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Abstract. Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a
nonparametric pattern classifier that uses a multi-valued influence matriz (M VIM) as its diagnostic model and
benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number
of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a
helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic
results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as

they are included in training.
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1. INTRODUCTION

Helicopter drive trains are significant contributors to both
maintenance cost and flight safety incidents. Drive trains
comprise almost 30% of maintenance costs and 16% of me-
chanically related malfunctions that often result in the loss
of aircraft (Chin and Danai, 1991a). As such, it is crucial
that faults be diagnosed in-flight so as to prevent loss of
lives.

Fault diagnosis of helicopter power trains is based primar-
ily on vibration monitoring. As such, considerable effort
has been directed toward the identification of features of
vibration that are affected by specific faults (e.g., Pratt,
1986; Mertaugh, 1986), and the development of signal pro-
cessing techniques that can quantify such features through
the parameters they estimate. For example, the crest fac-
tor of vibration, which represents the peak-to-rms ratio
of vibration, has been shown to increase with localized
faults such as gear tooth cracks (Braun, 1986). The main
problem with this approach, however, is that due to the
complexity of helicopter gearboxes and the interaction be-
tween their various components, the individual parameters
estimated from vibration measurements do not provide a
reliable basis for diagnosis.

As an alternative to single-parameter based diagnosis, fault
signatures consisting of many parameters can be estab-
lished using pattern classification techniques (Pau, 1981;
Gallant, 1987). Among the various pattern classifiers used
for diagnosis, artificial neural nets are the most notable
due to their nonparametric nature (independence of the
probabilistic structure of the system), and their ability to
generate complex decision regions. However, neural nets
generally require extensive training to develop the deci-
sion regions (diagnostic model). In cases such as helicopter
power trains, where adequate data may not be available for
training, artificial neural nets may misdiagnose the fault.

7

This paper demonstrates the application of a diagnostic
method that can establish the fault signatures based on
a small number of measurement-fault data. This method
uses nonparametric pattern classification to estimate its di-
agnostic model so, like artificial neural nets, is independent
of the probabilistic structure of the system. This method
utilizes a multi-valued influence matriz (MVIM) as its di-
agnostic model which provides indices for diagnosability of
the system and variability of the fault signatures (Danai
and Chin, 1991). These indices are used as feedback to
improve fault signatures through adaptation (Chin and
Danai, 1991b).

To train and test the MVIM method, vibration data re-
flecting the effect of various helicopter gearbox faults was
obtained at NASA. This vibration data was then processed
through a micro-computer customized for vibration signal
processing. The parameters obtained from this signal pro-
cessor were then utilized to train the MVIM method and
test its performance. Diagnostic results indicate that the
MVIM method can correctly diagnose various faults when
they are included in the training set.

2. THE MVIM METHOD

Measurements are processed in the MVIM method as il-
lustrated in Fig. 1. They are usually filtered first to ob-
tain a vector of processed measurements P, then they are
converted to binary numbers through a flagging operation
(i.e., abnormal measurements characterized by ‘1’ and nor-
mal ones by ‘0'), and finally they are analyzed through
the diagnostic model. In the MVIM method, flagging is
performed by a Flagging Unit that is tuned according to
measures of diagnosability and fault signature variability
obtained from MVIM so as to improve the fault signa-
tures. The MVIM method is explained in detail in (Danai
and Chin, 1991) and (Chin and Danai, 1992). The overall

concept will be discussed here for completeness.
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Fig. 1: Processing of measurements in the MVIM
method

2.1. Fault Signature Representation

Fault signatures in the MVIM method are represented by
the n unit-length columns V; € R™ of a multi-valued in-
fluence matrix (MVIM) A:

