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Experimental observation of viscoelastic
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It is well known that when a flexible or flexibly mounted structure is placed
perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding
of separated vortices. Here, we show for the first time that fluid–structure interactions
can also be observed when the fluid is viscoelastic. For viscoelastic fluids, a flexible
structure can become unstable in the absence of fluid inertia, at infinitesimal Reynolds
numbers, due to the onset of a purely elastic flow instability. Nonlinear periodic
oscillations of the flexible structure are observed and found to be coupled to the
time-dependent growth and decay of viscoelastic stresses in the wake of the structure.
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1. Introduction

Several fluid–structure interaction (FSI) studies have been performed with Newtonian
fluids. However, to date, no viscoelasticity-induced FSI studies of non-Newtonian
fluids have been performed. A fundamental understanding of how these viscoelastic
fluids interact with flexible structures has the potential to have a significant influence
on a number of very different applications, ranging from polymer processing of
composites (Ambrosi & Preziosi 2000) to health care of the inner ear (Takeuchi
et al. 1990) and biolocomotion (Lauga 2009). When a flexible or flexibly mounted
body is placed in a Newtonian flow, the mean and/or fluctuating flow forces that act
on the structure can drive the motion of the structure. Several phenomena such as
vortex-induced vibration, wake-induced vibration, galloping and flutter, to name a few,
can be observed in such systems. These phenomena have been studied extensively in
recent decades and have been collected in the form of several books and review papers
(e.g. Bearman 1984; Blevins 1990; Païdoussis 1998, 2004; Sarpkaya 2004; Williamson
& Govardhan 2004; Païdoussis, Price & de Langre 2011). If the same flexible or
flexibly mounted structure is placed in a non-Newtonian flow, however, the response
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FIGURE 1. Schematic diagram of the set-up.

of the structure is unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids
can become unstable at infinitesimal Reynolds numbers in the absence of nonlinear
effects of fluid inertia. For non-Newtonian flows, the combination of streamline
curvature and fluid elasticity has been found to lead to purely elastic flow instabilities
in a host of different flow geometries (Larson 1992; McKinley, Pakdel & Öztekin
1996; Shaqfeh 1996; Groisman & Steinberg 2000). In the present work, we show how
the fluctuating flow forces resulting from this purely elastic fluid instability interact
with a neighbouring flexible structure.

2. Experimental set-up

In order to observe viscoelastic FSI, a thin flexible rubber sheet was mounted
within a rectangular flow cell and exposed to a cross-flow of a viscoelastic wormlike
micelle solution. The flow cell was made of acrylic so that it would be transparent
and had an internal cross-section of 50 mm × 50 mm and a length of 450 mm. A
positive displacement pump controlled by a linear motor was used to drive the fluid.
As shown by Moss & Rothstein (2010), this resulted in minimal pressure and velocity
fluctuations. The flow cell was designed to ensure that the flow had a fully developed
velocity and elastic stress profile before it reached the flexible sheet. The flow
velocity was calculated from the known values of the piston displacement rate and
the cross-sectional area of the piston and the flow cell. The thin flexible rectangular
sheet was made from natural rubber with an elastic modulus of E = 101 kPa and
a length of 50 mm, width of 5 mm and thickness of 0.3 mm. The flexible sheet
was pinned at its two ends to the walls by gluing it to the flattened ends of two
nylon screws inserted through and subsequently flush-mounted to the sidewalls of
the flow cell so that they did not protrude into the flow, as shown schematically in
figure 1. The sheet was placed at the centre of the rectangular channel and aligned
perpendicular to the flow direction. The natural frequency of the sheet was measured
to be fN = 0.15 Hz from pluck tests of the mounted sheet in air. The tension in the
flexible sheet was maintained by using a sheet length equal to the flow cell width.
The viscoelastic wormlike micelle solution used here was composed of 50 mM of the
cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and 25 mM of sodium
salicylate (NaSal) in deionized distilled water.

