1

Fast Reconstruction from Random Incoherent
Projections

Marco F. Duarte
Dept. of Electrical and Computer Engineering, Rice Uniitgrslouston, TX 77005

Abstract

The Compressed Sensing paradigm consists of recoveringlsithat can be sparsely represented in a given basis
from a small set of projections into random vectors; the fmabis typically solved using an adapted Basis Pursuit
algorithm. We show that the recovery of the signal is eqenato determining the sparsest representation of the
measurement vector using the dictionary obtained by apglihie projections to the basis elements, and therefore
more efficient algorithms can be used during recovery; wdoegghe Matching Pursuit and Orthogonal Matching
Pursuit algorithms. We also design an algorithm that allftowgven faster recovery for piecewise smooth signals: the
algorithm exploits the tree structure of the sparse coefiitsiof the signal in a wavelet representation to selecessibs
of coefficients to estimate at each iteration. We define assathisignals for which such a Tree Matching Pursuit
algorithm performs successful recovery and present vanisbf the algorithms for different classes of signals.édth
applications of TMP include effective denoising, fast ap@gmation in overcomplete wavelet bases, and distributed
compression.

. INTRODUCTION

The present trend in evolution and proliferation of sensiegces has caused an explosion in the amount
of information available to scientists in many disciplirsexl to consumers in general. Witness the success
of digital cameras, digital music and video recorders, &tts phenomenon has promoted research in the
fields of compression and coding, which allow for compactesgntations, portability, and fast transmission
of the gathered information. In many cases, the data is cesspd through iansformthat yields a sparse
representation, which is then encoded and stored. Howthempower consumption due to this sensing
and compression process is high and currently limits thgeari applications for many classes of sensing
devices in emerging areas such as sensor networks.

The recently introduced paradigm@bmpressed SensiGS) [4, 18] enables a reduction in the commu-
nication and computation costs at the sensor. This thewspijried by the groundbreaking work of Candes,
Tao and Romberg [3], shows that a small number of random gtiojes of a compressible signal contains
enough information for exact reconstruction. The key ide@$ is that many signals are compressible, i.e.
sparserelative to orthonormal bases or tight frames [20]. In maglyiisgs we are aware of a basis or tight
frame that models a class of signals well, in the sense thast'hsignals can be represented sparsely. The
existence of such bases for many classes of real world sidres enabled advances in compression; by
specifying only the largest coefficients in the transforrmadm, a high-quality representation of the signal
can be reconstructed. However, the determination of thhseduof coefficients relies on the availability of
the entire signal. In contrast, CS [4, 18] has shown that fdrsample signal that i&-sparse — meaning
that the sparse representation fiasonzero coefficients — the availability 6f( K log(V)) [7] projections
of the signal along random directions suffices to obtain anstuction of the signal of the same quality
with high probability.

The implications of Compressed Sensing are very promisingtead of sampling the signal times,
only CK random measurements suffice, whéfecan be orders of magnitude less th&nand C' is an
oversampling factarTherefore, a node can transmit far fewer measurements tocagsing center, which
can reconstruct the signal and then process it in any malmlexv-power applications, such as surveillance
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and sensor networks, CS is advantageous due to the aut@m@ijicession and encryption of the sensed data
and the universal quality of the encoding methodology. lémarawback, however, is the computational
complexity of the signal reconstruction, consisting of/a@morm minimization which has been proven to
be NP-hard [13]. An important result has shown the equivadretween thé, norm minimization and
the /; norm minimization for cases of interest [17]; this new peshlcan be recast as a linear program and
solved using interior point methods. Nonetheless, the cdatipnal complexity of this simpler method still
remains a challenge for signals of normal length — for exanglirrent digital cameras produce images of
sizes in the millions of pixels, which renders reconstittinfeasible with current computational power.
Clearly, it is very important to find fast reconstruction hads if the CS framework is to be deployed in
real-world applications.

In this paper we tackle this problem by changing the fram&wowhich the reconstruction is performed.
We show that the reconstruction problem can be recast asrehsies the sparsest representation of the
measurements in an overcomplete basid review the existing methods applied to this second probl
We then propose a nelree Matching Pursuitilgorithm that allows for fast reconstruction of piecewise
smooth signals, and define a class of signals for which tigisrthm will successfully perform accurate
reconstruction of signals compressed through CS. We nrestime properties of this TMP algorithm and
propose extensions for known piecewise smooth signal psirg applications such as denoising. During
the completion of this project, we became aware of new world®} Tropp and Anna Gilbert [26] that also
explores the use of Matching Pursuits for CS reconstruction

This paper is organized as follows. Section Il describesidoessary background in Compressed Sensing
Theory. Section Il describes the formulation of CS recg\aesa sparse approximation. Section IV describes
our Tree Matching Pursuit algorithms, Section V descrilmae adaptations to improve its performance,
and Section VI describes some extensions to the algoritiectidh VIl lists some related work, and Section
VIII offers conclusions.

II. COMPRESSEDSENSING BACKGROUND

Assume that we acquire/d-sample signat for which a basis or tight framé& = [¢, ..., ¢y] provides
a K-sparse representation

K
T = Z O‘niwnia (1)
=1
where{n;}; C {1,..., N} are the vector indices, eag¢h, being one of the elements of the sparsity-inducing

basis or tight frame, anfln;} are the transform coefficients; in matrix form, this is exysed as = Pa.
Such bases, including wavelets [20], Gabor bases [20] etetis/[2], wedgelets [16], etc., have been found
for many classes of natural signals.

The standard procedure to achieve compression of suchisignténen to () acquire the fullV-point
signalz; (ii) compute the complete set of transform coefficientsiii ) locate the (few) largest, significant
coefficients and discard the (many) small coefficient®; €ncode thesalues and locationsf the largest
coefficients. Such a procedure will allow us to recover a fgghlity representation of the original signal.

