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CHAPTER 1
BRIEF REVIEW OF MATHEMATICAL PRELIMINARIES

References: Basic
1. H. Jeffreys, Cartesian Tensors, Cambridge, 1931.
2. L.A. Segel, Mathematics Applied to Continuum Mechanics, Dover, New York, 1987.

References: More Advanced

3. R.M. Bowen and C.C. Wang, Introduction to Vectors and Tensors, Volume 1, New
York, Plenum, 1976.

4. I.M. Gelfand, Lectures on Linear Algebra, Wiley, New York, 1963.
5. P.R. Halmos, Finite Dimensional Vector Spaces, Van Nostrand, New Jersey, 1958.

6. J.K. Knowles, Linear Vector Spaces and Cartesian Tensors, to appear, 1996.

Notation:
a ... scalar
{a} ... 3 x 1 column matrix
a ... vector
(4] ... 3 x 3 square matrix
A ... linear transformation

INDICIAL NOTATION

Consider, for example, the system of linear algebraic equations

Anzy + Apze + Agzs = by,
Anzi + Anzy + Azs = by, (1)
Asqizy + Azzo + Aszzs = bs.
We can simplify our writing by expressing this equivalently as
Aiazy + Ay + Aizs = b 2

with the understanding that (2) holds for each value of the subscript 7 in its range i = 1,2, 3.
This understanding is referred to as the range convention. The subscript ¢ is called a free



subscript because it is free to take on each value in its range. The same free subséript (the
single index i in the above example) must appear in each symbol grouping. Note that

A,-lml + Ajzxz + Ajams = bj

is identical to (2) because of the range convention. This illustrates the fact that the choice of
index for the free subscript is not important provided that the same free subscript appears
in every symbol grouping. '

" To simplify notation further, we write (2) as

3
Z Aijz; = b (3)

j=1

and now agree to drop the summation sign while at the same time imposing the rule that
summation is implied over any subscript that appears twice in a symbol grouping. Such a
subscript is called a repeated or dummy subscript. Thus, using the summation convention
we can write (3) as

A,'jl'j = b,' (4)

with summation on the subscript j being implied. Note that
AuTr = b

is identical to (4) in view of the implied summation on the dummy subscript k. Thus the
choice of index for the dummy subscript is not important. In order to avoid ambiguity, no

subscript can appear more than twice in any symbol grouping. Thus we shall never write,
for example, Auz; = bi.

Summary of Rules:

1. Lower-case latin subscripts take on values in the range (1,2,3).
Summation is implied over a subscript that appears twice in a single symbol grouping.

The same subscript may not appear more than twice in the same symbol grouping.

Eal S

All symbol groupings in an equation must have the same free subscripts. Free subscripts
take on each value in its range.

5. Free and dummy indices may be changed without altering the meaning of an expression
provided one does not violate the preceding rules.

Ezample(1): If [A] and [B] are 3 x 3 matrices and {z}, {3}, {2} are 3 x 1 column matrices,
express the matrix equation {y} = [A]{z} + [B]{2} in component form:.



Solution: By the rule for matrix multiplication, one has
Y = Ayz; + Bijz.
Note that the following are equivalent to the above (and are consistent with the rules for

indicial notation):

Yk = Ak,-a:j + Bka_,- = Ak,,x,, + Bip2p = Akp:rp + Byjz;.

Ezample(2): 1f [A), [B), [C), [D] and [E] are 3x3 matrices such that [C] = [A][B], [D] = [B][A]
and [E] = [A][B]T express the elements of [C], [D] and [E] in terms of the elements of [A]
and [B].

Solution: By the rule for matrix multiplication, one has

Cij = AikBkj) Dij = ikAlcj, Eij = AikBjk- (5)

In obtaining the third of these, we have used the fact that the 1, j-element of a matrix [BIF
equals the 7, i-element of the matrix [B), i.e. Bj;. It is worth emphasizing that the preceding
are scalar equations and that therefore, the order in which the terms appear in a symbol
group is not important. Thus for example,

Cij = AiBij = BijAix-

Kronecker Delta: The Kronecker Delta &;; is defined by
_ 1 if i=j,
5"'"{0 if i# 3. (6)
Note that it represents the elements lof the Identity Matrix.

The following property of the Kronecker Delta, known as the substitution rule, is partic-
ularly useful. Since 6;; is zero unless i = j, it follows that for any column matrix {u} or
square matrix [A], :

wbij =uj,  Apbij = Ajp, (7
or more generally, for any quantity Tipg..: »
Tipq...zéij = T.'quz (8)

Thus, according to the substitution rule, if a quantity (e.g. T in preceding example) multi-
plying the Kronecker Delta has a common subscript (e.g. ¢ above) with the Kronecker Delta,
then one can substitute this repeated subscript in this quantity with the other subscript (e.g.
j above) of the Kronecker Delta and then delete the Kronecker Delta.



Ezample(8): 1f [Q) is an orthogonal matrix, use indicial notation to solve the matrix equation

{a} = [Q]{b} for {b}.