A=[Vy, ..., Vj, .0, Vol (1)

where m denotes the number of measurements, and n rep-
resents the number of faults. Based upon this influence
matrix, the faults can be ranked according to their pos-
sibility of occurrence by the closeness of their influence
vector V; to the vector of flagged measurements Y (see
Fig. 2). Note that in MVIM, m is usually larger than n so
as to enhance the uniqueness of fault signatures. However,
m > n is not a necessary condition for this method, due to
the underlying assumption that only one fault is present
at a time. In the MVIM method, the vector of diagnostic
certainty measures, X, which ranks the faults according to
their possibility of occurrence is defined as

X = {#1, « &j, -, £a)7 = cos{an, .., @y o @}’ (2)

where the ; represent the individual diagnostic certainty
measures, and the a; denote the individual angles between
the influence vectors V; and the flagged measurement vec-
tor Y (see Fig. 2).

Fig. 2: Schematic of diagnostic reasoning in the MVIM
method, illustrated in three dimensional space

2.2. Estimation of A

The influence vectors in Eq. (1) are not known a-priori and
need to be estimated. In the MVIM method, the error in
diagnosis is used as the basis to estimate/update the in-
fluence vectors. For this purpose, the fault signatures are
updated recursively after the occurrence of each fault to
minimize the sum of the squared diagnostic error associ-
ated with that fault (Danai and Chin, 1991).

2.3. Fault Signature Evaluation

One of the unique features of the MVIM method is its
ability to evaluate quantitatively the uniqueness and vari-

ability of fault signatures, so that these quantitative mea-
sures can be used to improve the flagging operation. In the
MVIM method, the uniqueness of fault signatures is char-
acterized by the closeness of pairs of influence vectors. For
this purpose, a diagnosability matrix D is defined to repre-
sent the closeness of the orientation of individual influence
vectors as

D =sin [cos" (KT;X)] 3)

where A is the estimated influence matrix. Matrix D in
Eq. (3) is a 0 diagonal n dimensional symmetric matrix
representing the sine of the angles between pairs of influ-
ence vectors. The index of diagnosability d is defined as
the smallest off-diagonal component of matrix D to denote
the closest pair of fault signatures.

In the MVIM method, the variability of fault signatures is
defined by their variance. For this purpose, the variance
matrix £ associated with A is estimated to provide a mea-
sure of the variations of individual components of A. Since
in the MVIM method the components of A are adjusted re-

cursively, 3 can be readily estimated during training (Chin
and Danai, 1991b):

=[6y]= Z(y'(k ) = &k 4

k=1
where k; = 1,2, ..., N; represents the number of occur-
rences of the jth fault, the §; represent the components
of the normalized measurement vector ¥, and the &;; de-

note the components of A. The index of fault signature
variability v in the MVIM method is defined as the largest
component of the variance matrix, which represents the
largest variability in the components of matrix A.

2.4. Flagging

The influence matrix A is estimated based on the values of
the flagged measurement vector Y. Thus, before the influ-
ence matrix is used for diagnostic reasoning, the integrity
of the flagging operation needs to be ensured. Flagging in
the MVIM method is performed by a Flagging Unit that
is tuned to improve the diagnosability of the system and
reduce the variability of the fault signatures (Chin and
Danai, 1991b).

The Flagging Unit uses a sample set of measurement-fault
vectors to tune its parameters iteratively. After each pass
through the training batch, the Flagging Unit counts the
total number of false alarms and undetected faults, and
estimates the uniqueness and variability of the estimated
fault signatures from the current values of the influence
matrix, so that it can use these measures as feedback in
the next adaptation round. Adaptation stops when the
total number of false alarms and undetected faults are
minimized, and the uniqueness and consistency of fault
signatures are enhanced.