This procedure has three inherent inefficiencies: firstafbigh-dimensional signal, we must start with a
large number of valued’. Second, the encoder must compaiieof the NV transform coefficient$«; }, even
though it will discard most of them. Third, the encoder mustale the locations of the large coefficients,
since the pattern of where they are located will change vétiesignal.

This begs a simple question: For a given signal, is it possidtirectly estimate the set of larggs that
will not be discarded? While this seems impossible, the gabveaking work of Candes, Romberg and Tao
[3] has shown that about random projections contain enough information to recasiecewise smooth
signals. An offshoot of this work, which has been given themeafCompressed SensifGS) [4-8, 18, 19],
has emerged that builds on this principle.

In the CS theory we do not measure the lakge directly. Rather, we measure the projections- (z, V;)
of the signal onto aecond sebf basis functiongV;};, which we will call themeasurement basi3he CS
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theory tells us that when certain conditions hold, name#t the{V;}; basis set does not provide sparse
representations of the elemefis }; — a condition known asicoherencef the two bases, then itis indeed
possible to recover the set of larggs from a similarly sized set of measuremefis};. This incoherence
property holds for many pairs of bases, including for exangélta spikes and the sine waves of the Fourier
basis, or the Fourier basis and wavelets. The CS theory plscea to redundant representations such as
curvelets [2], which are well-suited to match geometricije structures in images.

The recovery of the set of significant (large) coefficients; is achieved usingptimization Given a set
y € RM™ of measurementg = (x,V;) (where presumably the number of measuremantg. N), we can
solve for the signal having thi-sparsest transfordry; } that agrees with the observed coefficiepts

a = argmin |0 (2)
S.t.y =VUa

whereV = [V]T,...,V[]" is the matrix representation of the measurement basis. Flenos of® =
VWU = [¢y,...,¢,] are called thénolographic basis

Because of the incoherence between the origiddlgnd the measurement’) bases, if the signal is
sparse in the original basig, then no other set of sparse coefficientscan yield the same projections
y. Unfortunately, solving thig, optimization problem is prohibitively complex, requirimgmbinatorial
enumeration of the possible spafsg} subspaces.

The amazing revelation that enables this new theory istisahot necessary to solve thigminimization
problem to recover the set of largest In fact, a much simpler problem yields an equivalent solutgiven
some technical conditions ob, we need only solve for thé -sparsest transform that agrees with the
observed coefficientg [3-8, 18, 19]:

a = argmin o (3)
s.t.y = ®Pa.

There is no free lunch, however; according to the theoryptieervation set must have sizé = |y| =
CK, whereC is dependent on the matrik. Fortunately, in practice, it suffices to choadséetween 3 and
6.

This optimization problem is significantly more approadkealraditional linear programming techniques
can be used to solve the following equivalent problem:

B = argmin1?p 4)
s.t.y = ApB,

whered = [®, —®] is acK x 2N matrix, and the solutioff € R2Y can be decomposed into= [a%, a%]”
to recovera = ap — ay.

Succinct requirements on the matsixfor the CS machinery to work were introduced by Candes and Ta
[5]:

Definition 1: For every integet < K < N, the K-restricted isometry constadyf for the matrix® is the
smallest quantity such that for &l = {t;,¢,,...} C {1,2,...,n}, |T| < K,

(L= dxc)llell* < | @rell* < (1+ dxc) ]|,

where®r = [¢y,, ¢y,, - . .| andc € R™.

The success of CS is dependent on these constants:

Theorem 1:Let K be such thatyx + dox + 035 < 1 for . Then for any vectow, supported orf}, with
|To| < K, ay is the unique minimizer of (3).

This property is essentially equivalent to having all srealbsets of columns d@f form almost orthogonal
matrices. One of the interesting aspects of CS is that rar@@anssian and Bernoulli matrices hold Theorem
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1 with high probability for X' < M/log(N); the incomplete Fourier Transform matrix also holds this
property as well [4, 18].

For signals of large size, the calculation of the solutioth®linear program (4) is still computationally
unfeasible; some algorithms have been proposed for speasals of CS, such as noisy measurements or
availability of side information [7, 22].

IIl. RECONSTRUCTION INCOMPRESSEDSENSING AS A SPARSE APPROXIMATION PROBLEM

The/; minimization problem (3) was previously formulated by ChBonoho and Saunders [11] Basis
Pursuit an algorithm to obtain a sparse representation of the vgdtoa dictionary or overcomplete basis
o = [¢p,...,0n], Wherep;, = Vi)y; in other words, we are attempting to reconstruct the oaiginefficients
« by finding a sparse representation of the measuremeintshe projected sparse basis= V'W; notice
that since

y=Vr=VV¥a=>q, (5)

the sparsest representationyah the basisb will be equivalent to the sparsest representation of thgrmal
signalz in the original basisl, given that the matrix holds Theorem 1. Notice that the badids an
overcomplete basis f®&" containingV basis vectors. It can be seen intuitively that the conditiepecified
by Theorem 1 are necessary so that the sparse approximdttbe smeasuremenij in the basisd will
coincide with the sparse decompositiof the original signal.

The original purpose of the Basis Pursuit algorithm was td éirsparse representation of a signal in a
union of bases, such as spikes and sines, that would allosvdompact representation of signals containing
different classes features, where each class can be cdyngguatessed in a different basis. Other algorithms
that find such sparse representations have been proposeilldreddescribed in this section. The main char-
acteristic of thespursuitalgorithms is that they obtain efficient but suboptimal spaepresentations of the
original signal. Our goal is to evaluate the computatiomahplexity and performance of these algorithms,
since Basis Pursuit presents two computational challerthesalgorithm consists of a global optimization
that requires large computational resources, and the ctatigus — being in the order ¢¥( N3) — become
prohibitive for IV in the thousands.

