velocity fluctuations. In Fig. 13(b), we show the
power spectral density (PSD) atDe = 3.5. The Fourier spectrum indicates that the elastic flow instability
has a strong fundamental oscillation frequency,f1 = 0.15 Hz, and the existence of a small peak at the first
harmonic. As the Deborah number is further increased, the intensity of the velocity fluctuations grows
in amplitude, the fundamental frequency of oscillation slowly increases and the higher harmonics of the
fundamental frequency begin to appear. At a Deborah number ofDe = 7.0, the PSD plot in Fig. 13(c)
contains four detectable harmonics of the fundamental frequency.
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Fig. 13. The onset of a supercritical elastic instability seen in (a) Laser doppler velocimetry (LDV) measurements of the flow
upstream of a 4:1:4 axisymmetric contraction–expansion and power spectral density plots of (b) radial velocity measurements,
vr , at a Deborah number ofDe = 3.5 and (c) axial velocity measurements,vz, at a Deborah number ofDe = 7.0.

The variation in the amplitude and frequency of oscillation determined from the Fourier spectra, such
as those shown in Fig. 13(b) and (c) can be used to determine the critical Deborah number for the onset of
this supercritical Hopf bifurcation, and are shown in Figs. 14 and 15, respectively. The critical Deborah
number for the onset of the periodic flow is accurately determined by fitting these results to the asymptotic
results for a supercritical Hopf bifurcation [29]

|vvv(r, θ, z, t)| ∝ (De− Decrit)
1/2, (8)
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Fig. 14. Amplitude of velocity fluctuations in the unstable upstream flow into a 4:1:4 axisymmetric contraction–expansion as
a function of Deborah number. The data include (j): experimental measurements and (—): the theoretical prediction for a
supercritical Hopft bifurcation,|v| ∼ (De− Decrit)

1/2.

f = c1 + c2(De− Decrit), (9)

wherec1 andc2 are constants. These expressions are valid only in the linear limit, such that(De− Decrit)

� 1. Theoretically, in this limit, only the fundamental frequency will exist in the Fourier spectrum,
however, a small first harmonic peak is present in the experiments at all but the very lowest unstable flow
rate. To circumvent this difficulty, a cutoff for linearity is defined such that only data taken at Deborah

Fig. 15. Fundamental frequency of velocity and pressure drop fluctuations in the unstable upstream flow into the axisymmetric
contraction–expansions as a function of Deborah number. The data include (j): vz for the 4:1:4 sharp contraction–expansion;
(h): vr for the 4:1:4 sharp contraction–expansion; (m): vz for the 8:1:8 contraction–expansion; (4): vθ for the 8:1:8
contraction–expansion; (s): 1p for the 4:1:4 rounded contraction–expansion and (—), the theoretical prediction for a su-
percritical Hopf bifurcation,f ∼ (De− Decrit).
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Table 4
Critical conditions for the onset of the supercritical Hopf bifurcation

Critical Deborah number for the onset of the elastic flow instability

4:1:4 Sharp contraction–expansion 2.4± 0.1
4:1:4 Rounded contraction–expansion 3.1± 0.2
8:1:8 Contraction–expansion 4.2± 0.2

numbers for which the amplitude of velocity fluctuations of the fundamental frequency are an order
of magnitude greater than those of the first harmonic,|vvv(r, θ, z, t)|f0 > 10|vvv(r, θ, z, t)|2f0 are used to
determineDecrit from Eqs. (8) and (9). The results of these fits are superimposed on the data in Figs. 14
and 15 and the critical Deborah numbers are tabulated in Table 4.

The initial deviation from axisymmetric stable flow conditions appears to be well described by linear
theory. However, whenDe � Decrit, nonlinear dynamics begin to dominate the flow kinematics. These
nonlinear effects are first observed in the Fourier spectrum as higher harmonics of the fundamental
frequency and the transition from a periodic to a period-doubling instability [16]. Another manifestation
of these nonlinear dynamics observed in the present experiments is the development of a high speed
‘jetting’ instability near the lip of the contraction in the 4:1:4 contraction–expansion, which has not been
reported previously. After the onset of the elastic flow instability, the upstream vortex breaks symmetry