The Flagging Unit processes the residuals as follows (see
Fig. 3). The residual vector P € R™ is first passed through
Hard-Limiter I (consisting of a vector of m thresholds, hy;,
+ = 1,...,m) to produce a binary vector Z € B™. This
vector is then multiplied sequentially by the normalized
columns of the Quantization Matrix

[Qh L] Qi) ey Qm] (5)
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and then thresholded by Hard-Limiter II as

_J 1 when Z27Q; > hy
%= { 0 otherwise (6)

to produce the individual components of the flagged mea-
surement vector Y € B™. The vectors Q; in Eq. (5) rep-
resent the normalized columns of the Quantization Matrix
Q associated with individual measurements, and the hj;
denote the thresholds of Hard-Limiter II associated with
individual measurements. Note that although the process-
ing of residuals by the Flagging Unit is similar to resid-
ual processing in model-based methods, there are funda-
mental differences as well. The two methods are similar
from the point of view that both perform hard-limiting
(by the Hard-Limiters) to produce ‘structured residuals’,
and residual transformation (by projecting Z on the in-
dividual columns of the Quantization Matrix) to produce
‘direction-fixed residuals’ {Gertler, 1991). The differences
are that (i) the Flagging Unit does not utilize pre-specified
thresholds or quantization vectors like model-based meth-
ods, and (ii) it employs hard-limiting and residual trans-
formation together, whereas in model-based methods these
operations are commonly used independently. Training
of the Flagging Unit comprises adjusting the thresholds
of Hard-Limiters I and II and the normalized quantiza-
tion vectors Q;, as explained in detail in (Chin and Danai,
1992). It should also be noted that conversion of measure-
ments to binary numbers is the simplest form of flagging,
which may result in loss of information. To provide more
resolution, the Flagging Unit can be modified such that the
flagged measurements will have values between 0 and 1.

False Alarm/
Undetected Fault X
Counter

P_| Hard
Limiter | MVIM
Fautl Signature Variability
Diagnosability
l RB;I f

| Leaming [=—

Fig. 3: Schematic of the Flagging Unit

3. EXPERIMENTAL

Vibration data were collected at NASA Lewis Research
Center. Various component failures in an OH-58A main
rotor transmission were produced during the experiments
(Lewicki et al., 1992). The configuration of the trans-
mission which was tested in the NASA 500-hp Helicopter
Transmission Test Stand is shown in Fig. 4. The vibration
signals were recorded from eight piezoelectric accelerome-
ters (frequency range of up to 10 KHz) using an FM tape
recorder. The signals were recorded once every hour for
about one to two minutes per recording (at the tape speed
of 30 in/sec, providing a bandwidth of 20 KHz). Two mag-
netic chip detectors were also used to detect the debris
caused by component failures. The location and orienta-
tion of the accelerometers are shown in Fig. 5.

In these experiments, accelerated fatigue tests were per-
formed. The transmission was run under a constant load

Mast Balt Bearing

Fig. 4: Configuration of the OH-58A main rotor trans-
mission

and was disassembled/checked periodically or when one
of the chip detectors indicated a failure. A total of five
tests were performed, where each test was run between
nine to fifteen days for approximately four to eight hours a
day. New components were used at the start of each test.
When a component fault was detected during a test, it
was replaced with a new one for the remainder of the test.
Among the eleven failures occurring during these tests (see
Table 1), there were three cases of planet bearing failure,
three cases of sun gear failure, two cases of top housing
cover cracking, and one case each of spiral bevel pinion,
mast bearing, and planet gear failure. Insofar as fault de-
tection during these tests, the chip detectors were reliable
in detecting failures in which a significant amount of de-
bris was generated, such as the planet bearing failures and
one sun gear failure. The remaining failures were detected
during routine disassembly and inspection. '

Table 1: Faults occurring during the ezperiments

Test # Number of Days Failures

1 9 Sun gear tooth pit
Spiral bevel pinion scoring
2 9 None
3 13 Planet bearing spall
Top housing cover crack
Planet bearing spall
Mast bearing micropitting
4 15 Planet bearing spall
Sun gear tooth pit
5 11 Sun gear teeth spalls

