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Abstract

The Compressed Sensing paradigm consists of recovering signals that can be sparsely represented in a given basis
from a small set of projections into random vectors; the problem is typically solved using an adapted Basis Pursuit
algorithm. We show that the recovery of the signal is equivalent to determining the sparsest representation of the
measurement vector using the dictionary obtained by applying the projections to the basis elements, and therefore
more efficient algorithms can be used during recovery; we explore the Matching Pursuit and Orthogonal Matching
Pursuit algorithms. We also design an algorithm that allowsfor even faster recovery for piecewise smooth signals: the
algorithm exploits the tree structure of the sparse coefficients of the signal in a wavelet representation to select subsets
of coefficients to estimate at each iteration. We define a class of signals for which such a Tree Matching Pursuit
algorithm performs successful recovery and present variations of the algorithms for different classes of signals. Other
applications of TMP include effective denoising, fast approximation in overcomplete wavelet bases, and distributed
compression.

I. INTRODUCTION

The present trend in evolution and proliferation of sensingdevices has caused an explosion in the amount
of information available to scientists in many disciplinesand to consumers in general. Witness the success
of digital cameras, digital music and video recorders, etc.This phenomenon has promoted research in the
fields of compression and coding, which allow for compact representations, portability, and fast transmission
of the gathered information. In many cases, the data is compressed through atransformthat yields a sparse
representation, which is then encoded and stored. However,the power consumption due to this sensing
and compression process is high and currently limits the range of applications for many classes of sensing
devices in emerging areas such as sensor networks.

The recently introduced paradigm ofCompressed Sensing(CS) [4, 18] enables a reduction in the commu-
nication and computation costs at the sensor. This theory, inspired by the groundbreaking work of Candès,
Tao and Romberg [3], shows that a small number of random projections of a compressible signal contains
enough information for exact reconstruction. The key idea in CS is that many signals are compressible, i.e.
sparserelative to orthonormal bases or tight frames [20]. In many settings we are aware of a basis or tight
frame that models a class of signals well, in the sense that “most” signals can be represented sparsely. The
existence of such bases for many classes of real world signals has enabled advances in compression; by
specifying only the largest coefficients in the transform domain, a high-quality representation of the signal
can be reconstructed. However, the determination of this subset of coefficients relies on the availability of
the entire signal. In contrast, CS [4, 18] has shown that for aN-sample signal that isK-sparse — meaning
that the sparse representation hasK nonzero coefficients — the availability ofO(K log(N)) [7] projections
of the signal along random directions suffices to obtain a reconstruction of the signal of the same quality
with high probability.

The implications of Compressed Sensing are very promising.Instead of sampling the signalN times,
only CK random measurements suffice, whereK can be orders of magnitude less thanN andC is an
oversampling factor. Therefore, a node can transmit far fewer measurements to a processing center, which
can reconstruct the signal and then process it in any manner.In low-power applications, such as surveillance
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and sensor networks, CS is advantageous due to the automaticcompression and encryption of the sensed data
and the universal quality of the encoding methodology. Its main drawback, however, is the computational
complexity of the signal reconstruction, consisting of anℓ0 norm minimization which has been proven to
be NP-hard [13]. An important result has shown the equivalence between theℓ0 norm minimization and
theℓ1 norm minimization for cases of interest [17]; this new problem can be recast as a linear program and
solved using interior point methods. Nonetheless, the computational complexity of this simpler method still
remains a challenge for signals of normal length — for example, current digital cameras produce images of
sizes in the millions of pixels, which renders reconstruction unfeasible with current computational power.
Clearly, it is very important to find fast reconstruction methods if the CS framework is to be deployed in
real-world applications.

In this paper we tackle this problem by changing the framework in which the reconstruction is performed.
We show that the reconstruction problem can be recast as a search for thesparsest representation of the
measurements in an overcomplete basisand review the existing methods applied to this second problem.
We then propose a newTree Matching Pursuitalgorithm that allows for fast reconstruction of piecewise
smooth signals, and define a class of signals for which this algorithm will successfully perform accurate
reconstruction of signals compressed through CS. We mention some properties of this TMP algorithm and
propose extensions for known piecewise smooth signal processing applications such as denoising. During
the completion of this project, we became aware of new work byJoel Tropp and Anna Gilbert [26] that also
explores the use of Matching Pursuits for CS reconstruction.

This paper is organized as follows. Section II describes thenecessary background in Compressed Sensing
Theory. Section III describes the formulation of CS recovery as a sparse approximation. Section IV describes
our Tree Matching Pursuit algorithms, Section V describes some adaptations to improve its performance,
and Section VI describes some extensions to the algorithm. Section VII lists some related work, and Section
VIII offers conclusions.

II. COMPRESSEDSENSING BACKGROUND

Assume that we acquire aN-sample signalx for which a basis or tight frameΨ = [ψ1, . . . , ψN ] provides
aK-sparse representation

x =

K∑

i=1

αni
ψni

, (1)

where{ni}i ⊂ {1, . . . , N} are the vector indices, eachψni
being one of the elements of the sparsity-inducing

basis or tight frame, and{αi} are the transform coefficients; in matrix form, this is expressed asx = Φα.
Such bases, including wavelets [20], Gabor bases [20], curvelets [2], wedgelets [16], etc., have been found
for many classes of natural signals.

The standard procedure to achieve compression of such signals is then to (i) acquire the fullN-point
signalx; (ii ) compute the complete set of transform coefficientsα; (iii ) locate the (few) largest, significant
coefficients and discard the (many) small coefficients; (iv) encode thevalues and locationsof the largest
coefficients. Such a procedure will allow us to recover a high-quality representation of the original signal.

This procedure has three inherent inefficiencies: first, fora high-dimensional signal, we must start with a
large number of valuesN . Second, the encoder must computeall of theN transform coefficients{αi}, even
though it will discard most of them. Third, the encoder must encode the locations of the large coefficients,
since the pattern of where they are located will change with each signal.