A complete set of steady and dynamic shear rheology as well as transient
extensional rheology data for this wormlike micelle solution exists (Rothstein 2003).
The linear viscoelastic response of this and other wormlike micelle solutions is
well fitted by the predictions of a single-mode Maxwell fluid (Rothstein 2003). The
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solution used here has a zero-shear-rate viscosity of η0 = 200 Pa s, a relaxation
time of λ = 48 s and is heavily shear thinning, indicating the possible onset of
shear banding, although no evidence of shear banding was observed in any of
the experiments we discuss later. Filament stretching extensional rheology (FiSER)
measurements performed on this solution showed a strong strain hardening of the
extensional viscosity, ηE� η, for extension rates, ξ̇ , at which the Weissenberg number,
Wi = λξ̇ , is greater than one, Wi > 1. The Weissenberg number is a measure of the
relative importance of elastic to viscous stresses in a flow. For the fluid used here,
an extensional viscosity of ηext = 1000 Pa s, which corresponds to a Trouton ratio
of Tr = ηE/ηshear = 14 000, was measured at a Weissenberg number of Wi = 370.
At similar shear rates, the ratio of the first normal stress to the shear stress was
found to be N1/τ = 10, demonstrating the importance of extensional rheology in
this complex flow. In filament stretching experiments (Rothstein 2003; Bhardwaj,
Miller & Rothstein 2007), micelle solutions were found to undergo an elastic flow
instability during the stretch which resulted in rupture of the fluid filament near its
axial midplane. It was hypothesized that the observed filament failure was the result
of a breakdown of the wormlike micelles under a large tensile stress (Rothstein 2003).
This hypothesis was recently confirmed through molecular dynamics simulations of
wormlike micelles under extensional flows (Dhakal & Sureshkumar 2016). For this
micelle solution, extensional rheology measurements showed that a maximum tensile
stress of τrupt = 7 kPa could be supported by the filament before the stretched and
deformed micelles in the solution would fail. The dynamics of the filament rupture
are presented in Bhardwaj et al. (2007). A breakdown of wormlike micelle solutions
in homogeneous extensional flows similar to that developed during filament stretching
has also been shown to lead to elastic flow instabilities in complex flows containing
regions of both shear and extensional flows. Examples include the flow past a falling
sphere and the flow past one or more circular cylinders. In each case, a strong
extensional flow was shown through velocity profile measurements to develop in
the wake downstream of the immersed object (Jayaraman & Belmonte 2003; Chen
& Rothstein 2004; Handzy & Belmonte 2004; Gladden & Belmonte 2007; Moss &
Rothstein 2010; Mohammadigoushki & Muller 2016). In these experiments, once the
flow strength was increased to the point where the micelles were stretched beyond
their maximum tensile strength, a time-dependent periodic breakdown and recovery
of the wormlike micelles in the wake of the immersed object was found to develop
even in the absence of fluid inertia. In this paper, we will show that these elastic flow
instabilities can have a significant effect on flow past a flexible structure, resulting in
the first recorded example of viscoelastic FSI.

The response of the flexible sheet under cross-flow was recorded using a high-speed
camera (Phantom V4.2) at 100 frames s−1 with a resolution of 144 pixels ×
304 pixels, and the time history of the sheet displacement was obtained using
image tracking software (Tracker). Here, we will only present data for the midsection
deflection, as measurements across the flexible sheet were all found to be in phase
and at the same oscillation frequency. Full-field flow-induced birefringence (FIB)
measurements were made to qualitatively visualize the state of viscoelastic stress
within the flowing wormlike micelle solution (Fuller 1995; Moss & Rothstein 2010).
For the FIB measurements, linear polarizers were installed before and after the flow
cell at 45◦ and 135◦ to the flow direction and backlit using a white light. In this
orientation, micelle deformation/stress in the flow direction becomes visible, thereby
emphasizing areas of extensional stress in the wake of the flexible sheet. Using the
stress-optical rule, the intensity of the birefringence signal can be converted directly
to the stress in the fluid (Fuller 1995).
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FIGURE 2. The centreline deflection of the flexible sheet versus the flow velocity (a),
and the time histories of the centreline deflection of the sheet at (b) U= 4.3 mm s−1, (c)
U=7.15 mm s−1 and (d) U=11.44 mm s−1. The critical onset condition, U=1.4 mm s−1,
corresponds to Wicrit = 13.

3. Results and discussion

3.1. A flexible sheet perpendicular to the flow
A series of measurements were made over a range of Reynolds numbers up to
Re= 3.5× 10−4 (defined as Re= ρUw/η0, where ρ is the density of the fluid, U is
the flow velocity, w is the width of the sheet and η0 is the zero-shear-rate viscosity).
As a result, these experiments were in the Stokes flow regime and the inertial flow
effects could be neglected. At zero flow velocity, the sheet was undisturbed and was
aligned perpendicular to the flow direction, as seen in figure 2(a). As the cross-flow
was applied, the sheet was bent in the flow direction (second and third images in
figure 2a). It should be noted that in addition to the induced curvature along the
length of the sheet that can be observed from the front view in figure 2(a), the low
flexural rigidity of the sheet resulted in a secondary curvature across the sheet that
can be observed from the side view in figure 2(a). The resulting cross-sectional profile
was ‘C’ shaped. At low flow velocities, where the Weissenberg number was small, the
flow of the wormlike micelle solution remained stable and the static deflection of the
sheet grew with increasing flow velocity. As the flow velocity was increased beyond
a critical velocity and a corresponding critical Weissenberg number (Wicrit = 13), the
flow of the wormlike micelle solution became unstable, with periodic fluctuations in
the velocity and stress fields around the sheet, observed by tracking particle motion
and FIB in the fluid. As was the case for the flow of wormlike micelle solutions
past circular cylinders and spheres (Chen & Rothstein 2004; Moss & Rothstein
2010; Mohammadigoushki & Muller 2016), the flow instability originated as a slow
growth and fast decay of extensional stress in the wake of the flexible sheet. This
can be observed in figure 3 from the time-dependent extension and retraction of the
birefringent tail in the wake of the sheet.