Fig. 16. Nonlinear dynamics of jetting flow observed in (a) LDV measurements of the radial velocity at a positionr/R2 = 1.57
andz/R2 = −0.16 upstream of the 4:1:4 axisymmetric contraction–expansion and the corresponding (b) power spectral density
plot at a Deborah number ofDe = 4.5.
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Fig. 17. Streak images of the jetting instability upstream of a 4:1:4 axisymmetric contraction–expansion for Deborah numbers
of De = 3.5 showing the (a) full view of the unstable upstream vortex and (b) a close-up of the jetting instability along with (c)
PIV velocity vector field generated from the close-up images.

and begins to precess in the azimuthal direction. The extent of this symmetry breaking in the vortex height
increases with Deborah number. In conjunction with the break in symmetry, a strong jet of high speed fluid
appears, originating from the base of the upstream vortex and flowing directly into the throat just upstream
of the contraction plane. By focusing the LDV probe at a position(r/R2, z/R2) = (1.57, −0.16) within
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the vortex, it is possible to quantify this jetting flow instability. Measurements of the time-varying radial
velocity are shown in Fig. 16(a). The flow is initially steady with a velocityvr ≈ 3.5 mm/s (vr/〈vr〉2 ≈
0.063) directed radially outward, indicating that the probe is focused within the recirculating region of
the corner vortex. As the flow develops, the jetting flow appears as large amplitude, periodic spikes in
the velocity measurements. These spikes are larger in magnitude,vr ≈ −10 mm/s (vr/〈vr〉2 ≈ 0.18),
than the stable recirculating flow velocity and directed inward toward the contraction entrance. The
Fourier spectrum presented in Fig. 16(b) contains several higher harmonics of the fundamental frequency
including a first harmonic signal, the amplitude of which is nearly equivalent to that of the fundamental
frequency. The fundamental frequency of the jetting instability is identical to the frequency of the upstream
vortex precession. We therefore postulate that this instability is in fact a helical jet of fluid running the
entire axial length of the upstream vortex.

Two streak images and a DPIV vector field showing this instability can be found in Fig. 17. The
global structure of the unstable vortex is seen in Fig. 17(a) and a box is sketched around the location
of the jetting instability which appears at the base of the precessing asymmetric upstream vortex at the
point of its greatest upstream extent. This box also indicates the field of view blown up in the streak
image of Fig. 17(b) and the vector field in Fig. 17(c). Although these close-up images were taken at
the same Deborah number as the full field of view, the images were not collected simultaneously and a
slight difference in the temporal development of the jetting instability was unavoidable. The vectors in
Fig. 17(c) are scaled such that an arrow of lengthl/R2 = 0.5 corresponds to a velocity ofv/〈vz〉2 = 1 and
clearly demonstrate the strong localized nature of this instability. For a brief video clip of this instability,
we encourage the reader to either visit our website1 or to contact the authors directly.

4. Discussion

In this work, we have presented a comprehensive set of experimental measurements of the complex
flow of a dilute monodisperse polystyrene solution into axisymmetric contraction–expansions of various
contraction ratios and re-entrant corner curvatures. The rheological properties of the test fluid have been
well characterized in both shear and extension, making these experiments a demanding comparative tool
for constitutive models and numerical simulations.

An enhanced pressure drop associated with the extensional flow of the viscoelastic fluid across an
axisymmetric contraction–expansion, but not directly connected with the onset of an elastic instability,
was observed for all geometries tested. Measurements of the flow kinematics for each geometry were also
carried out using streak–imaging, LDV and DPIV. The general evolution of the pressure drop measure-
ments and the flow kinematics were found to be independent of the radius of curvature of the re-entrant
corner, although the critical conditions for the transitions in pressure drop and vortex growth are a function
of both the lip curvature and the contraction ratio. LDV and pressure drop measurements were used to
characterize a supercritical Hopf bifurcation at large Deborah numbers which resulted in a global elastic
instability, breaking the symmetry of the large enhanced upstream vortex and precessing in the azimuthal
direction. This instability was observed for the 4:1:4 and 8:1:8 contraction–expansions irrespective of lip
curvature. The 2:1:2 contraction–expansion was found to be stable up to the maximum Deborah numbers
that could be tested.