A. Matching Pursuit

Matching Pursuit [21] is an algorithm with reduced compiotadl complexity via a greedy strategy: basis
vectors are selected one by one from the dictionary, whiteroping the signal approximation at each step.
The Matching Pursuit algorithm is as follows:

1) Initialize the residuat, = y and the approximatiod = 0, @ € R".

2) Select the dictionary vector that maximizes the valudefgdrojection of the residual:

(e, 6)
P PN

3) Update the estimate of the coefficient for the selectetbvend the residual:

<rt—1 ; ¢nt >

(6)

Tt = Ti-1— Nt (7)
t R
~ ~ <Tt—17¢nt>
O, Oy, + (8)
[

4) If ||r¢|l2 > €||ly]|2, repeat iteration; otherwise, terminate.
The parametet determines the target error level allowed for algorithmvewgence. At each step, the
relationship between the previous and current residuavendyy

_ <Tt7 ¢m>
T

Oy + Tt 9)



sincer,; is orthogonal tap,,,,
7|2 = 11re, ) |12+ lresa ). (10)

Since these are all nonnegative quantities, the followegtem can be easily proven [20]:
Theorem 2:There exists\ > 0 such that for alt > 0,

el < 27yl (11)
This theorem states that the residual converges expotigntizzero, and thus the reconstruction con-
verges to the original signal. The convergence kadecreases when the six€of the signal space increases.
Some issues with Matching Pursuit include the unboundedoeurf iterations necessary for convergence
and the calculation of inner products with the residual facteiteration. Some optimizations have been
formulated for this last case [20].

B. Orthogonal Matching Pursuit

The approximations of a Matching Pursuit are improved biaagbnalizing the vectors in the overcom-
plete basis with a Gram-Schmidt procedure; this optimirais termed Orthogonal Matching Pursuit and
was first proposed by Pati, Rezaifar and Krishnaprasad 2¥§.resulting algorithm convereges with a finite
number of iterations which is less than or equal to the dinoeadity of the signal space. The price to be
paid is the large computational cost of the Gram-Schmiditcmyonalization.

The vectorg,, selected at each step by Matching Pursuit is in general rlobgonal to the previously
selected vector$o,,, }1<i<:. When subtracting the projection of_; over ¢,,, the algorithm reintroduces
new components in the directions{af,,, }1<;<:. This is avoided by projecting the residues on an orthogonal
family {7 }1<i<:-

The Orthogonal Matching Pursuit algorithm is then as foow

1) Initialize the residuat, = y, the set of picked indexels= () and the approximatioﬁ =0,8€RM,

2) Select the dictionary vector that maximizes the valué@efdirojection of the residual, and add its index

to the set of picked indexes:

<7’t—1, sz)

ng = arg max —— —— 12
T Y P (12)
3) Orthogonalize the picked basis vector against the otthalized set of previously picked dictionary
vectors: -
SRRl LT (14)
Z Ty

4) Update the estimate of the coefficient for the selectetbvend the residual:
<7“t—1> %>
[[7el?

b= o o)

r = Ti—1—

Yt (15)

5) If ||r]|2 > €l|y||2, repeat iteration; otherwise, terminate.
The previous algorithms provides us with a decompositiopiafo the orthogonalized dictionary vectors
L=y, ...,

o~ ()
v=2 T (17)
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To expandy over the original overcomplete bagis we consider the relationship betweéemand® given
by the QR factorization

o, =TR, (18)
where®; = [¢y,, ..., ¢n,,] IS the so-callednutilated basis Sincey = I' = ®;a; = I'Ray, Wherea; is
the mutilated coefficient vector, then we can reconstrutoléewvs:

ar = R7'p, (19)
~ Qg j IfZ:TLJEI
@ = {0 if i ¢ 1. (20)

When the number of iteration increases and becomes clodéy tioe residues of an orthogonal pursuit
have norms that decrease faster than for a non-orthogorslipu

C. Matching Pursuits for Compressed Sensing

We evaluate the performance of the Matching Pursuit algast for CS reconstruction purposes. Our
intuition is that since these algorithms will yield the sgEst decompositioa of the measurement vector
y in the projected basi®, the reconstruction can be used to recover the originabsigin the sparsity-
inducing basisl asz = VYa. Since the decompositions are the same, and the MP and OMRtlaigs
act in a greedy fashion by picking the maximum projectiom, atlgorithms tend to pick the coefficient in
order from largest to smallest magnitudes; an error in thienages is induced by the nonorthogonality of
the dictionary vectors, whose magniutde is controlled l®pthconstants described earlier.

The accuracy of the coefficient estimates is critical to tiger€construction; we derive the relationship
between the coefficient estimate and the actual coefficygren by

. (ree1, i) (O (-1 — @5) 9, di)
R [6n?
o (0 = Qi) 0il]” + 3 [(a — Qje1) (05, 5)]
- e 162
— et 2 jzilley ];ﬁ;—l)(@a Cbz)] (21)

Since Theorem 1 requires that all small subsets of columsgop to K in our case of interest) form almost
orthogonal matrices, we expect that the error, proportittey;, ¢;), will be small.

