

The Society of Rheology K12 Outreach Activities

Capillary Origami

Origami is the art of folding paper. In classical origami paper is folded by hand to transform a two-dimensional (2D) sheet of paper into a three-dimensional (3D) object. Here we will explore a new way to generate 3D object using the interaction force between a liquid and a solid to do the folding for us. The forces needed to fold the paper will be generated by surface tension. Surface tension is a force per unit length caused by an attractive force between molecules that holds them together. It is the property of liquids that pulls them into a spherical shape to minimize the surface area, but it can also exhert a force on a solid that can support the weight of a heavy object floating on it and keep it from sinking or even bend a thin solid sheet into amazing shapes.

What you will need to get started

- Saran wrap cut into squares of different sizes
- Scissors to cut the Saran wrap into squares
- Water
- · Transfer pipette and tweezers
- Paper towels for cleanup

More about surface tension

- Liquids and solids interact through surface tension, $\gamma,$ and contact angle, θ
- If water likes a surface, the contact angle is small, θ < 90°, and the surface is hydrophilic
- If water dislikes a surface, the contact angle is large, $\theta > 90^{\circ}$, and the surface is hydrophobic
- The larger the surface tension the larger the force exherted on the solid

• This force is quite small so to see the effect we need very thin sheets of Saran wrap cut into very small shapes

www.rheology.org

The Society of Rheology K12 Outreach Activities

Science is FUN!

Let's experiment!

1. Start with the biggest square of Saran wrap. Lay it flat on the table and carefully place one drop of water on the sheet

- What happens?

- 2. Repeat with progressively smaller squares of Saran Wrap.
 - What happens as the squares get smaller?
- 3. Suggest some ways to make more comples and intersting 3D shapes
- 4. Now place a drop on a square and let the water evaporate over time.What happens to the shape? Is the folding permanent?

6. Repeat the experiments sheets cut into different shapes. Can you build a box? Can you build a sphere?

Images from - Py et al., "Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet," Phys. Rev. Lett., 98 (2007) 156103.

www.rheology.org

rothstein@ecs.umass.edu

The Society of Rheology K12 Outreach Activities Science is FUN!

www.rheology.org

rothstein@ecs.umass.edu