1 http://web.mit.edu/nnf/jettinginstability.avi.
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4.1. Scaling of the effects of lip curvature

The experiments with curved re-entrant corners support earlier observations in PIB/PB [13,16] and
PAA/CS elastic fluids [3,13,20] and suggest that numerical simulations should be able to remove the
singularity associated with the sharp re-entrant corner without affecting the ability of the constitutive
model to predict the large enhanced viscoelastic pressure drop seen in experiments. The qualitative
similarity seen in Figs. 5–7 between the evolution in the vortex dimensions (ζ , ξ andχ ) and the extra
pressure drop (P) with increasing Deborah number in the 4:1:4 contraction–expansions with sharp and
rounded re-entrant corners suggest that it should be possible to collapse the data into a single generic
response for a given contraction ratio. The principal effect of smoothing the re-entrant corner is to

Fig. 18. Master curves of (a) reattachment length and (b) dimensionless pressure drop measurements,P(De,β,Rc), for the flow
of the 0.025 wt.% PS/PS solution across axisymmetric contraction–expansions with different entrance lip curvature as a function
of Deborah number shifted to account for re-entrant corner curvature (see text for details). The figures include data for (h):
β = 4, Rc = 0; (s): β = 4, Rc = 0.5R2; (4): β = 8, Rc = 0; and (e): β = 8, Rc = 0.5R2.
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increase the radius of curvature and decrease the rate of deformation along the streamlines entering the
contraction by removing the re-entrant corner singularity. For a low Reynolds number flow, an appropriate
estimate of the residence time for a fluid element in the vicinity of the curved throat region is given by
T = (R2 + Rc)/〈vz〉2. The Deborah number then becomesDe = λ〈vz〉2/(R2 + Rc). This simple scaling
of the abscissa does a remarkable job of collapsing the vortex growth data for the 4:1:4 sharp and
rounded re-entrant corners onto a single curve, as shown in Fig. 18(a), even matching the transition to
time-dependent flow.

Changing the local curvature of the lip entrance also affects the value of the entrance pressure drop for
the creeping flow of a Newtonian fluid that is used to scale the ordinate axis in Fig. 18(b). As defined
in Eq. (2), the dimensionless pressure drop tends to be underpredicted (P < 1) for geometries with
curved re-entrant lips. Comparison of the dimensionless pressure drop data after appropriately shifting
the Deborah number in the manner described above supports the expectation that the extra pressure drop at
high Deborah numbers following upstream vortex growth is independent of the specific details of the local
lip curvature. The principal effect of the lip is experienced at low Deborah number when the converging
flow near the contraction plane is of the Sampson type. The dimensionless pressure drop (which we
always scale with the Sampson flow solution for entrance in a sharp orifice1Ps = 3η0Q/R3

2) can thus be
adjusted through the addition of a Couette-like, creeping flow correction,Cs(β, Rc) = Psharp(De = 0)−
Pcurved(De = 0), to take into account the pressure drop corresponding to the Newtonian flow through
the curved entrance region. In Fig. 18(b), the results of this scaling of the dimensionless pressure drop
Pshifted = Pcurved+Cs(β, Rc) is shown for two cases: the 4:1:4 sharp and rounded contraction–expansions
where the Couette-like correction was found from experiments to beCs(Rc/R2 = 0.5, β = 4) = 0.35
and the sharp and rounded 8:1:8 contraction–expansions whereCs(Rc/R2 = 0.18, β = 8) = 4.6. The
latter data are presented to demonstrate the robustness of this scaling over several contraction ratios and
radii of curvature. It is dangerous to generalize based on experimental data with only two values of radius
of curvature (Rc = 0.18R2 and 0.5R2), but this rescaling of the Deborah number also collapses quite well
the trends of vortex reattachment length reported in the literature for PIB/PB Boger fluids [16]. It would
be very interesting to see if this simple incorporation of curvature effects on vortex size and pressure drop
is supported by numerical calculations in which the radius of curvature of the re-entrant corner can be
systematically varied over a broad range.

4.2. The role of transient extensional viscosity

With variations in the contraction ratio, the flow field upstream of the contraction–expansion was found
to evolve along two distinct vortex growth pathways. For a contraction ratio ofβ = 2, a steady elastic
lip vortex was observed, while for contraction ratios of 4≤ β ≤ 8, a corner vortex was seen. The
presence or the absence of a lip vortex has been noted in many different studies and depends not only
on the contraction ratio through which the fluid is forced, but also on the formulation of the fluid used.
These observations are summarized in Table 2 which, when completed with the vortex growth data for
the PS/PS Boger fluid from this study, shows a marked similarity between the behavior of the PS/PS
and PAA/CS test fluids. It has been conjectured that the differences in flow transitions for fluids with
ostensibly identical shear properties must arise from differences in extensional rheology [5,16,30]. This
hypothesis suggests that the differences observed in contraction flows and other complex flows arise
from changes in the molecular characteristics of the equilibrium conformations of the polymer chains
resulting from solvent quality or stiffness of the polymer backbone [13,18,31]. It follows that these initial
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equilibrium conformational differences will also have a large effect on the evolution of non-equilibrium
properties such as the transient extensional stress growth in the fluid. With the advent of the filament
stretching rheometer and the advances in simulation techniques for bead-rod and bead-spring models, it
is now possible to probe such hypotheses both experimentally and numerically [32].

