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m Problems

(b) What is the volumetric rate of heat generation ¢
in the wall?

(c) Determine the surface heat fluxes, g,(—L) and
q.(+L). How are these fluxes related to the heat
generation rate?

(d) What are the convection coefficients for the sur-
facesatx=—Landx = + L?

(e) Obtain an expression for the heat flux distribution,
. (x). Is the heat flux zero at any location? Explain
any significant features of the distribution.

() If the source of the heat generation is suddenly
deactivated (¢ = 0), what is the rate of change of
energy stored in the wall at this instant?

(g) What temperature will the wall eventually reach
with ¢ = 0? How much energy must be removed by
the fluid per unit area of the wall (J/m?) to reach this
state? The density and specific heat of the wall ma-
terial are 2600 kg/m® and 800 J/kg * K, respectively.

One-dimensional, steady-state conduction with uniform
internal energy generation occurs in a plane wall with a
thickness of 50 mm and a constant thermal conductivity
of 5 W/m - K. For these conditions, the temperature dis-
tribution has the form, 7(x) = a + bx + cx*. The surface
at x = 0 has a temperature of 7(0) =7, = 120°C and
experiences convection with a fluid for which T, = 20°C
and h =500 W/m®-K. The surface at x=L is well
insulated.

T, =120°C
T, = 20°C
h =500 W/m2-K
g, k=5 W/m-K
L=50mm

(a) Applying an overall energy balance to the wall, cal-
culate the internal energy generation rate, g.

(b) Determine the coefficients a, b, and ¢ by applying
the boundary conditions to the prescribed tempera-
ture distribution. Use the results to calculate and
plot the temperature distribution.

(c) Consider conditions for which the convection coef-
ficient is halved, but the internal energy generation
rate remains unchanged. Determine the new values
of a, b, and ¢, and use the results to plot the temper-
ature distribution. Hint: recognize that 7(0) is no
longer 120°C.

Central (stagnant) layer
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(d) Under conditions for which the internal energy gen-
eration rate is doubled, and the convection coeffi-
cient remains unchanged (2 = 500 W/m? - K), deter-
mine the new values of a, b, and ¢ and plot the
corresponding temperature distribution. Referring to
the results of parts (b), (c), and (d) as Cases 1, 2, and
3, respectively, compare the temperature distribu-
tions for the three cases and discuss the effects of 2
and g on the distributions.

2.27 A salt-gradient solar pond is a shallow body of water

that consists of three distinct fluid layers and is used
to collect solar energy. The upper- and lower-most
layers are well mixed and serve to maintain the upper
and lower surfaces of the central layer at uniform tem-
peratures T and T,, where T, > T;. Although there is
bulk fluid motion in the mixed layers, there is no such
motion in the central layer. Consider conditions for
which solar radiation absorption in the central layer
provides nonuniform heat generation of the form

q = Ae™™, and the temperature distribution in the cen-
tral layer is
T(x) = —ize_“"+Bx+ C
ka

The quantities A (W/m?), a (1/m), B (K/m), and C (K)
are known constants having the prescribed units, and k&
is the thermal conductivity, which is also constant.

Solar radiation};:if(

Mixed layer ————

Mixed layer

(a) Obtain expressions for the rate at which heat is
transferred per unit area from the lower mixed layer
to the central layer and from the central layer to the
upper mixed layer.

(b) Determine whether conditions are steady or transient.

(c) Obtain an expression for the rate at which thermal
energy is generated in the entire central layer, per
unit surface area.

2.28 The steady-state temperature distribution in a semitrans-
parent material of thermal conductivity k and thickness
L exposed to laser irradiation is of the form

A -
Tx)=—-—=e " "+Bx+C
(x) P
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(a) Beginning with a properly defined control volume
and considering energy generation and storage ef-
fects, derive the differential equation that prescribes
the variation in temperature with the angular coor-
dinate ¢. Compare your result with Equation 2.24.

(b) For steady-state conditions with no internal heat gen-
eration and constant properties, determine the tem-
perature distribution 7(¢) in terms of the constants
T,, T,, r;, and r,. Is this distribution linear in ¢?

(c) For the conditions of part (b) write the expression
for the heat rate g,.

Beginning with a differential control volume in the
form of a cylindrical shell, derive the heat diffusion
equation for a one-dimensional, cylindrical, radial coor-
dinate system with internal heat generation. Compare
your result with Equation 2.24.

Beginning with a differential control volume in the
form of a spherical shell, derive the heat diffusion equa-
tion for a one-dimensional, spherical, radial coordinate
system with internal heat generation. Compare your
result with Equation 2.27.

Derive the heat diffusion equation, Equation 2.24, for
cylindrical coordinates beginning with the differential
control volume shown in Figure 2.12.

Derive the heat diffusion equation, Equation 2.27, for
spherical coordinates beginning with the differential
control volume shown in Figure 2.13.

A steam pipe is wrapped with insulation of inner and
outer radii, 7; and r,, respectively. At a particular instant
the temperature distribution in the insulation is known
to be of the form

() = C, 1n<-r’—> + G,

Are conditions steady-state or transient? How do the
heat flux and heat rate vary with radius?