This begs a simple question: For a given signal, is it possible to directly estimate the set of largeαi’s that
will not be discarded? While this seems impossible, the groundbreaking work of Candès, Romberg and Tao
[3] has shown that aboutK random projections contain enough information to reconstruct piecewise smooth
signals. An offshoot of this work, which has been given the name ofCompressed Sensing(CS) [4–8, 18, 19],
has emerged that builds on this principle.

In the CS theory we do not measure the largeαi’s directly. Rather, we measure the projectionsvi = 〈x, Vi〉
of the signal onto asecond setof basis functions{Vi}i, which we will call themeasurement basis. The CS
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theory tells us that when certain conditions hold, namely that the{Vi}i basis set does not provide sparse
representations of the elements{ψi}i — a condition known asincoherenceof the two bases, then it is indeed
possible to recover the set of largeαi’s from a similarly sized set of measurements{yi}i. This incoherence
property holds for many pairs of bases, including for example, delta spikes and the sine waves of the Fourier
basis, or the Fourier basis and wavelets. The CS theory also applies to redundant representations such as
curvelets [2], which are well-suited to match geometrical edge structures in images.

The recovery of the setα of significant (large) coefficientsαi is achieved usingoptimization. Given a set
y ∈ RM of measurementsyi = 〈x, Vi〉 (where presumably the number of measurementsM ≪ N), we can
solve for the signal having theℓ0-sparsest transform{αi} that agrees with the observed coefficientsyi:

α̂ = arg min ‖α‖0 (2)

s.t.y = VΨα

whereV = [V T
1 , . . . , V

T
M ]T is the matrix representation of the measurement basis. The columns ofΦ =

VΨ = [φ1, . . . , φn] are called theholographic basis.
Because of the incoherence between the original (Ψ) and the measurement (V ) bases, if the signal is

sparse in the original basisΨ, then no other set of sparse coefficientsα′ can yield the same projections
y. Unfortunately, solving thisℓ0 optimization problem is prohibitively complex, requiringcombinatorial
enumeration of the possible sparse{ψi} subspaces.

The amazing revelation that enables this new theory is that it is not necessary to solve thisℓ0-minimization
problem to recover the set of largestαi. In fact, a much simpler problem yields an equivalent solution: given
some technical conditions onΦ, we need only solve for theℓ1-sparsest transformα that agrees with the
observed coefficientsy [3–8, 18, 19]:

α̂ = arg min ‖α‖1 (3)

s.t.y = Φα.

There is no free lunch, however; according to the theory, theobservation set must have sizeM = |y| =
CK, whereC is dependent on the matrixΦ. Fortunately, in practice, it suffices to chooseC between 3 and
6.

This optimization problem is significantly more approachable: traditional linear programming techniques
can be used to solve the following equivalent problem:

β̂ = arg min 1
Tβ (4)

s.t.y = Aβ,

whereA = [Φ,−Φ] is acK×2N matrix, and the solution̂β ∈ R2N can be decomposed intôβ = [α̂T
P , α̂

T
N ]T

to recover̂α = α̂P − α̂N .
Succinct requirements on the matrixΦ for the CS machinery to work were introduced by Candès and Tao

[5]:
Definition 1: For every integer1 < K < N , theK-restricted isometry constantδK for the matrixΦ is the

smallest quantity such that for allT = {t1, t2, . . .} ⊂ {1, 2, . . . , n}, |T | < K,

(1 − δK)‖c‖2 ≤ ‖ΦT c‖
2 ≤ (1 + δK)‖c‖2,

whereΦT = [φt1 , φt2 , . . .] andc ∈ Rn.
The success of CS is dependent on these constants:
Theorem 1:LetK be such thatδK + δ2K + δ3K < 1 for Φ. Then for any vectorα0 supported onT0 with

|T0| ≤ K, α0 is the unique minimizer of (3).
This property is essentially equivalent to having all smallsubsets of columns ofΦ form almost orthogonal

matrices. One of the interesting aspects of CS is that randomGaussian and Bernoulli matrices hold Theorem
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1 with high probability forK . M/ log(N); the incomplete Fourier Transform matrix also holds this
property as well [4, 18].

For signals of large size, the calculation of the solution tothe linear program (4) is still computationally
unfeasible; some algorithms have been proposed for specialcases of CS, such as noisy measurements or
availability of side information [7, 22].

III. RECONSTRUCTION INCOMPRESSEDSENSING AS A SPARSEAPPROXIMATION PROBLEM

Theℓ1 minimization problem (3) was previously formulated by Chen, Donoho and Saunders [11] asBasis
Pursuit, an algorithm to obtain a sparse representation of the vector y in a dictionaryor overcomplete basis
Φ = [φ1, . . . , φN ], whereφi = V ψi; in other words, we are attempting to reconstruct the original coefficients
α by finding a sparse representation of the measurementsy in the projected sparse basisΦ = VΨ; notice
that since

y = V x = VΨα = Φα, (5)

the sparsest representation ofy in the basisΦ will be equivalent to the sparsest representation of the original
signalx in the original basisΨ, given that the matrixΦ holds Theorem 1. Notice that the basisΦ is an
overcomplete basis forRM containingN basis vectors. It can be seen intuitively that the conditions specified
by Theorem 1 are necessary so that the sparse approximation of the measurementy in the basisΦ will
coincide with the sparse decompositionα of the original signal.

The original purpose of the Basis Pursuit algorithm was to find a sparse representation of a signal in a
union of bases, such as spikes and sines, that would allow fora compact representation of signals containing
different classes features, where each class can be compactly expressed in a different basis. Other algorithms
that find such sparse representations have been proposed andwill be described in this section. The main char-
acteristic of thesepursuitalgorithms is that they obtain efficient but suboptimal sparse representations of the
original signal. Our goal is to evaluate the computational complexity and performance of these algorithms,
since Basis Pursuit presents two computational challenges: the algorithm consists of a global optimization
that requires large computational resources, and the computations — being in the order ofO(N3) — become
prohibitive forN in the thousands.