Solution: Since [Q)] is orthogonal, [@)T[Q] = [Q][Q]T = [I] or in indicial notation,

QriQxj = QikQix = bij- 9)
The given equation {a} = [Q]{b} in indicial form reads
a; = Qijb;.

Multiplying both sides of this by Qi gives
Qikai = QukQisb; = bizbj = bi

where we have used (9) and the substitution rule. In matrix notation this result reads
{b} = [Q|T{a} which could have been written down immediately.

Ezample(4): If f(z1,22,z3) = Ai;zix; where A;; is constant, calculate 9 f/0z;.
Solution: 5 oA oe o
o = Mgzl = 4,05 = Apmogt + AT

where we have used the substitution rule and the fact that 8z;/dz; = &;.

The Alternator or Permutation Symbol: The alternator or permutation symbol is defined
by

+1 if the subscripts i, j, k, are in cyclic order,
—1 if the subscripts i, j, k, are in anticyclic order, (10)
{ 0 if two or more subscripts i, ], k, are equal,

{ 0 if two or more subscripts i, ], k, are equal,
Cijk =

+1 for (i,5,k) = (1,2,3),(2,3,1),(3,2, 1),
~-1 for (4,5, k) = (1,3,2),(2,1,3),(3,1,2).

Observe that the sign of e;;x is flipped if any two adjacent subscripts are switched:
€ijk = —€jik = €jki (11)

Two of the most important properties of the alternator are that it permits the determinant
of a matrix {A] to be written as

det[A] = eijiA1iAz; Az = €ijkAinAj2Ars, (12)

and the following relation involving the alternator and the determinant, which for conve-
nience we shall refer to (following Segel) as the “ed-rule”

€ijkpqk = Bipbiq — Bigbip- (13)



Proofs of these identities may be found, for example, in Jeffreys. They can, of course, be
verified directly by simply writing out all of the terms in (12) and (13).
Ezample(5): Show that

‘ eijkSjk = 0 (14)
for every symmetric matrix [S].
Solution: We can write
1 1 1 1
€ijkSik = FeijkSjk + €k Sk = S€ikSik + 5€ikiSks-

where, in the last step we have used the fact that j and k are dummy subscripts. However,
since we are given that S;; = Sji, we can continue this calculation as

1 1
€ijkSie = SeijkSie + ek Sik = 5(&',’1: + €ik;)Sie =0

where in the very last step we have used the propertty illustrated in (11). Note as a special
case of (14) that '
eiixvivr = 0 for all v;. (15)

VECTORS AND LINEAR TRANSFORMATIONS

Let V be a three-dimensional Euclidean vector space. Any set of three linearly indepen-
dent vectors {e;,e;,e3} in V form a basis for V; any set of three mutually orthogonal unit
vectors forms an orthonormal basis for V. Thus, for an orthonormal basis,

€; - e,- = 6.'_,' (16)

where §;; denotes the Kronecker delta. In these notes we shall restrict attention to orthonor-
mal bases. If the basis is right-handed, one has in addition

€ - (ej X k) = €jjy. (17)

The components v; of a vector v in a basis {e), ez, e3} are defined by
Vi=vV- €. (18)

They may be assembled into a column matrix

(4]
{v} = ( () ) : (19)
U3



The vector v can be expressed in terms of its components v; and the basis vectors e; as
V = V€. (20)

It is important to emphasize the fact that the components v; of a vector depend on both
the vector v and the choice of basis. The components v} of the vector v in a second basis
{e}, e3, €3} are given by

/ /
i =P ei.

In general, v; # v]. The (same) vector v can be expressed in this second basis as

v = vjel.

Given any column matrix {u} and a basis {ei, €3, €3}, there is a unique vector u associ-
ated with them such that the components of u in {e;, e2, €3} are {u}.

If u; and v; are the components of two vectors u and v in a given basis, then the scalar
product u - v can be expressed as

u-v= (ue&) - (vje;) = wvje;- e = uv;bi; = WV ; (21)
the vector product u X v can be expressed as
u X v = (eijxujvx)e; or equivalently as  (u x V)i = €ijkU;jVk (22)

which follows from the the property (12) of the alternator and the usual representation of
the vector product in the form of a determinant.

'The components A;; of a linear transformation A in a basis {e;, ez, e3} are defined by
A,’j = €; - (Aej), (23)

so that
Aej = A,'J' €;. (24)

The components A;; can be assembled into a square matrix:

An A Ag
[A]=| An Az A
A3y Az Az

We draw attention to the fact that the components A;; of a linear transformation depend
on both the linear transformation A and the choice of basis. The components Aj; of A in a
second basis {e}, e}, e3} are given by

Aj; = €; - (Ae€)). (25)
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Given any square matrix [M] and a basis {e, e;, €3}, there is a unique linear transfor-
mation M associated with them such that the components of M in {e;, ez, 3} are [M].

If A is a linear transformation and & and y are vectors such that y = Az, then the
component matrices {z}, {y}, and [A] are related by

{y} =[Al{z} or w= Az,

Similarly, if A, B, and C are linear transformations such that C = AB, then their compo-
nent matrices [A], [B], and [C] are related by

[C] =[A][B] or Cij= AuB;.