For a long circular tube of inner and outer radii r; and
r,, respectively, uniform temperatures T; and T, are
maintained at the inner and outer surfaces, while ther-
mal energy generation is occurring within the tube wall
(r; < r < r,). Consider steady-state conditions for
which T} > T,. Is it possible to maintain a linear radial
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temperature distribution in the wall? If so, what special
conditions must exist?

Passage of an electric current through a long conducting
rod of radius r; and thermal conductivity k, results in
uniform volumetric heating at a rate of 4. The conduct-
ing rod is wrapped in an electrically nonconducting
cladding material of outer radius 7, and thermal conduc-
tivity k,, and convection cooling is provided by an
adjoining fluid.

Conducting
rod, g, k,

Cladding, k.

For steady-state conditions, write appropriate forms of
the heat equations for the rod and cladding. Express ap-
propriate boundary conditions for the solution of these
equations.

Two-dimensional, steady-state conduction occurs in a
hollow cylindrical solid of thermal conductivity k =
16 W/m + K, outer radius r, = 1 m, and overall length
2z, = 5m, where the origin of the coordinate system is
located at the midpoint of the centerline. The inner sur-
face of the cylinder is insulated, and the temperature dis-
tribution within the cylinder has the form T(r,z) =
a+br*+ clnr+ dz?, where a =20°C, b= 150°C/m?,
¢ = —12°C, d = —300°C/m? and r and z are in meters.

(a) Determine the inner radius r; of the cylinder.

(b) Obtain an expression for the volumetric rate of heat
generation, g(W/m®). '

(c) Determine the axial distribution of the heat flux at
the outer surface, ¢,(r,,z). What is the heat rate at
the outer surface? Is it into or out of the cylinder?

(d) Determine the radial distribution of the heat flux at
the end faces of the cylinder, q;'(r, +z,) and
q;'(r, — z,)- What are the corresponding heat rates?
Are they into or out of the cylinder?

(e) Verify that your results are consistent with an over-
all energy balance on the cylinder.

An electric cable of radius 7; and thermal conductivity k.
is enclosed by an insulating sleeve whose outer surface
is of radius r, and experiences convection heat transfer
and radiation exchange with the adjoining air and large
surroundings, respectively. When electric current passes
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through the cable, thermal energy is generated within
the cable at a volumetric rate 4.

(a)

)

~

(©)

(@

Electrical cable

Insulation
Tx. 1

Write the steady-state forms of the heat diffusion
equation for the insulation and the cable. Verify
that these equations are satisfied by the following
temperature distributions:

In(r/r,)

Insulation: T(r) = Too + (T, — T,y) m
V'

., .
Cable: T()=T,, + ﬂ( 1— ’—)

&\ P

Sketch the temperature distribution, T(r), in the
cable and the sleeve, labeling key features.

Applying Fourier’s law, show that the rate of con-
duction heat transfer per unit length through the
sleeve may be expressed as

r__ 27Tkx(Ts,I - TSZ)

4 In (ry/ry)

Applying an energy balance to a control surface
placed around the cable, obtain an alternative ex-
pression for ¢/, expressing your result in terms of q
and r,.

Applying an energy balance to a control surface
placed around the outer surface of the sleeve, obtain
an expression from which T,, may be determined as
a function of g, ry, h, T, &, and T ‘
Consider conditions for which 250 A are passing
through a cable having an electric resistance per
unit length of R,” = 0.005 O/m, a radius of r =15
mm, and a thermal conductivity of k, = 200 W/m - K.
For k,=0.15W/m-K, r,= 15.5mm, h =25
W’ - K, £ =09, T, = 25°C, and T, = 35°C,
evaluate the surface temperatures, 7, and T,,, as
well as the temperature T, at the centerline of the
cable.

With all other conditions remaining the same, com-

pute and plot 7, T, |, and T, as a function of r, for
155=r,=20mm.

2.42 A spherical shell of inner and outer radii r; and r,,
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Chemical
reaction, ¢(7,)

Insulation,

k, €

spectively, contains heat-dissipating components, anc
a particular instant the temperature distribution in
shell is known to be of the form

c
T =—+¢,

Are conditions steady-state or transient? How do 1
heat flux and heat rate vary with radius?

A chemically reacting mixture is stored in a thin-wall
spherical container of radius r, = 200 mm, and the exothy
Iic reaction generates heat at a uniform, but temperatu
dependent volumetric rate of q = g, exp(—A/T,), whe
g, = 5000 W/m®, A = 75K, and T, is the mixture tempe
ature in kelvins. The vessel is enclosed by an insulati
material of outer radius r,, thermal conductivity k, a1
emissivity €. The outer surface of the insulation expel
ences convection heat transfer and net radiation exchany
with the adjoining air and large surroundings, respectivel:

g

(a) Write the steady-state form of the heat diffusion
equation for the insulation. Verify that this equa-
tion is satisfied by the temperature distribution

1— (rllr)]

TN =T, — (T,, - T,y [m

Sketch the temperature distribution, T(r), labeling
key features.

(b

=

Applying Fourier’s law, show that the rate of heat
transfer by conduction through the insulation may
be expressed as
ATk, - T,,)
&= W) = Uy

Applying an energy balance to a control surface
about the container, obtain an alternative expression
for g,, expressing your result in terms of g and r,.