A. Matching Pursuit

Matching Pursuit [21] is an algorithm with reduced computational complexity via a greedy strategy: basis
vectors are selected one by one from the dictionary, while optimizing the signal approximation at each step.
The Matching Pursuit algorithm is as follows:

1) Initialize the residualr0 = y and the approximation̂α = 0, α̂ ∈ RN .
2) Select the dictionary vector that maximizes the value of the projection of the residual:

nt = arg max
i=1,...,N

〈rt−1, φi〉

‖φi‖2
. (6)

3) Update the estimate of the coefficient for the selected vector and the residual:

rt = rt−1 −
〈rt−1, φnt

〉

‖φnt
‖2

φnt
, (7)

α̂nt
= α̂nt

+
〈rt−1, φnt

〉

‖φnt
‖2

. (8)

4) If ‖rt‖2 > ǫ‖y‖2, repeat iteration; otherwise, terminate.
The parameterǫ determines the target error level allowed for algorithm convergence. At each step, the

relationship between the previous and current residual is given by

rt =
〈rt, φnt

〉

‖φnt
‖2

φnt
+ rt+1; (9)
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sincert+1 is orthogonal toφnt
,

‖rt‖
2 = ‖〈rt, φnt

〉‖2 + ‖rt+1‖
2. (10)

Since these are all nonnegative quantities, the following theorem can be easily proven [20]:
Theorem 2:There existsλ > 0 such that for allt ≥ 0,

‖rt‖ ≤ 2−λt‖y‖. (11)
This theorem states that the residual converges exponentially to zero, and thus the reconstruction con-

verges to the original signal. The convergence rateλ decreases when the sizeM of the signal space increases.
Some issues with Matching Pursuit include the unbounded number of iterations necessary for convergence
and the calculation of inner products with the residual for each iteration. Some optimizations have been
formulated for this last case [20].

B. Orthogonal Matching Pursuit

The approximations of a Matching Pursuit are improved by orthogonalizing the vectors in the overcom-
plete basis with a Gram-Schmidt procedure; this optimization is termed Orthogonal Matching Pursuit and
was first proposed by Pati, Rezaifar and Krishnaprasad [24].The resulting algorithm convereges with a finite
number of iterations which is less than or equal to the dimensionality of the signal space. The price to be
paid is the large computational cost of the Gram-Schmidt orthogonalization.

The vectorφnt
selected at each step by Matching Pursuit is in general not orthogonal to the previously

selected vectors{φni
}1≤i<t. When subtracting the projection ofrt−1 overφnt

, the algorithm reintroduces
new components in the directions of{φni

}1≤i<t. This is avoided by projecting the residues on an orthogonal
family {γi}1≤i<t.

The Orthogonal Matching Pursuit algorithm is then as follows:

1) Initialize the residualr0 = y, the set of picked indexesI = ∅ and the approximation̂β = 0, β ∈ RM .
2) Select the dictionary vector that maximizes the value of the projection of the residual, and add its index

to the set of picked indexes:

nt = arg max
i=1,...,N

〈rt−1, φi〉

‖φi‖2
, (12)

I = [I, nt]. (13)

3) Orthogonalize the picked basis vector against the orthogonalized set of previously picked dictionary
vectors:

γt = φnt
−

t−1∑

p=0

〈φnt
, γp〉

‖γp‖2
γp. (14)

4) Update the estimate of the coefficient for the selected vector and the residual:

rt = rt−1 −
〈rt−1, γt〉

‖γt‖2
γt, (15)

β̂t =
〈rt−1, γt〉

‖γt‖2
. (16)

5) If ‖rt‖2 > ǫ‖y‖2, repeat iteration; otherwise, terminate.
The previous algorithms provides us with a decomposition ofy into the orthogonalized dictionary vectors

Γ = [γ1, . . . , γM ]:

y =
M∑

p=1

〈rp, γp〉

‖γp‖2
γp. (17)
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To expandy over the original overcomplete basisΦ, we consider the relationship betweenΓ andΦ given
by the QR factorization

ΦI = ΓR, (18)

whereΦI = [φn1
, . . . , φnM

] is the so-calledmutilated basis. Sincey = Γβ = ΦIαI = ΓRαI , whereαI is
the mutilated coefficient vector, then we can reconstruct asfollows:

αI = R−1β, (19)

α̂i =

{
αI,j if i = nj ∈ I
0 if i /∈ I.

(20)

When the number of iteration increases and becomes closer toM, the residues of an orthogonal pursuit
have norms that decrease faster than for a non-orthogonal pursuit.

C. Matching Pursuits for Compressed Sensing

We evaluate the performance of the Matching Pursuit algorithms for CS reconstruction purposes. Our
intuition is that since these algorithms will yield the sparsest decomposition̂α of the measurement vector
y in the projected basisΦ, the reconstruction can be used to recover the original signal x in the sparsity-
inducing basisΨ as x̂ = Ψα̂. Since the decompositions are the same, and the MP and OMP algorithms
act in a greedy fashion by picking the maximum projection, the algorithms tend to pick the coefficient in
order from largest to smallest magnitudes; an error in the estimates is induced by the nonorthogonality of
the dictionary vectors, whose magniutde is controlled by the δK constants described earlier.

The accuracy of the coefficient estimates is critical to the CS reconstruction; we derive the relationship
between the coefficient estimate and the actual coefficient,given by

α̂i,t = α̂i,t−1 +
〈rt−1, φi〉

‖φi‖2
= α̂i,t−1 +

〈
∑

j(αj,t−1 − α̂j)φj, φi〉

‖φnt
‖2

= α̂i,t−1 +
(αi − α̂i,t−1)‖φi‖

2 +
∑

j [(αj − α̂j,t−1)〈φj, φi〉]

‖φi‖2

= αi +

∑
j 6=i[(αj − α̂j,t−1)〈φj, φi〉]

‖φi‖2
. (21)

Since Theorem 1 requires that all small subsets of columns ofΦ (up toK in our case of interest) form almost
orthogonal matrices, we expect that the error, proportional to 〈φj, φi〉, will be small.