Planet gear tooth spall
Top housing cover crack

4. SIGNAL PROCESSING

In order to identify the effect of faults on the vibration
data, the vibration signals obtained from the five tests were
digitized and processed by a commercially available signal
analyzer (Stewart Hughes, 1987) with four processing mod-
ules: (1) Statistical Analysis (STAT), (2) Baseband Power
Spectrum Analysis (BBPS), (3) Bearing Analysis (BRGA),
and (4) Signal Averaging Analysis (SGAV).
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#1, 2, 3 attached to block on right trunnion mount
#4, 6, 7, 8 studded to housing through steel inserts
#$ attached to block on input housing

Transverse

Fig. 5: Location of the accelerometers on the test stand

For analysis purposes, only one data record per day was
used for each test. The data records were taken at the
beginning of the day unless a fault was reported. When a
fault was detected, the record was taken right before the
fault incident to ensure that the data record reflected the
fault. Also, in order to reduce estimation errors, each data
record was partitioned into sixteen segments, and param-
eters were estimated for each segment and averaged over
these segments. The data records as well as the param-
eters obtained from the above processing modules were
then transferred to a personal computer for further analy-
sis (Chin, 1992). Note that the objective of this paper is to
demonstrate the MVIM pattern classification scheme, not
to develop or verify individual diagnostic algorithms. The
algorithms described next were used to produce inputs to
the MVIM system, but may not have been optimized for
transmission health monitoring.

o Statistical Analysis. It is generally believed that the
probability density function of the vibration amph-
tude is near Gaussian when machinery is healthy,
and that its shape changes when a defect appears.
The Statisticel Analysis module of the signal analyzer
estimates parameters that would characterize such
change. The parameters obtained from this module
were the skewness, kurtosis, crest factor, and peak-
to-peak value of vibration data.

e Baseband Power Specirum Analysis. Spectrum anal-
ysis (or frequency domain analysis) is perhaps the
most widely used technique in vibration signal pro-
cessing, as failures such as unbalance, misalignment,
wear, and bearing spalling produce a clear change in
the spectrum (e.g., see (Dewell and Mitchell, 1984;

Randall, 1982; Taylor, 1980; Lees and Pandey, 1980)).
However in complex machinery where the background
noise masks the basic distress signal, changes in the
spectra cannot be easily distinguished (Pratt, 1986).
The Baseband Power Spectrum Analysis module pro-
vides several parameters that can be associated with
the frequencies generated by individual components
of the transmission. The parameters obtained from
this module were the root-mean-square, white spec-
trum, rice frequency, comparison analysis, metacep-
stral analysis, and tone analysis (Stewart Hughes,
1987).

o Bearing Analysis. The vibration energy of bearing
elements is usually lower than those produced by
gears, shafts, and sometimes noise. As such, bear-
ing faults cannot be readily detected through abnor-
malities in the bearing tone. However, since bear-
ing faults such as spalling produce time domain im-
pulses which modulate the bearing shaft frequency
over a wide range of frequencies, there are features
of high-frequency vibration that would reflect bear-
ing faults (Mathew and Alfredson, 1984; Braun and
Datner, 1979). The Bearing Analysis module is de-
signed to extract such features. This module uses
a heterodyner to demodulate the vibration signals
and obtain an amplitude envelope (e.g., see Cour-
rech and Gaudet, 1985). The module then calculates
the power spectrum of this envelope (i.e., spectral
envelope) so that its various features (parameters)
can be estimated for bearing fault detection (Dyer
and Stewart, 1978; Yhland and Johansson, 1970).
The parameters obtained from this module were: en-
velope band energy, envelope kurtosis value, enve-
lope base energy, and envelope tone energy (Stewart
Hughes, 1987).

o Signal Averaging Analysis. The vibration data usu-
ally contains signals generated by different compo-
nents of the gearbox, as well as background noise. It
is therefore necessary to filter the signal such that
it can be related to a particular component of inter-
est. This can be achieved through signal averaging
(or synchronous time averaging) which averages the
digitized time signals over a large number of rev-
olutions synchronous with the speed of a particu-
lar component (McFadden and Smith, 1985; McFad-
den, 1987). Signal averaging is particularly useful for
the identification of localized faults like a gear tooth
spall (McFadden, 1986). Once the averaged signals
are obtained, they can be further analyzed for fea-
tures that reflect various gear faults. The parame-
ters obtained from this module were: FM1, FM1A-
B, FM{A, FM{B, and comparison analysis parame-
ters (Stewart Hughes, 1987).