A fluid filament experiencing a constant uniaxial extension rate in a filament stretching rheometer
should, at least qualitatively, describe the uniaxial elongation of the fluid element flowing along the
centerline into the contraction–expansion even if the extension rate in this case is not constant. If one
assumes a fully developed Poiseuille flow in the throat of the axisymmetric contraction–expansion, then
one can calculate the total Hencky strain experienced by a fluid element moving along the centerline from
far upstream into the middle of the throat as

ε =
∫ t1

0
ε̇ dt =

∫ vz(z=0.5Lc)

vz(z=−∞)

dvz

vz

= 2 lnβ. (10)

Dotted lines representing the total accumulated strain of a fluid element traveling along the centerline
into each of the geometries tested are superimposed over the extensional rheology data in Fig. 19. These
measurements seem to reinforce our previous conjecture. The PS/PS solution flowing into the 2:1:2
contraction–expansion demonstrates no significant strain-hardening while the extensional viscosity of
the PS/PS solution flowing into the 4:1:4 and especially the 8:1:8 contraction–expansions is greatly
enhanced. Thus, in the case of a PS/PS test fluid, a simple doubling of the extensional viscosity along the
centerline is enough to eliminate the lip vortex. If this result could be generalized to other polymeric fluids,
real physical insight might be achieved. Unfortunately, in similar extensional rheology tests of the same
PIB/PB Boger fluid used by McKinley et al. [16] which are also shown in Fig. 19, the lip vortex is present
at all contraction ratios,β < 8, corresponding to Trouton ratios up toTr ≈ 150; well past the Trouton
ratio at which the flow of the PS/PS Boger fluid begins to demonstrate elastic corner vortex growth.

Fig. 19. Uniaxial extensional measurements of transient Trouton ratio,η̄+/η0, as a function of Hencky strain,ε = ε̇t , for the
0.31 wt.% PIB/PB solution (h), and the 0.025 wt.% PS/PS solution (s), taken at a Deborah number ofλZε̇ = 27, whereλZ is the
Zimm relaxation time. The maximum strain achieved along the centerline of the 2:1:2, 4:1:4 and 8:1:8 contraction–expansions
are indicated by the dashed lines.
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Although these two fluids demonstrate similar behaviors in extension, it is still important to point out
their differences. The Trouton ratio of the monodisperse, dilute PS/PS solution grows more quickly and
can be up to 50% larger than the Trouton ratio of polydisperse, semidilute PIB/PB at moderate Hencky
strains. Li and Larson [32] used a bead-spring simulation to show that for a dilute high molecular weight
polymer dissolved in a good solvent, both the stress and the birefringence rise much more rapidly with
strain than for the same polymer dissolved in a theta solvent. Differences in solvent quality between
these two Boger fluid formulations, the PS being dissolved in a slightly better solvent than the PIB, may
still hold the key to differences in the kinematics and the dynamics of the flow. The effect of solvent
quality has been systematically investigated in several model complex flows, for example, viscoelastic
flow past falling spheres. In a series of experiments performed by Solomon and Muller [31] using high
molecular weight PS fluids, the increase in the drag coefficient above that expected for a Newtonian
fluid was found to increase with increasing solvent quality. Unfortunately, this finding is not entirely
consistent throughout the literature. Chmielewski et al. [18] compared the drag past a falling sphere for
two different Boger fluids. They found that the drag increased over the Newtonian value for the PIB
solution in a close-to-theta solvent (polybutene), but the drag decreased below Newtonian for a PAA
solution in a good solvent (corn syrup/water). These results are not consistent with our argument which
would hold that because the PAA is dissolved in a better solvent than the PIB it should demonstrate a
more rapidly strain hardening extensional viscosity and a larger drag coefficient. The difference in this
case may be the result of the shear thinning in the solution viscosity of the PAA/CS/H2O fluid which is
of the same order of magnitude (25%) as the reduction in drag.