Figure 1 show the reconstruction of standard test signals HeaviSine and Blocks, processed using CS and
recovered using the Daubechies-8 and Haar wavelet bases, respectively. The first column shows the original
signal; the second column shows the sparse approximation with the given number of coefficientsK, which
shows that the signals have a sparse representation. The signal was projected intoCK random Gaussian
vectors, whereC = 4, to obtain the vector of CS measurementsy. The third, fourth and fifth columns
show the reconstruction of the signal from the CS measurements using Basis Pursuit, Matching Pursuit
and Orthogonal Matching Pursuit, respectively. Each reconstruction shows the Mean Square Error and the
computation time for the reconstruction.

These results show that all of the Matching Pursuit algorithms effectively reconstruct the signal, while the
Matching Pursuit and Orthogonal Matching Pursuits performmuch faster than the Basis Pursuit (40-350 and
3-13 times faster, respectively), with the overhead in the OMP algorithm caused by the orthogonalization of
the basis vectors.
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Fig. 1. Performance of pursuit algorithms for CS reconstruction. Top row: HeaviSine; bottom row: Blocks.

IV. TREE MATCHING PURSUITS

A. Motivation

We wish to customize the previous reconstruction algorithms for a class of signals of interests: piecewise
smooth signals, which have sparse representations in wavelet bases.

A wavelet basis for the spaceRN , whereN = 2l, l ∈ Z, is defined by the scaling and wavelet functionsφ
andψ, which in turn define the basis functions

ψj,k[n] := 2j/2ψ(2jt− k), (22)

with j andk indexing the scale and position of the wavelet atom function, respectively. The decomposition
of the signal into this wavelet basis is as follows:

x = uφ+
l−1∑

j=0

2j∑

k=1

wj,kψj,k, (23)

whereu = 〈x, φ〉 andwj,k = 〈x, ψj,k〉. The transform can be expressed in matrix form asx = Ψα, where
Ψ = [φ, ψ0,1, ψ1,1, . . . , ψl−1,2l−1 ] andα = [u, w0,1, w1,1, . . . , wl−1,2l−1], both sets being ordered first by scale
and then by offset.

The multiscale nesting structure of the wavelet atoms — the support of eachψj,k contains the supports
of ψj+1,2k−1 andψj+1,2k — induces a binary tree structure in the wavelet coefficients. We denote this
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Fig. 2. Picked and candidate coefficient sets in a wavelet binary tree.

relationship between these coefficients by stating that theformer is theparentcoefficient and the two latter
are thechildrencoefficients.

It is commonly known that when the wavelet coefficients of a piecewise smooth signal are arranged in a
binary tree structure, relationships are present between the coefficients of parent and child nodes. A large
wavelet coefficient (in magnitude) generally indicates thepresence of a discontinuity in the original signal
inside its support; a small wavelet coefficient generally indicates a smooth region in the support of the given
wavelet. Due to the nesting properties of child wavelets inside their parents, edges manifest themselves in
the wavelet domain as chains of large coefficients propagating across scales in the wavelet tree. This causes
the most significant wavelet coefficients of most piecewise smooth signals to form a connected subtree in
the wavelet binary tree. Wavelet coefficients also have decaying magnitudes as the scale decreases [20].

We observe that for piecewise smooth signals, due to these characteristics of the wavelet coefficients,
the Matching Pursuit algorithms tend to select coefficientslocated at the top of the tree and then continue
the selection down the tree, effectively building the connected tree that contains the most significant coeffi-
cients from the top down. For this reason, we propose an adaptation of the Matching Pursuit algorithms to
achieve faster reconstruction for piecewise smooth signals, which exploits the tree structure of the wavelet
coefficients. The algorithms will be described in the next section.

B. Algorithms

We formulate a modification to the Matching Pursuit algorithms that will allow for lower computational
complexity while maintaining good reconstruction quality. In this algorithm, we take only a subset of the
basis vectors into consideration at each of the iterations,and expand that set at each iteration. We begin
by defining two sets of coefficientsPt andCt, which contain the set of picked vectors — those vectors
that correspond to nonzero coefficients in the estimateα̂ — and the candidate vectors — vectors with zero
coefficients inα̂ but whose projections are evaluated. These sets are initialized asPt = ∅ andCt = {1} ∪
D(1), whereD(i) denotes a select of descendent coefficients of coefficienti. We will initially setD(i) to be
the two children coefficients of coefficienti, a model that we will expand later. Figure 2 shows an example
on the selection of the coefficients in the wavelet tree.

At each iteration of the algorithm, we will search for the dictionary vector inPt ∪ Ct that yields the
maximum projection to the current residual; if the picked vector belongs inCt, that coefficienti (and the set
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of its ancestors, denoted byA(i)) will be moved to the set of picked coefficientsPt and removed fromCt,
and the descendent setD(i) will be added toCt. TheTree Matching Pursuitalgorithm follows:

1) Initialize the residualr0 = y, the approximation̂α = 0, α̂ ∈ RN , and the picked and candidate
coefficient setsP0 = ∅ andC0 = 1 ∪D(1).

2) Select the dictionary vector that maximizes the value of the projection of the residual among those
available:

nt = arg max
i∈Pt−1∪Ct−1

〈rt−1, φi〉

‖φi‖2
. (24)

3) If nt ∈ Ct−1, i.e. if the coefficient is not currently among those picked,move the coefficient and
its ancestors to the set of picked coefficients, remove them from the set of candidates and add the
descendants ofnt to the set of candidates:

Pt = Pt−1 ∪ nt ∪ A(nt), (25)

Ct = Ct−1 \ (nt ∪A(nt)) ∪D(nt). (26)

4) Update the estimate of the coefficient for the selected vector and the residual:

rt = rt−1 −
〈rt−1, φnt

〉

‖φi‖2
φnt

, (27)

α̂nt
= α̂nt

+
〈rt−1, φnt

〉

‖φnt
‖2

. (28)