Figure 1 show the reconstruction of standard test signadwiSee and Blocks, processed using CS and
recovered using the Daubechies-8 and Haar wavelet baspscterely. The first column shows the original
signal; the second column shows the sparse approximatibrtié given number of coefficients, which
shows that the signals have a sparse representation. Tie 8igs projected int¢’ K’ random Gaussian
vectors, wherg = 4, to obtain the vector of CS measurementsThe third, fourth and fifth columns
show the reconstruction of the signal from the CS measurtsmesing Basis Pursuit, Matching Pursuit
and Orthogonal Matching Pursuit, respectively. Each retantion shows the Mean Square Error and the
computation time for the reconstruction.

These results show that all of the Matching Pursuit algorgleffectively reconstruct the signal, while the
Matching Pursuit and Orthogonal Matching Pursuits perforach faster than the Basis Pursuit (40-350 and
3-13 times faster, respectively), with the overhead in tMRGalgorithm caused by the orthogonalization of
the basis vectors.
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Fig. 1. Performance of pursuit algorithms for CS reconsionc Top row: HeaviSine; bottom row: Blocks.

IV. TREE MATCHING PURSUITS
A. Motivation

We wish to customize the previous reconstruction algoritiion a class of signals of interests: piecewise

smooth signals, which have sparse representations in etdhates.
A wavelet basis for the spa®, whereN = 2!, [ € Z, is defined by the scaling and wavelet functigns

and, which in turn define the basis functions
Yikln] = 22t — k), (22)

with j andk indexing the scale and position of the wavelet atom functiegpectively. The decomposition
of the signal into this wavelet basis is as follows:

-1 27
T =up+ Z Z wj,kwj,k, (23)

=0 k=1

whereu = (z, ¢) andw;, = (x,1,,). The transform can be expressed in matrix fornrras Vo, where
U = (0,901,110, ..., Y1 2-1] anda = [u, wo 1, w1, .., w1 2-1], both sets being ordered first by scale
and then by offset.

The multiscale nesting structure of the wavelet atoms — tippart of each); ;. contains the supports
of ¥;+10¢-1 and;.; 2, — induces a binary tree structure in the wavelet coefficiege denote this
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Fig. 2. Picked and candidate coefficient sets in a waveletrhitiee.

relationship between these coefficients by stating thatdimeer is theparentcoefficient and the two latter
are thechildrencoefficients.

It is commonly known that when the wavelet coefficients of ecpivise smooth signal are arranged in a
binary tree structure, relationships are present betweeicdefficients of parent and child nodes. A large
wavelet coefficient (in magnitude) generally indicatespghesence of a discontinuity in the original signal
inside its support; a small wavelet coefficient generaltiéates a smooth region in the support of the given
wavelet. Due to the nesting properties of child waveletglms$heir parents, edges manifest themselves in
the wavelet domain as chains of large coefficients propagaitross scales in the wavelet tree. This causes
the most significant wavelet coefficients of most piecewrmedah signals to form a connected subtree in
the wavelet binary tree. Wavelet coefficients also haveydeganagnitudes as the scale decreases [20].

We observe that for piecewise smooth signals, due to themederistics of the wavelet coefficients,
the Matching Pursuit algorithms tend to select coefficidémtated at the top of the tree and then continue
the selection down the tree, effectively building the carted tree that contains the most significant coeffi-
cients from the top down. For this reason, we propose an atiaptof the Matching Pursuit algorithms to
achieve faster reconstruction for piecewise smooth sggmethich exploits the tree structure of the wavelet
coefficients. The algorithms will be described in the nextisa.

B. Algorithms

We formulate a modification to the Matching Pursuit algonththat will allow for lower computational
complexity while maintaining good reconstruction quality this algorithm, we take only a subset of the
basis vectors into consideration at each of the iteratiand, expand that set at each iteration. We begin
by defining two sets of coefficient8, and C;, which contain the set of picked vectors — those vectors
that correspond to nonzero coefficients in the estirhate and the candidate vectors — vectors with zero
coefficients ina but whose projections are evaluated. These sets areiggtishsP;, = () andC, = {1} U
D(1), whereD(i) denotes a select of descendent coefficients of coefficiélle will initially set D(i) to be
the two children coefficients of coefficiefita model that we will expand later. Figure 2 shows an example
on the selection of the coefficients in the wavelet tree.

At each iteration of the algorithm, we will search for thetahoary vector inP;, U C; that yields the
maximum projection to the current residual; if the pickedtee belongs irC}, that coefficient (and the set
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of its ancestors, denoted by(7)) will be moved to the set of picked coefficien® and removed frond,
and the descendent set:) will be added taC;. TheTree Matching Pursuidlgorithm follows:
1) Initialize the residuat, = v, the approximatiomw = 0, @ € RY, and the picked and candidate
coefficient sets) = ) andCy = 1 U D(1).
2) Select the dictionary vector that maximizes the valuehefrojection of the residual among those

available:
n, = arg max M
1€P; 1UCs 1 H(ble
3) If n, € Cy_1, i.e. if the coefficient is not currently among those pickethve the coefficient and
its ancestors to the set of picked coefficients, remove threm the set of candidates and add the
descendants of, to the set of candidates:

(24)

Pt = Pt—l U T U A(nt), (25)
Ct = Ct_l \ (nt U A(nt)) U D(nt) (26)
4) Update the estimate of the coefficient for the selectetbvemd the residual:

<Tt_1, ¢nt>
T = Ty — ————0n,, 27
t t—1 ||¢Z||2 ¢ ( )

~ ~ <Tt—17 ¢nt>
Qny = Opy R TIETE (28)

| fn, |2

5) If ||r]|2 > €l|y||2, repeat iteration; otherwise, terminate.

The Tree Orthogonal Matching Pursuglgorithm is defined in a similar way:

1) Initialize the residuat, = v, the set of picked indexels= (), the approximationz? =0,5 € R, and
the picked and candidate coefficient sBfs= () andC, = 1 U D(1).