The component matrix of the identity linear transformation in any orthonormal basis is
the unit matrix; its components are therefore given by the Kronecker Delta §;;.

Let S be a symmetric linear transformation. A vector e # o and a scalar ) are said to
be an eigenvector and corresponding eigenvalue of S if Se = Ae. A symmetric linear trans-
formation has three real (not necessarily distinct) eigenvalues A;, A2, \3 and corresponding
orthonormal eigenvectors e, e,, e;. The particular basis consisting of the eigenvectors is
called a principal basis for S. The component matrix of § in this basis is

At 0 0
S]=[0 x o0 |.
0 0 As

CARTESIAN TENSORS

Consider a 3-dimensional Euclidean vector space. A triplet of orthonormal unit vectors
{e1,e3,e3} forms an orthonormal basis (or a rectangular cartesian coordinate frame). If
{€}, €5, €3} is a second orthonormal basis, the numbers Q;; defined by

Qij=¢€i-¢€j (26)

are the elements of an orthogonal matrix [@Q]. If both bases are right-handed or both are
left-handed, [Q] is proper orthogonal, i.e. it represents a rotation and det{Q] = +1. Given an
orthonormal basis {e;, e3, e3}, a second triplet of vectors {e}, e3,e3} form an orthonormal
basis if and only if

e; = Qije; (27)



for some orthogonal matrix [Q]. As mentioned previously we shall only consider orthonormal
bases in these notes and thus shall not continue to use the adjective “orthonormal”.

Let T be a physical entity (such as, for example, a scalar, vector or linear transformation)
which, in a given basis {e;,e;,es3}, is defined completely by a set of 3" ordered numbers
Tiyis..in- The numbers T;,,, ., are called the components of T in the basis {e), e, e3}. If,
for example, T is a scalar, vector or linear transformation, it is represented by 3°,3! and 32
components respectively in the given basis. Let {€], €}, €3} be a second basis related to the
first one by the orthogonal matrix {Q], and let T; be the components of the entity T in

i189....8n
the second basis. Then, if for every choice of such bases, these two sets of components are
related by

Tiiain = Qivir Qizia - Qinin Tirgacwins (28)
the entity T is called a Cartesian tensor of rank n or more simply an n-tensor. Thus, the

components of a tensor in every basis may be determined if its components in any single
(convenient) basis are known.

Example (1): Consider a vector v. Its components v; in the basis {e1, ez, €3} are defined by
V=76,
and its components v} in the second basis {€},e5, €3} are defined by
vi=v-e.
It readily follows this and (27) that
v =v-e =v-(Qie) = Qiv - e = Qi (29)

Thus, a vector is a 1-tensor.

Example (2): Consider a linear transformation A on a 3-dimensional Euclidean vector space.
Its components A;; in the basis {e;, ez, e3} are defined by

A;j = e;- (Ae;j),
and its components A}; in the second basis {e}, &3, e} are defined by
A =€ (Ae;.).
On making use of (27) we can write this as
A = € - (Aej) = Qipey - (AQjeeq) = QipQigep * (A€g) = QipQigApe- (30)

Thus, a linear transformation is a 2-tensor.

Three common tensor operations:




1. Two tensors of the same rank are added or subtracted by adding or subtracting corre-
sponding components.

2. Given an n-tensor A and an m-tensor B their outer product is the (m + n)—tensor C
whose components are given by

Cilia..injljz..jm = Ailig‘..in Bj1j2...jm'

3. Let A be a n-tensor with components A;,;,. ., in some basis. Then “contracting’ A
over two of its subscripts, say the i;th and ixth subscripts, leads to the (n — 2)—tensor
with whose components in this basis are A;, i; .. i;_y p ij41 ixo1 P k41 oo ins Contracting
over two subscripts involves setting those two subscripts equal, and therefore summing
over them.

The components of the identity 2-tensor I are &; in every basis.

The following property is known as the gquotient rule: Let a and b be 1-tensors and
suppose that their components in a basis are related by

a; = Ti;b;

for some numbers T;;. Then T;; are the components of a 2-tensor. This result generalizes
naturally to tensors of more general order.

A tensor T is said to be an isotropic tensor if its components have the same values in all

bases, i.e. if
Aglig...’i” = Ailig...‘in (31)

in all bases {e;, ez, €3} and {e}, ey, e3}. Equivalently, for an isotropic tensor
Tirig...in = Qirjy Qisja --Qinjn Tirja..in for all orthogonal matrices Q] (32)
The only isotropic 1-tensor is the null vector o.

The most general isotropic 2-tensor is a scalar multiple of the identity tensor, al.

The most general isotropic 3-tensor is the null 3-tensor 0. We note however that if we
define a 3-tensor e by picking a right-handed basis {e;, ez, €3} and letting the components
of e in this basis be the alternator e;;x, the components of this tensor in every other right-
handed basis are also the alternator e;;x. Thus the alternator satisfies the above definition for
isotropic tensors for all proper orthogonal matrices [Q] (but not for all orthogonal matrices

[QD)-



The most general isotropic 4-tensor T" has components (in any basis)

Tijet = abijbra + BOikbii + Youbi (33)

where a, 3,7 are arbitrary scalars.
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