5) If ‖rt‖2 > ǫ‖y‖2, repeat iteration; otherwise, terminate.
TheTree Orthogonal Matching Pursuitalgorithm is defined in a similar way:
1) Initialize the residualr0 = y, the set of picked indexesI = ∅, the approximation̂β = 0, β ∈ RM , and

the picked and candidate coefficient setsP0 = ∅ andC0 = 1 ∪D(1).
2) Select the dictionary vector that maximizes the value of the projection of the residual, and add its index

to the set of picked indexes:

nt = arg max
i∈Pt−1∪Ct−1

〈rt−1, φi〉

‖φi‖2
, (29)

I = [I, nt]. (30)

3) If nt ∈ Ct−1, move the coefficient and its ancestors to the set of picked coefficients, remove them from
the set of candidates and add the descendants ofnt to the set of candidates:

Pt = Pt−1 ∪ nt ∪ A(nt), (31)

Ct = Ct−1 \ (nt ∪A(nt)) ∪D(nt). (32)

4) Orthogonalize the picked basis vector against the orthogonalized set of previously picked dictionary
vectors:

γt = φnt
−

t−1∑

p=0

〈φnt
, γp〉

‖γp‖2
γp. (33)

5) Update the estimate of the coefficient for the selected vector and the residual:

rt = rt−1 −
〈rt−1, γt〉

‖γt‖2
γt, (34)

β̂t =
〈rt−1, γt〉

‖γt‖2
. (35)

6) If ‖rt‖2 > ǫ‖y‖2, repeat iteration; otherwise, terminate.
We note that since the number of coefficients that are considered at each iteration is much smaller than

the number of available dictionary vectors, the reduction in computations of these algorithms is significant.
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Fig. 3. Initial performance of tree pursuit algorithms for CS reconstruction. Top row: HeaviSine; bottom row: Blocks. Left column: TMP
reconstruction; middle column: TOMP recontruction; rightcolumn: wavelet coefficient magnitudes — rows represent scales, largest to smallest.

V. ADAPTATIONS OF TREE MATCHING PURSUIT

A. Performance of TMP

Figure 3 shows the performance of the tree-based Matching Pursuit algorithms for the same signals shown
in Figure 1. We see some minor artifacts on the reconstruction of the HeaviSine, some major artifacts on
the TMP reconstruction of Blocks and an incorrect reconstruction from TOMP for Blocks. Notice that the
first quarter of this last reconstruction is flat, implying all zero coefficients for that part of the signal. In
looking for an explanation for this behavior, it is convenient to observe the wavelet coefficient tree for each
one of the signals. We see that for the Blocks signal, the significant coefficientsactually do notform a
connected subtree; notice the small coefficientα5 = w3,1. The Tree Matching Pursuit algorithms, due to
their nature, will not immediately include the coefficient subtree that is rooted at this small coefficient, and
thus the energy from these coefficients may be partially or completely reallocated to other coefficients in the
rest of the tree, which is seen for the TMP and TOMP algorithms. This indicates a need to reevaluate our
model for piecewise smooth signals in the wavelet coefficient domain.

It is also intuitive to see that the tree-based algorithms donot yield the same approximation as the original
pursuit algorithms due to the fact that the maximum non-picked coefficient at some stage was not included
among the set of candidate coefficients. This is noticeable especially in the Blocks signal, since the coeffi-
cients are not monotonically decreasing.

B. Smoothness

It is also worth pointing out that, save for the small coefficient already mentioned, the rest of the coeffi-
cients would indeed form a connected tree. If we were to include not only the children of a given coefficient
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i in the setDi, but the ‘grandchildren’ and even more descendants of the coefficient i, the algorithm would
have correctly identified the next significant coefficientsw4,1 and its descendants. This modification has
advantages and disadvantages; it is clear from the results that the reconstruction will be the same or better
as we add more descendants intoDi, but the computational advantage against the original greedy algo-
rithms will be reduced. We try to reach a balance between these two extremes by defining an adaptive set of
descendants:

Definition 2: The l-depth set of descendantsDl(i) is the set of coefficients that are withinl levels below
coefficienti in the wavelet tree.

We revisit the process of basis vector selection for the proposed algorithms with this new definition of the
setD: our interest is to look forl ∈ [1, log2(N)] large enough such that the maximum non-picked coefficient
is always inside the set of candidate coefficients:

1) Initialize
Pl,0 = ∅ andCl,0 = {1} ∪Dl(1).

2) Expand these sets at iterationt as follows:

nl,t = arg max
i∈Cl,t

〈x, ψi〉

‖ψi‖2
,

Pl,t = Pl,t−1 ∪ A(nl,t) ∪ {nl,t},

Cl,t = Cl,t−1 \ [A(nl,t) ∪ {nl,t}] ∪Dl(nl,t).

3) The iterations end whenPl,t = {1, . . . , N} andCl,t = ∅.
This allows us to define a class of signals for which the algorithm behaves well:
Definition 3: We say that a signalx = Ψθ is l-degree smoothin the wavelet basisΨ if for all t2 > t1,

〈x, ψnl,t2
〉 ≤ 〈x, ψnl,t1

〉
We then can describe the modifiedl-Tree Matching Pursuit andl-Tree Orthogonal Matching Pursuit al-

gorithms, where the sets of coefficientsP andC are updated as described above; we can also postulate the
following result on performance of these algorithms.

Theorem 3:For a signalx that isl-degree smooth inΨ, thel-TMP andl-TOMP algorithm on the set of
measurementsy = V x using the dictionaryΦ = VΨ will recover the same approximation as the MP and
OMP algorithms, respectively.