In our experiments, the enhanced pressure drop measurements across the contraction–expansions were
found to be qualitatively independent of both the contraction ratio and the radii of curvature of the
re-entrant corner. However, even with rounded re-entrant corners, these large additional pressure drops
have not been predicted by any existing numerical simulations using simple dumbbell models [7–9]. The
evidence suggests that these discrepancies arise because of the inability of current bead-spring constitutive
models to properly describe the extensional rheology of the polymer solutions. Most notable is the failure
of these constitutive models to qualitatively predict the stress-conformation hysteresis first observed by
Doyle et al. in measurements of uniaxial transient elongation [10,11]. To capture such effects, it may
be necessary to resolve the non-equilibrium internal dynamical structure of the polymer chains recently
observed by Perkins et al. [33] by performing simulations with bead-rod chain models that can capture
such ‘configurational hysteresis’. However, an excellent description of the extensional viscosity alone
might not be adequate to accurately model the flow into an axisymmetric contraction–expansion. Obser-
vations of the polystyrene Boger fluid in transient uniaxial extensional flow demonstrate no sign of strain
hardening nor of the dissipative stress suggested by stress-conformation hysteresis at the small strains
achieved by a fluid element traveling along the centerline of the 2:1:2 axisymmetric contraction–expansion
(ε = 1.386). However, the pressure drop measurements in a 2:1:2 contraction–expansion still show a
dramatic enhancement. Presumably, this results from the much larger total deformations experienced by
fluid elements passing near the re-entrant corner singularity but this cannot be confirmed until simulation
are performed using a suitable constitutive model.

4.3. The normal stress ratio

A combined knowledge of the shear and extensional properties of these polymeric fluids should ideally
provide a means of predicting the vortex growth dynamics a priori. As the contraction ratio is increased
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at a fixed Deborah number, the shear rate at the tube walls upstream of the contraction decreases asγ̇1 ∝
1/β3, while at the same time, the accumulated strain along the centerline increases asε ∝ ln β. Thus,
there are two competing effects which contribute to the fluid’s choice of vortex growth evolution; namely,
extensional stresses and shear induced normal stresses. It is clear from these simple estimates of the strain
and deformation that a lip vortex is present for elastic test fluids and contraction ratios which generate
very little extension of the polymer chain along the centerline; they may therefore be considered to be
elastically shear-dominated. For a given contraction ratio, the extensional stresses increase dramatically
as the Deborah number is increased; whereas, for most Boger fluids, the first normal stress difference
tends to saturate due to shear thinning arising from finite extensibility effects. A large elastic vortex then
supplants the lip vortex. Similarly, as the contraction ratio is increased, the extensional stresses developed
within the contraction flow dominate the normal stress difference arising from shear and, once again, a
corner vortex replaces the lip vortex.

We have argued that the flow kinematics associated with the transition from lip to corner vortex appear
to be driven by a change in the dynamics from a shear-dominated to an extension-dominated elastic flow.
A possible means of quantifying this transition is to compare the normal stresses generated by the shear
flow along the walls to the extensional stresses resulting from the elongational flow along the centerline.
We thus consider a dimensionless normal stress ratio defined as

ℵ = N1/η0γ̇

(τzz− τrr )/η0ε̇
= Sr(γ̇ )

Tr(ε)
, (11)

whereTr(ε) is the Trouton ratio evaluated at the total Hencky strain accumulated along the centerline
of the contraction–expansion andSr(γ̇ ) the shear-rate-dependent stress ratio. Although, we differentiate
explicitly between the extension rateε̇ and the shear ratėγ , in a nonhomogeneous flow, such as the
one considered here, it is sufficient to approximate both asγ̇ ≈ ε̇ ≈ 〈vz〉2/(R2 + Rc). Arigo and
McKinley [34] used the dimensionless group Eq. (11) to help rationalize the differences in the wake
developing downstream of spheres sedimenting in dilute and concentrated viscoelastic fluids, however, to
our knowledge it has not been used to compare differences between different ideal elastic Boger fluids. In
Fig. 20, the normal stress ratio (ℵ) is plotted as a function of contraction ratio for the PS/PS, PIB/PB and
PAA/CS Boger fluids used in contraction flow publications [5,13,16,20]. Of course, this normal stress ratio
is also a function of deformation rate and should be represented as a two-dimensional surface,ℵ(β, De).
Here, we have chosen to evaluate the normal stress ratio at the deformation rate (〈vz〉2/R2) corresponding
to the onset of the first significant elastic vortex growth. The shear and extensional rheological data used
to calculate the normal stress ratio for the PIB/PB and PS/PS Boger fluids can be found in Figs. 2, 3 and 19
and in McKinley et al. [16], while analogous shear and extensional rheology data for PAA/CS Boger fluids
can be found in Stokes [35]. The PAA/CS Boger fluids characterized by Stokes [35] are similar, but not
identical, to the test fluids used by Nguyen and Boger [20], so two representative solutions denoted Fluid
C (η0 = 1.5 Pa s) and Fluid E (η0 = 23 Pa s) by the author have been chosen for comparison. Note that
the extensional rheology of PAA/CS solutions is extremely difficult to measure in a filament stretching
rheometer because of the tendency of the corn syrup solvent to crystallize at the surface of the fluid
filament. At low Hencky strains, the resulting ‘skin’ on the PAA/CS filament results in an overprediction
of the Trouton ratio and a large uncertainty in the normal stress ratio for the 2:1 contraction. At moderate
to large Hencky strains (ε ≥ 3), however, the skin does not affect the extensional data.