The FIB measurements in figure 3 were taken through crossed polarizers to
emphasize the intensity of the elastic extensional stress in the fluid. It is difficult
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FIGURE 3. Time history of the centreline deflection of the sheet for one period
of oscillation (a), together with bright-field images of the deformed sheet (left) and
the extensional birefringent patterns (right) at U = 4.3 mm s−1 and for (b) t1 = 0,
(c) t2 = 3.45 s, (d) t3 = 7.2 s and (e) t4 = 7.95 s. The dashed lines highlight the change
in the birefringence patterns and deformations of the sheet between each time interval.
The FIB images are viewed perpendicular to the flow direction, while the real bright-field
images are taken from an angle to the flow direction in order to show the entire length
of the flexible sheet.

to deconvolute these FIB measurements directly into a quantitative value of the
viscoelastic stress in the fluid for a number of reasons. Flow-induced birefringence
is a line-of-sight technique, which integrates the birefringence contribution from
all fluid elements along the light path. Because the flow is three-dimensional, it
is not possible to accurately use these FIB measurements to determine the stress.
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Additionally, at these birefringence levels, the stress-optical rule has been shown to
break down for this fluid (Rothstein 2003), and any stresses calculated using it would
dramatically underpredict the true state of stress in the fluid. The FIB measurements
are still a valuable tool for qualitatively observing the growth in the viscoelastic stress
and its time-dependent fluctuations. As seen in figure 3, a narrow region of micelle
deformation, known as a birefringent tail, formed in the strong extensional flow region
just downstream of the stagnation point. In the wake, the fluid must accelerate from
rest along the trailing edge of the sheet to the maximum flow velocity, Umax, over
a short distance downstream of the flexible sheet. This extensional flow resulted in
strong micelle alignment and deformation, as seen in figure 3(b). As the flow velocity
was increased, a stable birefringent tail grew both in length and intensity until the
onset of the viscoelastic flow instability. After the onset of the flow instability, the
maximum extent of the birefringent tail approached an asymptotic limit. A series of
dashed lines have been added to figure 3 to graphically illustrate the magnitude and
direction of the changes to the birefringence pattern with time during one oscillation
cycle. These lines are placed in the wake of the sheet at a location corresponding
to a fixed value of the FIB or elastic stress in the fluid. A similar set of lines have
been added to show the deflection of the sheet in the bright-field images to the left
of the FIB. At the start of an oscillation (figure 3b), the wormlike micelle solution
already exhibited a significant amount of elastic stress in the wake. The birefringent
tail in the fluid grew in length and intensity with time (figure 3c), resulting in
still further stretching of the flexible sheet. At its maximum extent (figure 3d), the
birefringence grew by approximately 30 % beyond its minimum extent (figure 3b) to
nearly 10w downstream, while the deflection of the sheet increased by roughly 12 %
from 8.5 mm to 10 mm. When the displacement of the sheet reached 10 mm, an
abrupt breakdown of the wormlike micelles in the high-stress wake was observed,
resulting in a rapid loss of elastic stress in the wake. This can be seen in figure 3(e)
as a significant reduction in the length and extent of the birefringent tail in the fluid.
The next oscillatory cycle begins with the flow of fresh unruptured wormlike micelles
from upstream of the flexible sheet into its wake, where with time, elastic stress is
once again built up in the fluid in the wake of the sheet as the sheet is stretched
and deformed back towards its maximum deformation. The result of the cyclical
tensile loading and failure of the viscoelastic fluid is the observed periodic motion
of the flexible sheet. Similar time-dependent FIB patterns were observed at all flow
velocities where the flow of wormlike micelle solution became unstable.