Proof. The original greedy algorithm selects the coefficient withmaximum projection to the correspond-
ing vector at each iteration. If at some iteration of the treepursuit algorithm such coefficient is inside the
set of picked or candidate coefficients, then the algorithmswill behave in the same way. If it the coefficient
is not a part of either set, then the picked coefficient will besmaller than the actual maximum, which will
eventually be included in the set of candidates; therefore we would find that the maximum projection among
candidates at a future timet2 would be larger than the same maximum at an earlier timet1. This in turn
means that if this previous condition never occurs, then thealgorithms will pick the same coefficients at
each iteration and the reconstruction will be identical. �

We analyze the smoothness of our test signals by defining a measurement ofl-smoothness:
Definition 4: The l-degree smoothness measurement of the signalx ∈ RN in the basisΨ = [ψ1, . . . ψN ]

is given by

δl = max

{
max

1≤t1<t2

[
〈x, ψnl,t2

〉 − 〈x, ψnl,t1
〉
]
, 0

}
. (36)

A signal will be l-degree smooth ifδl = 0. We also want to review the accuracy of the estimation and
the computational complexity for different values ofl for these test signals and see the correlation between
these values.

Figure 4 shows the values ofδl for the HeaviSine and Blocks signals of length 512 samples, as well as the
reconstruction error and computational complexity (in number of inner products) of the TMP, TOMP,l-TMP
andl-TOMP algorithms. We see that whenδl ∼ 0, the reconstruction error is negligible and the computa-
tional complexity for thel-TMP algorithm is lower than that of the original algorithm,albeit increasing with
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Fig. 4. Performance ofl-TMP andl-TOMP algorithms. Top row: Heavisine; bottom row: Blocks. For l with smallδl, the reconstructions have
small error; the computational complexity is smallest for the lowestl with smallδl in each signal.

l. The large computational complexity for smalll are due to the corrections in the values of the coefficients
made by the Tree Matching Pursuit Algorithms as few coefficients are included at each step. Notice that
the figure shows that HeaviSine and Blocks have smoothness degrees of 5 and 8 in their respective wavelet
bases.

C. Complex Wavelet Transform

We have discovered a few issues in our assumptions for the structure of wavelet coefficients in piecewise
smooth signals. A problem of concern to us, as described in [1], is theoscillationsof the wavelet function:
since wavelets are bandpass functions, the wavelet coefficients can oscillate positive and negative around
singularities. This may cause the wavelet coefficient corresponding to a discontinuity to be small, therefore
overstating the assumption that for piecewise smooth signals, the wavelet coefficients form a connected tree.

In [1], a complex wavelet transformis proposed, inspired on the Fourier transform, which does not have
some of the problems that the real-valued wavelet transformhas. A complex wavelet transform has the same
structure shown in (22) and (23), but the wavelet is complex-valued:

ψc(t) = ψr(t) + jψi(t) (37)

whereψr(t) is real and even andjψi(t) is imaginary and odd, and they (approximately) form a Hilbert
transform pair. The complex wavelet transform (CWT for short) can be easily implemented using a dou-
bletree structure, where we build tworeal wavelet transforms by usingψr(t) andψi(t) separately, obtaining
then sequences of coefficientsαr andαi. The complex wavelet coefficients are then defined as

αc = αr − jαi (38)



13

0 5 10
0

5

10

15

b

δ b
HeaviSine

0 5 10
56.8

57

57.2

57.4

57.6

57.8

58

58.2

b

D
is

to
rt

io
n,

 d
B

MP
OMP
b−TMP
b−TOMP

0 5 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

b

In
ne

r 
P

ro
du

ct
s

MP
OMP
b−TMP
b−TOMP

0 5 10
0

5

10

15

20

25

30

b

δ b

Blocks

0 5 10
6.018

6.02

6.022

6.024

6.026

6.028

6.03

b

D
is

to
rt

io
n,

 d
B

MP
OMP
b−TMP
b−TOMP

0 5 10
1

2

3

4

5

6

7

8
x 10

5

b
In

ne
r 

P
ro

du
ct

s

MP
OMP
b−TMP
b−TOMP

Fig. 5. Performance ofl-TMP andl-TOMP algorithms using complex wavelet transform. Top row:Heavisine; bottom row: Blocks. The value
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Notice that either the real or the imaginary part of the wavelet coefficients would suffice to reconstruct
the signal; however, a complex wavelet representation allows for more piecewise smooth signals to form a
connected subtree of significant wavelet coefficients when the complex magnitude is evaluated, due to the
Hilbert Pair quality of the real and imaginary components ofthe complex wavelet: when a discontinuity is
present and the real (or imaginary) wavelet coefficient is small, the imaginary (or real) wavelet coefficient is
large, yielding shift invariance on the coefficient magnitudes of the signal. As such, when the Tree Matching
Pursuit algorithm is implemented using a Complex Wavelet basis, a smaller band will be necessary for
efficient reconstruction. We choose to useCWT as our sparsity-inducing basis, which will allow for more
efficient solutions using thel-TMP algorithms than the original real wavelet transform implementation.

Figure 5 shows the values ofδl for the HeaviSine and Blocks signals of length 512 samples when theCWT
is used, as well as the reconstruction error and computational complexity (in number of inner products) of the
TMP, TOMP,l-TMP andl-TOMP algorithms. As the figure shows, the degree of smoothness of these two
test signals is smaller when theCWT is used; as such, thel-TMP algorithm that achieves good reconstruction
will be computationally simpler.

For theCWT based Matching Pursuit algorithms, we change our formulation for the coefficient estimates
slightly:

α̂c,i,t = α̂c,i,t−1 +
2〈rt−1, φc,i〉

‖φc,i‖2
, (39)
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Fig. 6. Reconstructions usingl-TMP andl-TOMP algorithms using complex wavelet transform.

which yields an approximation error as follows:

α̂c,i,t = αi +
2α∗

i 〈φ
∗
i , φi〉 +

∑
j 6=i[(αj − α̂j,t−1)〈φj, φi〉 + (αj − α̂j,t−1)

∗〈φ∗
j , φi〉]

‖φi‖2
(40)

where both〈φj, φi〉 and〈φ∗
j , φi〉 are small if Theorem 1 holds.

Figure 6 shows the reconstruction using the tree Matching Pursuit algorithms, withl = 1 and l = 2
respectively. We choose to divide the contribution on the estimate of the real and imaginary parts of the
complex wavelet transforms equally to exploit the inherentredundancy

VI. EXTENSIONS OFTREE MATCHING PURSUIT

We consider several extensions and applications of these algorithms, both in Compressed Sensing and in
other fields.

