University of Massachusetts Mechanical and Industrial Engineering 607 Fall 2014

Advanced Fluid Dynamics

TTh 11:30-12:45PM Elab 325

This class will cover the fundamentals of fluid mechanics, with a focus on inviscid flow. Upon completion of the class, students will have obtained the following: A sound physical understanding of the fluid mechanics; the ability to use vector calculus to solve problems in fluid mechanics; an understanding of the fundamental kinematics and conservation equations; and the ability to analyze a variety of flows, both compressible and incompressible.

Instructor	Professor Jonathan P. Rothstein Gunness Labs Rm.16 577-0110 <u>rothstein@ecs.umass.edu</u>			
	Office hours:	Fridays Tuesday	2:30-3:30PM 4:00-5:00PM	
Web Page	http://www.ecs.umass.edu/mie/faculty/rothstein/mie607.htm			
Course Texts	David C. Wilcox, Basic Fluid Mechanics, Fifth Edition, DCW Industries, 2013.			
Grading	The course grade will be based on the following:			
	Homework Two Midterm Exams		20% 20% each	
	Final Exam		40%	
Homework	A set of homework problems will be assigned roughly once a week during lectures. You should work through these problems carefully as they are essential for your learning of the material. The problems will be typically collected and graded on Tuesdays.			

Note, homeworks will not be graded in extreme detail, however, solutions will be provided on the website. I will look to see that the problem was completed and that the solution is reasonable. Possibly grades will be 0, $\sqrt{-}$, $\sqrt{}$, $\sqrt{+}$, which correspond to "no effort," "minimal effort/completely incorrect," "good effort/mostly correct," and "good effort/correct or very close." The numerical values for each grade are 0, 4, 8, 10.

University of Massachusetts Mechanical and Industrial Engineering 607 Fall 2014

Advanced Fluid Dynamics Course Syllabus

Topics

Reading

Introduction	[Chapter 1]
Overview of Vector Calculus and Tensor Notation	[Chapter 1 + Handouts]
Development of the Governing Equations	[Chapters 4-6 and 12]
Some Exact Solutions to the Newtonian Navier-Stokes Equations	[Chapter 13]
Potential Flow	[Chapter 11]
Boundary Layer Theory	[Chapter 14]
Waves	[Chapter 7]
Compressible Flow	[Chapters 7 and 8]