The presence of this viscoelastic flow instability caused the flexible sheet to oscillate
around a mean stretched position. As seen in figure 3, the stress growth/decay and
the sheet deflection were directly correlated. For this fluid and sheet, the critical
velocity for the onset of oscillations was found to be Ucrit = 1.4 mm s−1 (figure 2a),
corresponding to a critical Weissenberg number of Wicrit = 13. Unlike several cases
of inertia-driven flow-induced instabilities of flexible structures (e.g. vortex induced
vibrations (VIV) of a flexible (Bourguet et al. 2011) or a flexibly mounted structure
(Williamson & Govardhan 2004), or the response of a flexible cylinder in axial flow
(Païdoussis 2004; Modarres-Sadeghi et al. 2011)), the displacement of the sheet over
time was not sinusoidal. The saw-toothed pattern of the time histories (figure 2b–d)
shows that these oscillations were highly nonlinear. At a cross-flow velocity of
U = 4.3 mm s−1 (figure 2b), the structure was found to oscillate with a dominant
frequency of f = 0.11 Hz. Under these flow conditions, the flexible sheet stretched
slowly at a rate of 0.17 mm s−1 until a critical breakdown of the wormlike micelles,
and the subsequent loss of the viscoelastic stress in the wake of the sheet caused the
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flexible sheet to recoil abruptly. The recoil rate was found to be considerably faster
at 1.5 mm s−1. As the flow velocity was increased to U = 7.15 mm s−1 (figure 2c),
the frequency of oscillations increased to f = 0.2 Hz. The frequency of the flexible
sheet oscillations increased roughly linearly with increasing flow rate, seen later in
figure 6(c). As will be discussed in further detail later, this increase in the overall
frequency of oscillations was accompanied by an increase in both the deformation rate
of the sheet during the growth phase of the deformation cycle and a slightly slower
increase in the recoil rate of the sheet during the decay phase of the deformation
cycle. These rates will be presented as a function of flow velocity, alongside a plot
of their relative magnitude, later in figure 7. At velocities of U = 11.44 mm s−1

and beyond, higher harmonics began to emerge in the oscillations of the flexible
sheet. These can be observed in figure 2(d) and are quite clear from the fast Fourier
transform analysis of the data (not shown).

The maximum and minimum deformations of the flexible sheet versus the flow
velocity are shown in figure 2(a). For each time history, a minimum of 10 cycles
and 180 s of data were used. Below Ucrit = 1.4 mm s−1, the flow was stable and
the structure underwent a static deflection but did not oscillate. Above Ucrit, a
periodic response was observed. Just beyond this point, the maximum displacement
of the flexible sheet increased linearly with the flow velocity until a velocity of
U = 6 mm s−1, beyond which the maximum sheet deflection reached a plateau and
remained more or less unchanged for all flow velocities tested. On the other hand,
the amplitude of the sheet oscillations increased linearly until it reached a maximum
at U = 4 mm s−1. Thereafter, with increasing flow velocity, the oscillation amplitude
began to decay.

Two observations can be gleamed from figure 2. First, there are two types of
sheet deformation: one is the in-flow bending and stretching of the sheet span and
the other is the bending of the cross-section of the sheet into a semicircular ‘C’.
A simplified diagram of these two types of flexible sheet deformation is shown in
figure 4. During the experiments, the flexible sheet deformation remained within the
material’s elastic limits. Therefore, the stress needed for the cross-flow bending of the
sheet from a straight profile into a ‘C’ profile can be approximated from Hooke’s law,
σcross-flow=Eε, where σcross-flow is the bending stress at a layer above/below the neutral
axis, E=101 kPa is the known elastic modulus of the flexible sheet and ε is the strain,
which is the ratio of the distance from the neutral axis and the radius of curvature to
the neutral surface. The result is a maximum bending stress of approximately 8 kPa.
The stress needed for the in-line bending of the sheet span length to the maximum
deflection seen in figure 2(a) was calculated using beam theory (Beer et al. 2014).
The force acting on the sheet was approximated by using the equation of a simply
supported beam, p = −384EIymax/5L4, where p is the force per unit length acting
on the sheet, E is the elastic modulus, I = 0.4 mm4 is the moment of inertia for
the deformed shape as a C-channel, ymax is the maximum deflection measured from
figure 2(a) and L is the flexible sheet length. The resulting in-line bending stress,
σinline = p/w, where w is the sheet’s width, was found to be significantly smaller, in
the range of only 10 Pa. In addition to bending, there is a tensile stress which results
from the sheet stretching from its initial undeformed state to its deformed elongated
contour length at maximum deflection. By calculating the strain, ε, from the images of
the deformed sheets, this stress was found to be approximately σtensile = Eε = 13 kPa.
From filament stretching extensional rheology measurements, the wormlike micelle
solution was found to rupture and fail at an extensional stress of 7 kPa. Thus, these
calculations appear to confirm that the viscoelastic fluidic stresses needed to deform
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In-line deformation Cross-flow deformation

U U

wL

FIGURE 4. A schematic diagram of the in-line and cross-flow deformation of the flexible
sheet.

the sheet are large enough to result in breakdown of viscoelastic wormlike micelles
in the wake of the sheet, resulting in a time-dependent flow field, which in turn
drives the observed time-dependent oscillations of the sheet.