2) Select the dictionary vector that maximizes the valué@efdtrojection of the residual, and add its index
to the set of picked indexes:

N <Tt—1>¢i>
ny = arg max

v PN (29)
I = [I,nl. (30)

3) If n; € C;_1, move the coefficient and its ancestors to the set of pickefficeents, remove them from
the set of candidates and add the descendantstofthe set of candidates:

Pt = Pt—l U Tt U A(nt), (31)
Ct = Ct_l \ (nt U A(nt)) U D(nt) (32)
4) Orthogonalize the picked basis vector against the odhaliged set of previously picked dictionary
vectors: .
Vo= bn =Y o 72”> V- (33)
2l |

5) Update the estimate of the coefficient for the selectetbvemd the residual:

(re—1,7)
[ 9
= (re—1,Ve)
B = =t (35)
[l
6) If ||r]|2 > €l|y||2, repeat iteration; otherwise, terminate.

We note that since the number of coefficients that are coresidst each iteration is much smaller than
the number of available dictionary vectors, the reductrooamputations of these algorithms is significant.

e = Ti—1—
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Fig. 3. Initial performance of tree pursuit algorithms fos @econstruction. Top row: HeaviSine; bottom row: Block®ftlcolumn: TMP
reconstruction; middle column: TOMP recontruction; rightumn: wavelet coefficient magnitudes — rows represeneschkargest to smallest.

V. ADAPTATIONS OF TREE MATCHING PURSUIT

A. Performance of TMP

Figure 3 shows the performance of the tree-based MatchirggRalgorithms for the same signals shown
in Figure 1. We see some minor artifacts on the reconstnuictfdhe HeaviSine, some major artifacts on
the TMP reconstruction of Blocks and an incorrect recomsion from TOMP for Blocks. Notice that the
first quarter of this last reconstruction is flat, implyind z&éro coefficients for that part of the signal. In
looking for an explanation for this behavior, it is conventito observe the wavelet coefficient tree for each
one of the signals. We see that for the Blocks signal, theifsignt coefficientsactually do notform a
connected subtree; notice the small coefficient= w; ;. The Tree Matching Pursuit algorithms, due to
their nature, will not immediately include the coefficienbsree that is rooted at this small coefficient, and
thus the energy from these coefficients may be partially oraietely reallocated to other coefficients in the
rest of the tree, which is seen for the TMP and TOMP algorithirtss indicates a need to reevaluate our
model for piecewise smooth signals in the wavelet coefftaemain.

It is also intuitive to see that the tree-based algorithmsatgield the same approximation as the original
pursuit algorithms due to the fact that the maximum non-guckoefficient at some stage was not included
among the set of candidate coefficients. This is noticeadpe@ally in the Blocks signal, since the coeffi-
cients are not monotonically decreasing.

B. Smoothness

It is also worth pointing out that, save for the small coeffitialready mentioned, the rest of the coeffi-
cients would indeed form a connected tree. If we were to oeloot only the children of a given coefficient
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i in the setD;, but the ‘grandchildren’ and even more descendants of ta#ficenti, the algorithm would
have correctly identified the next significant coefficients, and its descendants. This modification has
advantages and disadvantages; it is clear from the rebalt$he reconstruction will be the same or better
as we add more descendants iddg but the computational advantage against the originaldyredgo-
rithms will be reduced. We try to reach a balance betweerettves extremes by defining an adaptive set of
descendants:

Definition 2: Thel-depth set of descendants(i) is the set of coefficients that are withitevels below
coefficient: in the wavelet tree.

We revisit the process of basis vector selection for the ggeg algorithms with this new definition of the
setD: our interestis to look fot € [1, logo(N)] large enough such that the maximum non-picked coefficient
is always inside the set of candidate coefficients:

1) Initialize

Pl7(] =0 ande = {1} U Dl<1)

2) Expand these sets at iteratibas follows:

ny = argmax< z, ¥i)
’ i€Cue [|i|?

Py = Py UA(ny) U{ngt,
Cl,t = Cl,t—l \ [A(nl,t) U {nl,t}] U Dl(nl,t)-

3) The iterations end wheh ; = {1,..., N} andC;; = 0.

This allows us to define a class of signals for which the atgoribehaves well:

Definition 3: We say that a signat = V4 is [-degree smootim the wavelet basi¥ if for all ¢, > t;,

(@, hny ) < (2, P, )

Weltﬁen can déscrlbe the modifiedree Matching Pursuit andTree Orthogonal Matching Pursuit al-
gorithms, where the sets of coefficiefftsandC' are updated as described above; we can also postulate the
following result on performance of these algorithms.

Theorem 3:For a signale that is/-degree smooth i, the/-TMP and/-TOMP algorithm on the set of
measurementg = Vz using the dictionaryp = V¥ will recover the same approximation as the MP and
OMP algorithms, respectively.

Proof. The original greedy algorithm selects the coefficient watéxximum projection to the correspond-
ing vector at each iteration. If at some iteration of the paesuit algorithm such coefficient is inside the
set of picked or candidate coefficients, then the algorittwiioehave in the same way. If it the coefficient
is not a part of either set, then the picked coefficient willsbealler than the actual maximum, which will
eventually be included in the set of candidates; therefeeauld find that the maximum projection among
candidates at a future time would be larger than the same maximum at an earlier timélhis in turn
means that if this previous condition never occurs, thenatgerithms will pick the same coefficients at
each iteration and the reconstruction will be identical. O

We analyze the smoothness of our test signals by defining aureraent of-smoothness:

Definition 4: Thel-degree smoothness measurement of the sigmaR" in the basisl = [y, ... ¥y]
is given by

0 = max{ max [(x,@bnm) - <winz,t1>} ,0} ) (36)

1<t1<t2

A signal will be [-degree smooth i, = 0. We also want to review the accuracy of the estimation and
the computational complexity for different valuesidbr these test signals and see the correlation between
these values.