A. Denoising

The current implementations of reconstruction in CS are notrobust to the injection of noise in the mea-
surements; in [19], the Basis Pursuit with Denoising algorithm is proposed to alleviate this problem, while
in [7], bounds are given for the distortion of the recovered signal as a function of the noise power. Also,
[22] recently proposed an EM-based algorithm to recover thesignal from random projections, and also of-
fer bounds for the distortion in the recovered signal; no examples were given for rate of convergence or
distortion in the reconstruction.
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Fig. 7. Denoising performance results for several algorithms. The structure exploited by the Tree Matching Pursuit algorithm allows for better
reconstruction of the signal from noisy measurements.

When the signal is sparse in the wavelet basis, we can effectively perform denoising by thresholding [15]
by varying the convergence criterion as a function of the signal to noise ratio. In this fashion, we will only
identify the most significant coefficients using the Matching Pursuit or Tree Matching Pursuit algorithm and
effectively threshold the coefficient values at the reconstruction.

Noise artifacts are also observed with the standard methodsof reconstruction (Basis Pursuit and Matching
Pursuit) since the energy of the signal is not discriminatedby band; in this case, a small amount of the
energy from the coefficients in the coarsest scales ‘leaks’ to the finer scales and causes low-amplitude, high-
frequency artifacts which resembles small-scale noise. Bygiving preference to the coarsest coefficients over
the finest, the Tree Matching Pursuit algorithms help mitigate this effect during reconstruction.

Figure 7 show the performance of the algorithm in denoising.White Gaussian noise was added to the
HeaviSine and Block signals with power 0.2; the results fromthe different algorithms are shown.

B. Matching Pursuit using Transforms

Although Matching Pursuit allows for computationally feasible reconstruction for higher-dimensional
signals than Basis Pursuit, we still need to pay the price of storage of the original, measurement and/or holo-
graphic bases in memory. The original basis is of sizeN ×N = O(N2); the measurement and holographic
bases are of sizeM × N = O(KN logN) each. For large dimensional signals a large amount of memory
is needed to perform Matching Pursuit using the matrices. Asan example, for a image as small as64 × 64
pixels, we haveN = 212 andK = 410 with M = 4K, and we need about 240 Megabytes of memory to
store these matrices.
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We do have an alternative, however. Usually a wavelet transform exists to obtain the sparse representation
of a signal. If we can replace the projection of a vector usingthe matrix product to a method using a
transform, we do not need to store these matrices in memory. However, the computational complexity of
the problem increases slightly, assuming that it is equallyor more complex to calculate the transform than
to apply the transform matrix. In this method, we also lose the computational gain from the Tree Matching
Pursuit algorithms, since all of the coefficients are calculated at once using the transform. The denoising
properties of the algorithm are still preserved, however.

Our insight is that the estimate of the coefficient can be estimated by using only transforms: if forx =
Ψα, andy = F (x) we have transformsα = W (x) andy = V x = Φα, as well as inverse transforms
x = W−1(α), andx = F−1(y), then the projections are obtained by

〈rt, φi〉 = 〈rt, V ψi〉 = 〈V Hrt, ψi〉 = 〈F−1(rt), ψi〉 = Wi(F
−1(rt)), (41)

whereWi(x) denotes theith coefficient of theW transform ofx.
In their work, Candès and Romberg advocate the use of Partial or Mutilated Fourier Transform as their

measurement basis, guided by the physical acquisition of tomography signals. We now propose a similar
method, denoted the Permuted Fast Fourier Transform (PFFT), asy = F (x) = FFT1:M/2(P (x)), where
P (x) is a fixed permutation of the samples in the vectorx, performed before the truncated Fast Fourier
Transform FFT1:M/2 is applied, in which only the firstM/2 Fourier Transform coefficients are kept - giving
usM measurements from the signal by counting the real and imaginary parts of the Fourier Transform
coefficients as separate measurements. It is easy to see thatwe can inverse transform from y to x isx =
F−1(y) = P−1(IFFTN(y)), where IFFTN(y) is the inverse Fast Fourier Transform ofy zero-padded to
lengthN , andP−1(x) is the inverse permutation of the samples inx, such thatF−1(F (x)) = x. Other
transforms can be used together with the permutation technique, such as the Discrete Cosine Transform.

Figures 8 and 9 show the performance of the algorithm for several test cases. We use the test signals with
length 8192 points and reconstruct noiseless and noisy versions of the signals using the complex wavelet ba-
sis as the original basis and using the Permuted Discrete Cosine Transform to obtain the measurements. We
also apply the methodology to the256 × 256 pixel images Lena and Wet-Paint, where the two-dimensional
PFFT and a real wavelet transform (Daubechies-8) is used instead. Once again, a Basis Pursuit implementa-
tion is not feasible for these examples, due both to the computational complexity and storage requirements
for the relevant bases — although we expect that these Projection-based methods can be implemented in BP
as well.

C. Sparse Approximation in Overcomplete Wavelet Bases

The algorithms shown here can also be applied in the normal sparse approximation environment, in which
we have signals that are sparse in an overcomplete wavelet-like basis but for which there is no unique
representation. The Tree Matching Pursuit algorithms shown here should effectively and accurately find
a sparse representation of the signal, something that cannot be achieved using Basis Pursuit - since all
coefficients are evaluated at every iteration - while requiring less computational work due to the tree-search
structure of the algorithm. Some bases that follow this model are complex wavelets [1] and curvelets [2].