Second, as mentioned before, the deformation rate of the sheet during the
oscillations was found to grow linearly with increasing velocity and change more
dramatically with increasing flow velocity than the recoil rate. As a result, at low
velocities, when the recoil rate was much faster than the growth in the sheet deflection
or the deformation rate, the sheet was able to fully recoil before any significant
extensional stress could be rebuilt in the micelle solution in the wake of the sheet. As
the flow velocity was increased, the deformation and recoil rate of the sheet became
more comparable, moving from a 20 : 1 to a 5 : 1 ratio between the deformation and
recoil rates, as discussed later. As a result, the sheet was not able to fully recoil before
new elastic stresses began building in its wake. At the same time, the breakdown of
micelles transitioned from a global to a local phenomenon. The wormlike micelle
solution became unstable at multiple isolated locations in the wake of the sheet rather
than failing simultaneously across the entire downstream edge. The result was that a
complete recoil of the sheet could not be achieved because all of the fluid did not
yield simultaneously. Such an instance of local regions of elastic stress in the fluid in
the wake along the length of the flexible sheet is illustrated in the time series of FIB
images in figure 5. In these images, a patchwork of bright irregular regions of high
elastic stress in the fluid was found to fluctuate in space and time during the sheet
oscillations observed at a constant flow velocity of U= 10 mm s−1. The consequence
of these spatial fluctuations was the appearance and growth of higher harmonics in
the data and a reduction in the oscillation amplitude with increasing velocity beyond
U = 8 mm s−1. At lower velocities, the birefringence was found to be constant
along the span of the sheet and vary uniformly across the span with the onset of the
viscoelastic flow instability and the resulting sheet oscillations. The spatial fluctuations
of the FIB within the high-stress regions (figure 5) and the feather-like structures
(figure 3) are reminiscent of the Taylor–Gortler vortex structures observed downstream
of a circular cylinder in cross-flow of a viscoelastic polymer solution by McKinley,
Armstrong & Brown (1993) and Shiang, Özkekin, Lin & Rockwell (2000). In their
work, three-dimensional stationary roll cells were observed to be spaced periodically
along the axis of the cylinder.

3.2. Modifying the flexible sheet inclination
An additional set of experiments was conducted over the same range of Reynolds
numbers for cases wherein the flexible sheet was placed at 0◦, 20◦ and 45◦ to the
flow direction. The desired inclination of the flexible sheet was achieved through
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Low stress

High stress

(a) (b) (c)

FIGURE 5. Flow-induced birefringence snapshots corresponding to the sequence of fluid
rupture in the wake of the flexible sheet for a velocity of U= 10 mm s−1. In (a), an FIB
image is shown at the onset of sheet recoil, time t = 0; in (b), t = 0.25 s, while in (c),
t= 0.60 s, which corresponds to the end of the recoil phase in the oscillation cycle. The
bright regions highlight areas of large micelle deformation and large elastic stresses in the
fluid, while the darker regions show the locations where the micelles have broken down
and the elastic stress in the fluid has been lost.