5. IMPLEMENTATION AND RESULTS

As mentioned in Section 2, the MVIM method requires a
set of measurements during normal operation and at var-
ious fault incidents to estimate the diagnostic model. As
such, the exact times for the fault incidents of the five
tests needed to be established before the measurements
could be used for training and testing the MVIM method.
Unsupervised learning (Kohonen’s Feature Mapping) (e.g.,
see (Kohonen, 1989)) was first used to classify individual
parameters into normal and abnormal. The exact times of
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fault incidents were then established through correlating
these parameters with the faults which had been detected
at the end of each test.

The status of various faults during the five tests are shown
in Table 2 where no-fault cases are denoted by zo,. In
Test #1, spiral bevel pinion failure (z,) is estimated to
have been present on days 5-9 with sun gear failure (z:)
also occurring on day 9. No failures occurred in Test #2,
so all the nine days for this test are marked as normal.
In Test #3, planet bearing failure (z;) was established
to have been present on days 3-4 and 11-12, with hous-
ing crack (z3) and mast bearing failure (z¢) occurring on
day 9 and day 13, respectively. Test #4 is esimated to
have contained planet bearing failure on days 11-12 and
sun gear failure on days 14-15. In Test #5, housing crack
is assumed to have been present on days 7-11, with sun
gear failure (z,) and planet gear failure (z5) occurring on
days 10-11 and day 11, respectively.

Table 2: Association of data from cach day of the five tests
with no-fault and various foult cases. The no-
fault cases are denoted as zo and the siz faulis
are represented as Ty sun gear feilure, 4 planct
bearing failure, z3: housing crack, z,: spiral
bevel pinion failure, zs: planet gear failure, zg:
mast bearing failure

Fault Status

Day Test #1 Test #2 Test #3 Test #4 Test #5

1 To Zo To To Io
2 To Zo Zo Zo To
3 o Zo T Zgo To
4 Zo To ) Zo ZTo
5 LA o zo o To
6 T4 To Zo To To
7 T4 To Zo Zo T3
8 z4 To Zo Zo z3
9 T4y 2y Ty z3 To I3
10 To o 3,2y
11 T2 I2 T3, T1,25
12 z2 T2

13 Te To

14 T

15 I

The configuration of the MVIM system as applied to fault
diagnosis of the OH-58A main rotor transmission is illus-
trated in Fig. 6. As shown in this figure, two MVIMs are
trained for each accelerometer, one MVIM to perform de-
tection (i.e., to determine whether a fault has occurred or
not), and a diagnostic MVIM to isolate the fault. The 54

_ parameters obtained from the signal analyzer were used to
train and test the MVIM system. The detection MVIM
contained only two columns to characterize the no-fault
and fault signatures, whereas the diagnostic MVIM con-
tained seven columns, one characterizing the no-fault sig-
nature and the other six representing the signatures of in-
dividual faults. Note that the two MVIMs can be perceived
as filters with different resolutions. In order to integrate
the results from the MVIMs associated with the eight ac-
celerometers, a voting scheme was utilized.

Tests #3 and #4 contained most of the failure modes (i.e.,
4 out of 6). Therefore, the parameters from these two

Acc #1 Acc #2 Acc #8

Voting Scheme

Y

n

X

Fig. 6: Configuration of the MVIM system as applied to
the OH-58A main rotor transmission

tests were used to train the MVIMs. Note that not all
of the failure modes were included in training, so the test
results were not expected to be perfect. For training the
detection MVIMs, only the 19 parameters from the STAT,
BBPS, and BRGA modules were used. Previous studies
on this data show that these 19 parameters are adequate
for detection (Chin, 1993). For training the diagnostic
MVIMs, all of the 54 parameters were utilized.