Figure 4 shows the values gffor the HeaviSine and Blocks signals of length 512 sampkewal as the
reconstruction error and computational complexity (in iwenof inner products) of the TMP, TOMRTMP
and/-TOMP algorithms. We see that whén~ 0, the reconstruction error is negligible and the computa-
tional complexity for thé-TMP algorithm is lower than that of the original algorithatbeit increasing with
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Fig. 4. Performance dfTMP andl-TOMP algorithms. Top row: Heavisine; bottom row: BlockarFwith smallé;, the reconstructions have
small error; the computational complexity is smallest fa towest with small§; in each signal.

[. The large computational complexity for sma#ire due to the corrections in the values of the coefficients
made by the Tree Matching Pursuit Algorithms as few coefiiieare included at each step. Notice that
the figure shows that HeaviSine and Blocks have smoothngssateof 5 and 8 in their respective wavelet
bases.

C. Complex Wavelet Transform

We have discovered a few issues in our assumptions for thetste of wavelet coefficients in piecewise
smooth signals. A problem of concern to us, as described|jns[the oscillationsof the wavelet function:
since wavelets are bandpass functions, the wavelet ceeifsiccan oscillate positive and negative around
singularities. This may cause the wavelet coefficient gpoading to a discontinuity to be small, therefore
overstating the assumption that for piecewise smooth Egtiee wavelet coefficients form a connected tree.

In [1], a complex wavelet transforie proposed, inspired on the Fourier transform, which dag$ave
some of the problems that the real-valued wavelet transf@sn A complex wavelet transform has the same
structure shown in (22) and (23), but the wavelet is comphaxed:

where,.(t) is real and even angh);(¢) is imaginary and odd, and they (approximately) form a Hilber
transform pair. The complex wavelet transfor@WT for short) can be easily implemented using a dou-
bletree structure, where we build tweal wavelet transforms by using. (¢) andy;(t) separately, obtaining
then sequences of coefficientsanda;. The complex wavelet coefficients are then defined as

Qe = o — JOy (38)
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Fig. 5. Performance dfTMP andi-TOMP algorithms using complex wavelet transform. Top réleavisine; bottom row: Blocks. The value
of [ for which §; ~ 0 has decreased for both signals; the computational contpliexémallest for the lowegtwith smallé; in each signal.

Notice that either the real or the imaginary part of the watvebefficients would suffice to reconstruct
the signal; however, a complex wavelet representationvalfor more piecewise smooth signals to form a
connected subtree of significant wavelet coefficients whercomplex magnitude is evaluated, due to the
Hilbert Pair quality of the real and imaginary componentshaf complex wavelet: when a discontinuity is
present and the real (or imaginary) wavelet coefficient ialgrthe imaginary (or real) wavelet coefficient is
large, yielding shift invariance on the coefficient magdés of the signal. As such, when the Tree Matching
Pursuit algorithm is implemented using a Complex Wavelaidyaa smaller band will be necessary for
efficient reconstruction. We choose to UWS&/T as our sparsity-inducing basis, which will allow for more
efficient solutions using theTMP algorithms than the original real wavelet transfornplementation.

Figure 5 shows the values gffor the HeaviSine and Blocks signals of length 512 sampleswtheCWT
is used, as well as the reconstruction error and computdtmmplexity (in number of inner products) of the
TMP, TOMP,[-TMP and/-TOMP algorithms. As the figure shows, the degree of smoathnéthese two
test signals is smaller when tRAVT is used; as such, tlhelr MP algorithm that achieves good reconstruction
will be computationally simpler.

For theCWT based Matching Pursuit algorithms, we change our fortiraridor the coefficient estimates
slightly:
2<Tt_1, ¢C,i>

39
6P (39)

Qeit = Qegp—1 +
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Fig. 6. Reconstructions usingrMP andi-TOMP algorithms using complex wavelet transform.

which yields an approximation error as follows:

2097, di) + Dl — Q1) (B, 0i) + (0 — Q1) (8] 0)]
[k

where both¢;, ¢;) and(¢j, ¢;) are small if Theorem 1 holds.

Figure 6 shows the reconstruction using the tree Matchingwualgorithms, withh = 1 andl = 2
respectively. We choose to divide the contribution on therese of the real and imaginary parts of the
complex wavelet transforms equally to exploit the inheredundancy

(40)

Qe = Q4

VI. EXTENSIONS OFTREE MATCHING PURSUIT

We consider several extensions and applications of thgeeitiims, both in Compressed Sensing and in
other fields.

A. Denoising

The current implementations of reconstruction in CS areroloaist to the injection of noise in the mea-
surements; in [19], the Basis Pursuit with Denoising aliponi is proposed to alleviate this problem, while
in [7], bounds are given for the distortion of the recovergphal as a function of the noise power. Also,
[22] recently proposed an EM-based algorithm to recovestgeal from random projections, and also of-
fer bounds for the distortion in the recovered signal; nongxias were given for rate of convergence or
distortion in the reconstruction.
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Fig. 7. Denoising performance results for several algorihThe structure exploited by the Tree Matching Pursuitritlym allows for better
reconstruction of the signal from noisy measurements.

When the signal is sparse in the wavelet basis, we can effécperform denoising by thresholding [15]
by varying the convergence criterion as a function of thealigo noise ratio. In this fashion, we will only
identify the most significant coefficients using the MatchiRursuit or Tree Matching Pursuit algorithm and
effectively threshold the coefficient values at the recartsion.