external rotation of the fixtures holding the flexible sheet inside the flow cell. The
0◦ orientation did not oscillate for the range of flow rates tested, and, as a result,
discussion of the 0◦ case will not be included in the following. The centreline
deflection of the flexible sheet for the three different inclination angles tested is
shown in figure 6(a). For completeness and ease of comparison, the data for the 90◦
case have been included in all subsequent figures. The side views of the complex
deformation that the flexible sheet underwent for each inclination angle are shown in
inset images in figure 6. As the flow began, the 45◦ flexible sheet was deformed into
the flow direction, with its cross-section forming a ‘C’ shape that was significantly
less deformed than that of the 90◦ case. Unlike the 90◦ case, the ‘C’ shape remained
open for all of the flow velocities tested and did not completely bend back onto
itself. At a critical flow velocity of U = 2.8 mm s−1, the wormlike micelle solution
became unstable, and periodic oscillations of the flexible sheet started in the same
manner as previously observed for the 90◦ case. The centreline deflection of the
45◦ flexible sheet increased linearly with flow velocity up to a maximum value
that was smaller than that observed for the 90◦ case. After reaching this maximum
value at U = 5.7 mm s−1, the centreline deflection decreased and approached a
plateau at the higher flow velocities tested. For the 20◦ inclination, the flexible sheet
began from a position aligned almost completely with the flow, and the resulting
cross-section profile of the sheet had a much smaller curvature (figure 6a). The
centreline deflection of the sheet was much smaller than the 45◦ and 90◦ cases,
with a maximum deflection of 5 mm compared with nearly 11 mm for the 90◦
case. For flow velocities larger than U = 4.8 mm s−1, the 20◦ flexible sheet did not
continue to hold the stretched deformation seen in figure 6(a), but instead rotated
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FIGURE 6. (a) Centreline displacement of the flexible sheet for 20◦ (u), 45◦ (q) and 90◦
(p) inclinations. The filled and hollow symbols are used for the maximum and minimum
flexible sheet displacements respectively during oscillations at each flow velocity. The
insets contain the side views of the cross-flow deformation of the flexible sheet. (b,c)
Amplitude and frequency of oscillations of the flexible sheet over the range of flow
velocities tested. The error margin for the amplitude of oscillations is less than 10 % for
flow velocities below 4 mm s−1 and less than 5 % for higher flow velocities. The error
margin is less than 5 % for the frequency plots.

off the centreline, where it remained in an asymmetric position closer to one of
the sidewalls for the rest of the flow velocities tested and exhibited no further
large-amplitude fluctuations. Data for the 20◦ case beyond U = 4.8 mm s−1 are
therefore not presented in figure 6 or any subsequent plots. The amplitude and
frequency of oscillations from the centreline deflection time histories are mapped out
in figures 6(b) and 6(c) respectively. The amplitude of oscillations initially increased
roughly linearly with increasing flow velocity for all three inclinations tested and
reached a maximum. Beyond this maximum, the amplitudes of all three angles began
to decay with increasing flow velocity. The oscillation frequency increased with the
flow velocity for all three inclinations.

From the sawtooth waveform of the centreline deflection time histories, it was clear
that the flexible sheet stretches slowly before recoiling rapidly during each oscillation
cycle. In figure 7(a), the deformation and recoil velocities of the flexible sheet during
oscillations are presented as a function of the flow velocity for all three inclinations.
It can be observed that the deformation velocity curve followed a similar trend for
all three inclinations over the range of flow velocities tested. The recoil velocities, on
the other hand, were very different for the three inclination angles. The 90◦ inclination
curve had the largest recoil velocity by almost a factor of three. This can likely be
attributed to the flexible sheet recoil velocity being dependent on the elastic stress built
up within the sheet, which is clearly at a maximum within the 90◦ sheet due to the
increased sheet deformation at any given flow velocity. Conversely, the deformation
velocity of the sheet is strongly dependent on the flow conditions as it is coupled
to the convection of fluid from upstream of the sheet to rebuild elastic stress in the
wake of the sheet after a fluid rupture event. As a result, as seen in figure 7(a),
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FIGURE 7. (a) The deformation rate (open symbols) and recoil rate (filled symbols)
during an oscillation cycle for the flexible sheet aligned at a 20◦ (u), 45◦ (q) and 90◦
(p) inclination to the flow direction as a function of the flow velocity. (b) The ratio of
deformation and recoil rates of the flexible sheet as a function of the flow velocity for
the three flexible sheet inclination angles.

the deformation velocity is not strongly coupled to the sheet orientation. A plot of
the ratio of deformation and recoil velocities of the flexible sheet over varying flow
velocities is shown in figure 7(b). For the 45◦ and 90◦ inclination angles, the ratio of
the deformation rate to the recoil rate was found to start quite small at a value of
less than 0.1 and then to increase with the flow velocity to reach a plateau beyond
U=8 mm s−1. This plateau of the ratio of deformation and recoil velocity corresponds
to the point at which higher harmonics appear in the oscillations and the amplitude
begins to decay. For the case of the 90◦ sheet, the ratio of deformation rate to recoil
rate reached a plateau of just over 0.2. As such, the dynamics of oscillation was
dominated by the fast recoil of the sheet after fluid rupture. Conversely, this rate
approached 0.6 for the 45◦ sheet, resulting in a more symmetric oscillation cycle and
a growth in deformation that nearly matched its decay. Although the 20◦ sheet did not
reach a plateau before twisting from the centreline, breaking symmetry and ceasing to
oscillate, its behaviour appears to be closer to that of the 45◦ sheet than the 90◦ sheet.