The initial values of the detection MVIMs (19 x 2) and di-
agnostic MVIMs (54 x 7) were each set to O (i.e., matrices
with all zero entries), and the initial values of the Quan-
tization Matrices (19 x 19 for detection) and (54 x 54 for
diagnosis) were set to identity matrices. The initial thresh-
old levels for Hard-Limiter I were set at the mean plus one
standard deviation of the corresponding parameter, and
for Hard-Limiter II, they were set at 0.5. The maximum
number of epochs for training the detection and diagnos-
tic MVIMs was set to 50. After each epoch, the detec-
tion/diagnostic performance of MVIMs within the training
set was tested. Training was stopped once perfect detec-
tion/diagnosis was achieved, to avoid overtraining (Hertz
et al., 1991). The number of epochs used for individual
detection MVIMs were: 8, 5, 50, 37, 50, 15, 50, and 50
for accelerometers #1 to #8, respectively, whereas for di-
agnostic MVIMs they were: 50, 1, 2, 2, 26, 50, 50, and
50. According to the number of epochs used for individual
MVIMs, it is clear that the detection MVIMs associated
with accelerometers #3, #5, #7, and #8 did not achieve
perfect detection within the training set. Similarly, the di-
agnostic MVIMs associated with accelerometers #1, #6,
#7, and #8 did not achieve perfect diagnosis within the
training set.

The MVIMs trained on Tests #3 and #4 were evaluated
for all of the tests. For this purpose, the 19 parameters
from each of the eight accelerometers were first passed
through the corresponding detection MVIM for all of the
five tests to reflect the occurrence of faults. Once a feult
was posted by a detection MVIM, the set of 54 parame-
ters from that accelerometer was passed through the corre-
sponding diagnostic MVIM. At the final stage, the diagnos-
tic certainty measures obtained from the eight diagnostic
MVIMs were consolidated by a voting scheme.

The voting scheme utilized weights which reflected the
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speed of convergence of individual fault signatures during
training. That is,

1
number of epochs’

wetght = Q)
As such those influence vectors which converged faster were
assigned larger weights and vice versa. Zero weights were
assigned to the influence vectors which did not converge
during training, and unity weights to those which con-
verged within one epoch. The weights associated with in-
dividual fault signatures for the eight diagnostic MVIMs,
based on training with Tests #3 and #4, are shown in
Table 3.

Table 3: Weights of individual fault signatures for the
eight diagnostic MVIMs. The z; are the same
as indicated in Table 2. The ‘-’ denotes that the
fault signature was not present in the training set

Weights

MVIM Fault Zo zy I Tz T4 Ts Tg
1 1 1 o 0 - - 002
2 1 1 1 1 - - 1
3 1 05 05 1 - - 1
4 05 05 05 05 - - 1
5 1 002 0 o0 - - 0
6 05 0 o 1 - - 05
7 1 0 0 05 - - 033
8 1 002 0 1 - - 033

To illustrate the implementation of the voting scheme,
consider fault diagnosis in Test #5. The eight detection
MVIMS trained based on Tests #3 and #4 were first uti-
lized to detect the presence of faults in Test #5. The
detection results obtained from these MVIMs are shown
in Table 4. Although the results vary among the MVIMs
for days 2-11, they all indicate normality on day 1. After
detection of faults by each detection MVIM, its diagnostic
MVIM, which was already trained on Test #3 and #4, was
used to identify the faults. The diagnostic results produced
by individual MVIMs are shown in Table 5. As expected,
the results are not consistent. In order to consolidate the
results, the voting scheme was used to assign more weight
to those MVIMs which had more quickly established the
fault signature associated with the diagnosed fault. For
this purpose, the results in Table 5 were multiplied by the
weight of the associated influence vector (see Table 3) and
were added together. The diagnostic results for Test #5
are shown in Table 6, where the faults with the highest
score are shown by an asterisk.