It can be seen from Fig. 20 that there is a marked difference between the normal stress ratio calculated
for the PS/PS or PAA/CS solutions and for the PIB/PB solution. The normal stress ratio decreases
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Fig. 20. The normal stress ratio,ℵ = Sr/Tr , as a function of contraction ratio evaluated at the deformation rate corresponding to
the onset conditions for upstream vortex growth. The data includes (j): the 0.025 wt.% PS/PS solution (〈vz〉2/R2 = 5.1 s−1); (d):
the 0.31 wt.% PIB/PB solution (〈vz〉2/R2 = 9.2 s−1) from [16] and two PAA/CS solutions; (m): Fluid C (〈vz〉2/R2 = 0.14 s−1)
and (.): Fluid E (〈vz〉2/R2 = 2.5 s−1) from [35].

monotonically with contraction ratio. For an ideal elastic liquid, which can be modeled at the most
elementary level by the Oldroyd-B model,ℵ can be expressed analytically forDe > 0.5 by the following
expression:

ℵ ' 2ηpλ1γ̇
2

3ηsε̇ + (ηpε̇/(2λ1ε̇ − 1)) exp[2ε(1 − (2λ1ε̇)−1)]

= 2(ηp/ηs)De

3 + ((ηp/ηs)/(2De− 1))exp[2ε(1 − (2De)−1)]
, (12)

where γ̇ ≈ ε̇ ≈ 〈vz〉2/(R2 + Rc) and ε = 2 lnβ. The magnitude of this ratio thus depends on the
ratioηp/ηs (which depends on solvent quality and polymer concentration), the Deborah number and the
contraction ratio.

Over the entire range of contraction ratios examined, the normal stress ratio of the PS/PS and PAA/CS
solutions are significantly smaller than the normal stress ratio of the PIB/PB solution. A line can be drawn
through the data at a normal stress ratio ofℵ ≈ 0.055±0.005 which divides the data into regimes of elastic
corner vortex growth (ℵ ≤ 0.055) and lip vortex growth (ℵ ≤ 0.055). As the Deborah number, and sub-
sequently the tensile normal stress difference in extension, increases, we expect the normal stress ratio to
decrease monotonically and the lip vortex regime will eventually give way to elastic corner vortex growth.
This is the first quantitative evidence to suggest that the kinematics of the flow can be systematically
rationalized on the basis of rheological information. It would be interesting to compare these observations
with Brownian dynamics computations of the ratio of elastic stress differences in shear to first normal
stress differences in extension as the solvent quality or excluded volume is systematically modified.

The pressure drop measurements, LDV and DPIV measurements, and the streak images coupled with
the use of a monodisperse dilute polymer solution, well characterized in shear and extension, make this
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set of experiments, in conjunction with our previous work [5], a useful tool for forming comparisons
with theoretical and numerical work. The principal remaining difference between different experimental
observations of the lip vortex is now the time-dependent characteristic observed in different elastic
fluids. Possible explanations here may include the method of observation used (e.g. time-averaged streak
photography or time-resolved LDV and DPIV measurements) and, perhaps more importantly, the driving
mechanism used. In the present work, we use a constant volumetric displacement rate, whereas the
majority of previous studies have imposed a constant global pressure drop across the test geometry.
This important difference in experimental control parameters leads to different dynamics in many other
bifurcating systems (e.g. spurt and stick slip in melt extrusion) and may prove to be a useful avenue for
future research studies.
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