Finally, we concentrate on the results presented in the previous sections with
the objective of combining the dimensional results from the different flexible sheet
inclinations into a cohesive set of results using a single non-dimensional parameter.
In order to collapse the data for all three inclination angles, a non-dimensional flow
velocity, U∗, a non-dimensional oscillation amplitude, A∗, and a non-dimensional
frequency, f ∗, were considered. The non-dimensional velocity that best collapsed the
data in terms of both the critical onset conditions and the flow velocity corresponding
to the maximum oscillation amplitude was found to be U∗=U/(w sin(θ)fθ). Here, U
is the flow velocity, w is the width of the flexible sheet, θ is the inclination angle
of the sheet, w sin(θ) is the equivalent surface area of the flexible sheet exposed
to the flow and fθ is the frequency of oscillations at the critical flow velocity,
which depends on the inclination angle of the flexible sheet. As seen in figure 8(a),
using this dimensionless velocity, both the onset condition and the maximum of
the oscillation amplitude collapse to values of U∗ ≈ 7 and U∗ ≈ 42 respectively. It
is expected that the appropriate dimensionless velocity should also contain some
information about the viscoelastic fluid properties, specifically the relaxation time
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FIGURE 8. The dimensionless (a) amplitude and (b) frequency of oscillations as a function
of the dimensionless flow velocity for flexible sheet inclination angles of 20◦ (u), 45◦ (q)
and 90◦ (p). The inset in (b) contains the dimensionless product, λfθ , as a function of the
inclination angle.

of the fluid, λ. However, because in this study only a single fluid composition was
used, this hypothesis could not be fully tested. As seen in the inset in figure 8(b),
a renormalization of the critical oscillation frequency with the relaxation time to
form a modified Weissenberg number, Wif = λfθ , appears to be a promising first
step towards incorporating rheological information into our analysis as the value
approaches Wif ∼ 1. Future studies will focus on how changes in the fluid rheology
affect the observed viscoelastic FSI. The appropriate non-dimensional amplitude
and frequency were found to be A∗ = A/w sin(θ) and f ∗ = f /fθ , where A and f are
the dimensional amplitude and frequency of flexible sheet oscillations respectively.
Using these dimensionless parameters, the data from the three inclination angles are
collapsed onto a master curve, as seen in figure 8(a,b). The slight variations in the
data are likely the result of the complex deformation of the flexible sheet under
flow. The deviation of scaling for higher flow velocities could be due to the higher
harmonics that become dominant during oscillations.

4. Conclusion

We have shown, for the very first time, that purely elastic flow instabilities occurring
in a viscoelastic fluid flow can drive the motion of a flexible structure placed in
its path. The oscillations of the flexible structure, which develop at infinitesimal
Reynolds numbers and in the absence of vortex shedding, have been presented for
three inclinations of a flexible sheet. The measurements of the structural deformation
velocity profiles and the FIB have been used to quantify the time variation of the flow
field and the state of stress in the fluid during the oscillations. These results have
been further classified using a set of proposed non-dimensional parameters. These
observations open up an entirely new field of study. To fully understand this new
phenomenon, there are several questions that still need to be answered, including what
the role of the structure geometry, modulus, bending stiffness and natural frequency
is, how changing fluid properties affect the oscillations, whether this phenomenon
is universal to all viscoelastic fluids including polymer solutions and, if so, which
dimensionless groups properly describe the physics over this broad space. Many of
these studies are ongoing, and we hope to be reporting on them in the near future.

813 R5-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

15
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f M
as

sa
ch

us
et

ts
 A

m
he

rs
t, 

on
 2

8 
Se

p 
20

17
 a

t 2
1:

00
:2

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.15
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Experimental observation of viscoelastic fluid–structure interactions

References

AMBROSI, D. & PREZIOSI, L. 2000 Modeling injection molding processes with deformable porous
preforms. SIAM J. Appl. Maths 61 (1), 22–42.

BEARMAN, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16
(1), 195–222.

BEER, F. P., JOHNSTON, E. R. JR, DEWOLF, J. T. & MAZUREK, D. 2014 Mechanics of Materials.
McGraw-Hill Education.

BHARDWAJ, A., MILLER, E. & ROTHSTEIN, J. P. 2007 Filament stretching and capillary breakup
extensional rheometry measurements of viscoelastic wormlike micelle solutions. J. Rheol. 51
(4), 693–719.

BLEVINS, R. D. 1990 Flow-Induced Vibration. Krieger Pub. Co.
BOURGUET, R., MODARRES-SADEGHI, Y., KARNIADAKIS, G. E. & TRIANTAFYLLOU, M. S. 2011

Wake-body resonance of long flexible structures is dominated by counterclockwise orbits. Phys.
Rev. Lett. 107 (13), 134502.