The diagnostic results obtained from the above diagnostic
system are shown in Table 7. The results indicate that
the MVIM system was able to produce perfect diagnostics
for Tests #3 and #4, on which it was trained, and that it
diagnosed 88% of the faults in all of the tests. Specifically,
the results in Table 7 indicate that the MVIM system pro-
duced two false alarms (on day 4 of Test #1 and day 6 of
Test #5), and five misdiagnoses (on days 5-8 of Test #1
and day 11 of Test #5). In addition, this system produced
equal diagnostic certainty measures for the no-fault case
and sun gear failure on day 10 of Test #5 and could only
diagnose one of the faults on day 9 of Test #1, and on
days 10 and 11 of Test #5. However, it should be noted
that faults z, and z5 were not included in training, so no

Table 4: Detection results obtained by the eight detection
MVIMs for Test #5. ‘0’s denote no-fault and

‘1’s denote faull cases

Test #5 Estimated Fault Status
Day MVIM 1

Ll i e B R S . R S = = =]

HOFOOODODOOOON
= O - O 00O oW
[l A R e e =1 Y-S
OO HODOO OO w;m
HOOOODODOOOOOOoOom
HOHFRF O~ OOOOOI=N
—OmO~R OO0 oo

—
ol = I I NSO X

Table 5: Individual diagnostic resulls obtained by the eight
diagnostic MVIMs for Test #5 before the appli-
cation of the voting scheme. The -’ denotes that
diagnosis was not performed, based on the detec-
tion results. The z; are the same as indicated in

Table 2
Test #5 Estimated Faults

Day MVIM 1 2 3 4 5 6 17 8
1 - - - - - - - -
2 - - - Ty - - - -
3 - - -z - - - -
4 T3 - - Zp Tg - - -
5 - - - Zo - - - -
6 T - Tg To - - Ty -
7 z3 - T3 - - - - Ty
8 - - - T3 Zg - z3 -
9 T2 Tz T IXop I3 - T3 I3
10 Z; - =z Tg T3 - - -,
11 Tz T T T3 T3z T, Iy I3

fault signatures could be estimated for themn. The correct
diagnostic rate of MVIM, with these two faults excluded
would be over 95%, which is quite noteworthy considering
that the MVIM system was trained on a small number of
measurement-fault data with very few repetitions of each
fault.

To compare the diagnostic performance of MVIM with
a conventional pattern classifier, the parameters obtained
from the signal analyzer were also used to train and test 2
Bayes system similar to the one in Fig. 6. In this system,
Bayes classifiers were used in place of individual MVIMs.
The diagnostic model in a Bayes classifier is the probabil-
ity density matrix B whose components b;; are estimated
according to the maximum likelihood formula (Duda and
Hart, 1973)

- )
bi = 2 vilk;). ®
I kj=1
In the above equation, k; = 1,2, ..., N; represents the

number of occurrences of the jth fault, z;, and the y;
denote the individual flagged measurements. According
to Bayes classification theory, the discriminant functions
which minimize the average probability of error for statis-
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Table 6: Sums of the weighted diagnostic results obtained
from the eight diagnostic MVIMs for Test #5.
The *-’ denotes that diagnosis was not performed,
based on the detection results. The ‘¢’ denotes
the “winner”of each day. The z; are the same as
indicated in Table 2

Test #5 Sums of Weighted Diagnostic Results
Day Fault zxo Ty Ty I3 T4 Ts g
1 _ N N : o -
2 05* 0 0 0 0 0 O
3 05* 0 0 0 o 0 0
4 05* 0 0 0 0 0 O
b 05* 0 0 0 0 0 O
6 05 0 0 05 0 0 1*
7 0 002 0 1* 0 0 O
8 0 0 0 1* 0 0 O
9 05 0 1 15 0 0 1
10 05* 05* 0 0 O 0 O
11 0 0 1* 05 0 O 1*

tically independent y; are defined as

6:(X) = Prow(z;¥) = [[5(1 - 5" (9)

=1

where g;(X) represents the discriminant function associ-
ated with z; and Y is the vector of flagged measurements.
According to Bayes decision theory, the largest discrimi-
nant function in the above set is attributed to the occurred
fault (Duda and Hart, 1973).