Noise artifacts are also observed with the standard methfa@sonstruction (Basis Pursuit and Matching
Pursuit) since the energy of the signal is not discrimindigdand; in this case, a small amount of the
energy from the coefficients in the coarsest scales ‘leaktsid finer scales and causes low-amplitude, high-
frequency artifacts which resembles small-scale noisegiyg preference to the coarsest coefficients over
the finest, the Tree Matching Pursuit algorithms help migdhis effect during reconstruction.

Figure 7 show the performance of the algorithm in denoisMthite Gaussian noise was added to the
HeaviSine and Block signals with power 0.2; the results ftbedifferent algorithms are shown.

B. Matching Pursuit using Transforms

Although Matching Pursuit allows for computationally féde reconstruction for higher-dimensional
signals than Basis Pursuit, we still need to pay the pricéasfge of the original, measurement and/or holo-
graphic bases in memory. The original basis is of $ze N = O(N?); the measurement and holographic
bases are of siz&/ x N = O(K N log N) each. For large dimensional signals a large amount of memory
is needed to perform Matching Pursuit using the matricesarexample, for a image as small@isx 64
pixels, we haveV = 22 and K = 410 with M = 4K, and we need about 240 Megabytes of memory to
store these matrices.
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We do have an alternative, however. Usually a wavelet toainséxists to obtain the sparse representation
of a signal. If we can replace the projection of a vector ughme matrix product to a method using a
transform, we do not need to store these matrices in memaoswekier, the computational complexity of
the problem increases slightly, assuming that it is equailgnore complex to calculate the transform than
to apply the transform matrix. In this method, we also losedbmputational gain from the Tree Matching
Pursuit algorithms, since all of the coefficients are caltad at once using the transform. The denoising
properties of the algorithm are still preserved, however.

Our insight is that the estimate of the coefficient can bevestd by using only transforms: if far =
Va, andy = F(x) we have transforma = W(z) andy = Va = ®a, as well as inverse transforms
r = W), andx = F~1(y), then the projections are obtained by

(re, @i) = (re, Vibi) = (VFre, i) = (F7 (o), i) = Wi F ™ (), (41)

whereW;(z) denotes thé™ coefficient of thelV’ transform ofz.

In their work, Candes and Romberg advocate the use of Partiutilated Fourier Transform as their
measurement basis, guided by the physical acquisitionmbgwaphy signals. We now propose a similar
method, denoted the Permuted Fast Fourier Transform (RRESY) = F(x) = FFTy.0(P(x)), where
P(z) is a fixed permutation of the samples in the vectpiperformed before the truncated Fast Fourier
Transform FFT.,,/, is applied, in which only the first//2 Fourier Transform coefficients are kept - giving
us M measurements from the signal by counting the real and imagiparts of the Fourier Transform
coefficients as separate measurements. It is easy to seedlan inverse transform from y to x is=
F~'(y) = P7Y(IFFTy(y)), where IFFTy(y) is the inverse Fast Fourier Transform pizero-padded to
length N, and P~!(z) is the inverse permutation of the samplesrinsuch thatF—!(F(z)) = z. Other
transforms can be used together with the permutation tquaknsuch as the Discrete Cosine Transform.

Figures 8 and 9 show the performance of the algorithm forra¢test cases. We use the test signals with
length 8192 points and reconstruct noiseless and noisiomarsf the signals using the complex wavelet ba-
sis as the original basis and using the Permuted Discret@€dsansform to obtain the measurements. We
also apply the methodology to tR86 x 256 pixel images Lena and Wet-Paint, where the two-dimensional
PFFT and a real wavelet transform (Daubechies-8) is uséebidsOnce again, a Basis Pursuit implementa-
tion is not feasible for these examples, due both to the coatipnal complexity and storage requirements
for the relevant bases — although we expect that these Bimydrased methods can be implemented in BP
as well.

C. Sparse Approximation in Overcomplete Wavelet Bases

The algorithms shown here can also be applied in the nornaase@pproximation environment, in which
we have signals that are sparse in an overcomplete wavaeb#sis but for which there is no unique
representation. The Tree Matching Pursuit algorithms shbere should effectively and accurately find
a sparse representation of the signal, something that tdrenachieved using Basis Pursuit - since all
coefficients are evaluated at every iteration - while raggitess computational work due to the tree-search
structure of the algorithm. Some bases that follow this rhackecomplex wavelets [1] and curvelets [2].

D. Matching Pursuit as a Preprocessing Step

The Basis Pursuit algorithm is solved through interior ponethods that admit an initial estimate of the
solution; the distance between the initial estimate anctbeal solution will affect the convergence time of
the algorithm. Since the convergence rate of the Matchingtualgorithm decays exponentially, we can
expect an ideal point in time where it is convenient to switom Matching Pursuit to Basis Pursuit, where
the estimate being given by the MP algorithm is used as thialiestimate for the BP algorithm, causing it
to converge in a fast manner and obtaining an optimally gpsoition.
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Fig. 8. Performance of matching pursuit algorithms on retmiction of one-dimensional signals using transformsinner products appear
in this methodology. Top two rows: reconstruction from etéss measurements; bottom two rows: reconstruction fr@isy measurements,

e =0.2.

E. Reservations on Matching Pursuit

Previous work on sparse approximations has shown that thehlihg Pursuit algorithm has some flaws.
DeVore and Temlyakov [14] show that the Matching Pursuibatgm output may have a high level of error
(O(m~"/?)) for a specific dictionary of vectors, Tropp [25] shows samnitesults, and establishes measures
of goodness for dictionaries that are similar to those dlyesstablished for CS matrices [7, 18].