CHEN, S. & ROTHSTEIN, J. P. 2004 Flow of a wormlike micelle solution past a falling sphere.
J. Non-Newtonian Fluid Mech. 116 (23), 205–234.

DHAKAL, S. & SURESHKUMAR, R. 2016 Uniaxial extension of surfactant micelles: counterion
mediated chain stiffening and a mechanism of rupture by flow-induced energy redistribution.
ACS Macro Lett. 5, 108–111.

FULLER, G. G. 1995 Optical Rheometry of Complex Fluids. Oxford University Press.
GLADDEN, J. R. & BELMONTE, A. 2007 Motion of a viscoelastic micellar fluid around a cylinder:

flow and fracture. Phys. Rev. Lett. 98, 224501.
GROISMAN, A. & STEINBERG, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405,

53–55.
HANDZY, N. Z. & BELMONTE, A. 2004 Oscillatory rise of bubbles in wormlike micellar fluids with

different microstructures. Phys. Rev. Lett. 92, 124501.
JAYARAMAN, A. & BELMONTE, A. 2003 Oscillations of a solid sphere falling through a wormlike

micellar fluid. Phys. Rev. E 67, 065301.
LARSON, R. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31 (3), 213–263.
LAUGA, E. 2009 Life at high Deborah number. Europhys. Lett. 86 (6), 64001.
MCKINLEY, G. H., ARMSTRONG, R. C. & BROWN, R. A. 1993 The wake instability in viscoelastic

flow past confined circular cylinders. Phil. Trans. R. Soc. Lond. A 344 (1671), 265–304.
MCKINLEY, G. H., PAKDEL, P. & ÖZTEKIN, A. 1996 Rheological and geometric scaling of purely

elastic flow instabilities. J. Non-Newtonian Fluid Mech. 67, 19–47.
MODARRES-SADEGHI, Y., PAÏDOUSSIS, M., SEMLER, C. & GRINEVICH, E. 2011 Experiments on

vertical slender flexible cylinders clamped at both ends and subjected to axial flow. Phil. Trans.
R. Soc. Lond. A 366, 1275–1296.

MOHAMMADIGOUSHKI, H. & MULLER, S. J. 2016 Sedimentation of a sphere in wormlike micellar
fluids. J. Rheol. 60 (4), 587–601.

MOSS, G. R. & ROTHSTEIN, J. P. 2010 Flow of wormlike micelle solutions past a confined circular
cylinder. J. Non-Newtonian Fluid Mech. 165 (21), 1505–1515.

PAÏDOUSSIS, M. 2004 Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2.
Academic.

PAÏDOUSSIS, M. P. 1998 Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 1.
Academic.

PAÏDOUSSIS, M. P., PRICE, S. J. & DE LANGRE, E. 2011 Fluid–Structure Interactions – Cross-
Flow-Induced Instabilities, vol. 1. Cambridge University Press.

ROTHSTEIN, J. P. 2003 Transient extensional rheology of wormlike micelle solutions. J. Rheol. 47
(5), 1227–1247.

SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids
Struct. 19 (4), 389–447.

SHAQFEH, E. S. G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech.
28, 129–185.

813 R5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

15
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f M
as

sa
ch

us
et

ts
 A

m
he

rs
t, 

on
 2

8 
Se

p 
20

17
 a

t 2
1:

00
:2

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.15
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A. A. Dey, Y. Modarres-Sadeghi and J. P. Rothstein

SHIANG, A. H., ÖZKEKIN, A., LIN, J. C. & ROCKWELL, D. 2000 Hydroelastic instabilities in
viscoelastic flow past a cylinder confined in a channel. Exp. Fluids 28 (2), 128–142.

TAKEUCHI, K., MAJIMA, Y., HIRATA, K., MORISHITA, A., HATTORI, M. & SAKAKURA, Y. 1990
Viscoelastic properties of middle ear effusions from pediatric otitis media with effusion and
their relation to gross appearance. Europ. Arch. Oto-Rhino-Laryngol. 247 (1), 60–62.

WILLIAMSON, C. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36,
413–455.

813 R5-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

15
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f M
as

sa
ch

us
et

ts
 A

m
he

rs
t, 

on
 2

8 
Se

p 
20

17
 a

t 2
1:

00
:2

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.15
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Experimental observation of viscoelastic fluid–structure interactions
	Introduction
	Experimental set-up
	Results and discussion
	A flexible sheet perpendicular to the flow
	Modifying the flexible sheet inclination

	Conclusion
	References