To implement the Bayes method in diagnosis, a Bayes
system with two Bayes classifiers were used for each ac-
celerometer, one to perform detection and the other to
isolate the fault. The detection Bayes classifier, similar
to MVIM, contained only two columns to characterize the
no-fault and fault signatures, whereas the diagnostic Bayes
classifier contained seven columns, one characterizing the
no-fault signature and the other six representing the sig-
natures of individual faults. For consistency, the parame-
ters from Tests #3 and #4 were used to train the Bayes
classifiers. The parameters from the two tests were first
flagged to produce y;, with threshold values set at the mean
plus one standard deviation of the corresponding param-
eters. Flagging was found to improve the performance of
the Bayes classifiers. The flagged measurements were then
used to obtain the probability density matrices B accord-

ing to Eq. (8).

The performance of the Bayes system was evaluated for all
of the five tests. For this purpose, the fifty-four parame-
ters from each of the eight accelerometers were first flagged
according to the threshold values obtained from Tests #3
and #4. Like MVIM, the nineteen parameters from each
of the eight accelerometers were then passed through the
corresponding detection Bayes classifier, and once the pres-
ence of a fault was indicated by the detection classifier, all
of the fifty-four parameters from that accelerometer were
passed through the corresponding diagnostic Bayes clas-
sifier for fault isolation. The diagnostic results obtained
from the eight diagnostic Bayes classifiers were then av-
eraged to produce the estimated faults. Note that since
training for Bayes takes only one epoch, a voting scheme
such as the one devised for MVIM could not be utilized.

Table 7. Estimaied fault status from each day of the five
tests by the MVIM system. Same notations are
adopted as in Table 2

Estimated Fault Status (MVIM System)
Day Test #1 Test #2 Test #3 Test #4 Test #5

1 To Zo Zo Zo Zo
2 o Zo To L Zg
3 o To N Zo o
4 z3 To z2 Zo Zo
5 T3 o To Zo To
6 z3 Zo zo Zo zg
T T3 Io Ig Tg T3
8 I3 Zg Io Ty I3
9 21 To I3 Zo I3
10 ZTo To ZTo,T)
11 Za T2 z2, Te
12 T2 T2

13 Tg E

14 41

15 Iy

The diagnostic results obtained from the Bayes system for
all of the five tests are shown in Table 8, with the actual
faults indicated inside parentheses. The results indicate
that although the Bayes system was able to produce near
perfect diagnostics for Tests #3 and #4 (except for the
false alarm on day 8 of Test #3), it did not detect any
of the faults in Tests #1 and #5. This indicates that the
Bayes classifier was particularly dependent on the training
set.

Table §: Estimated foult status from each day of the five
tests by the Bayes sysiem. Same notations are
adopted as in Table 2

Estimated Fault Status (Bayes System)
Day Test ##1 Test #2 Test ##3 Test #4 Test #5

1 Zo ZIo To Ig Zo
2 Zg ZTo Zo Zo Zo
3 £ g E Zo Zg
4 ZXo To 3 Zo Io
5 To To To Io o
6 Zo Zo Io o To
7 To o Ty Zo Zo
8 To To T2 Zo To
9 To Lo T3 To To
10 Zo To Zo
11 ) T2 Iz Zo
12 T2 x2

13 zg Zo

14 z

15 )

6. CONCLUSION

An efficient fault diagnostic system based on the MVIM
method is introduced and applied to a helicopter gearbox
from which only a small number of measurement-fault data
was available. This diagnostic system utilizes two levels of
isolation and integrates the results obtained from various
accelerometers through a voting scheme. The diagnostic
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results indicate that the MVIM system correctly detected
all of the fault incidents, with only two false alarms posted.
The results further indicate that this system correctly di-
agnosed all of the faults it was trained for.
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