VIl. RELATED WORK

In the published work on Compressed Sensing that has bezasesl in the past year, all of the authors
implement reconstruction through Basis Pursuit excepaffaw cases. Candes and Romberg [6] proposed
a method based on projection onto convex sets which regsiglesnformation in the form of thé, norm
of either the compressed signal or its wavelet coefficientordfor each of the available scales. The authors
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Fig. 9. Performance of matching pursuit algorithms on retmiction of images using transforms. Left column: orifjimages; middle
column: sparse approximations; right column: reconsimast

recognize that this side information is not easily obtaleab real-world cases in which the signal is not
known a-priori, and obtaining the norms would defeat theeffiesrof Compressed Sensing on actual sensors.
The approach is still useful for universal coding, comp@ssind encryption scenarios. For cases where
this side information is not available, the authors refdateitheir reconstruction algorithm using Lagrange
Multipliers and test it on tomography image reconstructioth good results. We have found that by per-
forming reconstruction using Matching Pursuit, a qualdgd of about 3 dB in PSNR of the reconstructed
images is observed.

Tsaig and Donoho [19] propose adaptations of the Basis Ralgorithm for signals that are sparse in
the wavelet domain by performing two-gender hybrid CS byasajely compressing the scaling and wavelet
coefficients, or by performing multiscale CS by separateinpressing the coefficients at each one of the
scales. Once again, this method is not feasible in realdvcakes, since the calculation of per-band or
per-gender coefficients would also defeat the same purgd38 as the method previously mentioned.

Haupt and Nowak [22] recently proposed an EM-based algurii recover the signal from random
projections, and also offer bounds for the distortion inré@vered signal; no examples were given for rate
of convergence or distortion in the reconstruction.

Finally, Tropp and Gilbert [26] demonstrated that OrthagloMatching Pursuit can reliably recover a
signal using an oversampling factor of 8 estimated emplyicane of the advantages of the OMP recon-
struction is that when the signal is successfully recoveaenhostK iterations of the algorithm are required
for the recovery, and the residual becomes null at that tifiles also gives a convenient indication of the
success of the recovery algorithm.

Some previous work also exists on implementations of MatgRiursuit using tree structures. Cotter and
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TABLE |
COMPUTATIONAL COMPLEXITY OF PURSUIT ALGORITHMS. K: NUMBER OF MEASUREMENTS N: SIGNAL DIMENSION; I:

CONVERGENCEFACTOR
Algorithm Complexity
Basis Pursuit O(N?)
Matching Pursuit O(KNI)
Orthogonal Matching Pursuit O(K?N)
Tree Matching Pursuit O(K*I)
Tree Orthogonal Matching Pursuit  O(K?®)

Rao [12] propose a Matching Pursuit algorithm in which focteéeration the best-matchirigatoms are
selected and a residual is generated for each atom; eacH tvese residuals is used, one at a time, for the
next iteration. This process forms a tree in which the notlkssal I represent the best approximations of
the signal; the tree can be pruneditaodes per level as the iterations progress.

De Vleeschouwer and Macq [10] propose a Matching Pursudréhgn in which the dictionary atoms
correspond to wavelet functions obtained from a filterbankadquire sparse representations of displaced
frame difference images, used in MPEG video coding; at e@chtion, the remainder is first partitioned
into blocks and the block with highest energy is used for teation. The computational advantage of the
tree structure in this case is limited to the fast calcutatibthe coefficient estimates through the filterbank
since all atoms are evaluated at every iteration of the lgor

Jost, Vandergheynst and Frossard [23] propose an algosimitar in nature to ours: the atoms in the
dictionary are clustered into groups of sizéy similarity, such that atoms that would have large progect
magnitudes simultaneously are clustered together, andsativat do not hold this property are clustered
apart. At each level, available clusters are clusterednagaiil less thank clusters exist. Each cluster is
assigned a representative cluster atom, which is a linegabowtion of the atoms in the cluster. This builds
a k-children tree where the cluster atoms are representadtényor nodes and the dictionary atoms are
represented by the leaves. The reconstruction then predseselecting the cluster at the first level of the
tree that yields maximum projection magnitude, and perfopmojections against the cluster atoms for the
cluster’s children. This procedure goes on until we seleletad, or dictionary atom, at which point the
corresponding coefficient and the residual are updatedailty.nt his methodology speeds up the search for
the best atom in the dictionary, but requires that these sattan be clustered as described; since the atoms
used in CS reconstruction are essentially random, theyotdrenclustered, and such clustering will almost
surely not follow the structure of the wavelet functions.

VIIl. CONCLUSIONS AND FURTHER WORK

Each one of the algorithms presented in this paper has ab@htnd disadvantages; while the Basis
Pursuit algorithm is reliable, it is computationally unééde for moderately-sized signals. On the other
hand, the Matching Pursuit algorithm is computationalipgie, but its unbounded number of iterations
required for convergence might make it undesirable in ogegpplications. The Orthogonal Matching Pur-
suit algorithm, while being bounded in the number of itemasi required, has a much higher computational
complexity due to the orthogonalization of the basis vexteruired at each iteration. The Tree Matching
Pursuit algorithm here proposed is robust to noise, is caatipmally feasible for a larger domain of signals,
and exploits the inherent structure in piecewise smoothedsfo achieve faster, better reconstruction. Table
| shows the computational complexity of the different algons. Our only reservation is once again on its
rate of convergence.

Future research directions include finding measuremereisithat will allow for faster reconstruction, as
well as algorithms that will allow for scaled reconstructims more CS measurements are received through
a communications channel. It is worth mentioning that pbilstic formulations of the parent-child re-
lationship in the wavelet coefficient tree, such as that pseg in [9] may benefit the performance of the
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algorithm, while requiring training of the model on the das signals that the compression system will
observe.
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