D. Matching Pursuit as a Preprocessing Step

The Basis Pursuit algorithm is solved through interior point methods that admit an initial estimate of the
solution; the distance between the initial estimate and theactual solution will affect the convergence time of
the algorithm. Since the convergence rate of the Matching Pursuit algorithm decays exponentially, we can
expect an ideal point in time where it is convenient to switchfrom Matching Pursuit to Basis Pursuit, where
the estimate being given by the MP algorithm is used as the initial estimate for the BP algorithm, causing it
to converge in a fast manner and obtaining an optimally sparse solution.
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Fig. 8. Performance of matching pursuit algorithms on reconstruction of one-dimensional signals using transforms; noinner products appear
in this methodology. Top two rows: reconstruction from noiseless measurements; bottom two rows: reconstruction from noisy measurements,
ǫ = 0.2.

E. Reservations on Matching Pursuit

Previous work on sparse approximations has shown that the Matching Pursuit algorithm has some flaws.
DeVore and Temlyakov [14] show that the Matching Pursuit algorithm output may have a high level of error
(O(m−1/2)) for a specific dictionary of vectors, Tropp [25] shows similar results, and establishes measures
of goodness for dictionaries that are similar to those already established for CS matrices [7, 18].

VII. RELATED WORK

In the published work on Compressed Sensing that has been released in the past year, all of the authors
implement reconstruction through Basis Pursuit except fora few cases. Candès and Romberg [6] proposed
a method based on projection onto convex sets which requiresside information in the form of theℓ1 norm
of either the compressed signal or its wavelet coefficient vector for each of the available scales. The authors
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Fig. 9. Performance of matching pursuit algorithms on reconstruction of images using transforms. Left column: original images; middle
column: sparse approximations; right column: reconstructions

recognize that this side information is not easily obtainable in real-world cases in which the signal is not
known a-priori, and obtaining the norms would defeat the benefits of Compressed Sensing on actual sensors.
The approach is still useful for universal coding, compression and encryption scenarios. For cases where
this side information is not available, the authors reformulate their reconstruction algorithm using Lagrange
Multipliers and test it on tomography image reconstructionwith good results. We have found that by per-
forming reconstruction using Matching Pursuit, a quality loss of about 3 dB in PSNR of the reconstructed
images is observed.

Tsaig and Donoho [19] propose adaptations of the Basis Pursuit algorithm for signals that are sparse in
the wavelet domain by performing two-gender hybrid CS by separately compressing the scaling and wavelet
coefficients, or by performing multiscale CS by separately compressing the coefficients at each one of the
scales. Once again, this method is not feasible in real-world cases, since the calculation of per-band or
per-gender coefficients would also defeat the same purpose of CS as the method previously mentioned.

Haupt and Nowak [22] recently proposed an EM-based algorithm to recover the signal from random
projections, and also offer bounds for the distortion in therecovered signal; no examples were given for rate
of convergence or distortion in the reconstruction.

Finally, Tropp and Gilbert [26] demonstrated that Orthogonal Matching Pursuit can reliably recover a
signal using an oversampling factor of 8 estimated empirically; one of the advantages of the OMP recon-
struction is that when the signal is successfully recovered, at mostK iterations of the algorithm are required
for the recovery, and the residual becomes null at that time.This also gives a convenient indication of the
success of the recovery algorithm.

Some previous work also exists on implementations of Matching Pursuit using tree structures. Cotter and
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TABLE I

COMPUTATIONAL COMPLEXITY OF PURSUIT ALGORITHMS. K: NUMBER OF MEASUREMENTS; N: SIGNAL DIMENSION; I:

CONVERGENCEFACTOR

Algorithm Complexity
Basis Pursuit O(N3)

Matching Pursuit O(KNI)
Orthogonal Matching Pursuit O(K2

N)
Tree Matching Pursuit O(K2

I)
Tree Orthogonal Matching Pursuit O(K3)

Rao [12] propose a Matching Pursuit algorithm in which for each iteration the best-matchingk atoms are
selected and a residual is generated for each atom; each one of these residuals is used, one at a time, for the
next iteration. This process forms a tree in which the nodes at level l represent the bestkl approximations of
the signal; the tree can be pruned tok nodes per level as the iterations progress.

De Vleeschouwer and Macq [10] propose a Matching Pursuit algorithm in which the dictionary atoms
correspond to wavelet functions obtained from a filterbank to acquire sparse representations of displaced
frame difference images, used in MPEG video coding; at each iteration, the remainder is first partitioned
into blocks and the block with highest energy is used for the iteration. The computational advantage of the
tree structure in this case is limited to the fast calculation of the coefficient estimates through the filterbank
since all atoms are evaluated at every iteration of the algorithm.

Jost, Vandergheynst and Frossard [23] propose an algorithmsimilar in nature to ours: the atoms in the
dictionary are clustered into groups of sizek by similarity, such that atoms that would have large projection
magnitudes simultaneously are clustered together, and atoms that do not hold this property are clustered
apart. At each level, available clusters are clustered again until less thank clusters exist. Each cluster is
assigned a representative cluster atom, which is a linear combination of the atoms in the cluster. This builds
a k-children tree where the cluster atoms are represented byinterior nodes and the dictionary atoms are
represented by the leaves. The reconstruction then proceeds by selecting the cluster at the first level of the
tree that yields maximum projection magnitude, and performs projections against the cluster atoms for the
cluster’s children. This procedure goes on until we select aleaf, or dictionary atom, at which point the
corresponding coefficient and the residual are updated normally. This methodology speeds up the search for
the best atom in the dictionary, but requires that these atoms can be clustered as described; since the atoms
used in CS reconstruction are essentially random, they cannot be clustered, and such clustering will almost
surely not follow the structure of the wavelet functions.

VIII. C ONCLUSIONS AND FURTHER WORK

Each one of the algorithms presented in this paper has advantages and disadvantages; while the Basis
Pursuit algorithm is reliable, it is computationally unfeasible for moderately-sized signals. On the other
hand, the Matching Pursuit algorithm is computationally simple, but its unbounded number of iterations
required for convergence might make it undesirable in certain applications. The Orthogonal Matching Pur-
suit algorithm, while being bounded in the number of iterations required, has a much higher computational
complexity due to the orthogonalization of the basis vectors required at each iteration. The Tree Matching
Pursuit algorithm here proposed is robust to noise, is computationally feasible for a larger domain of signals,
and exploits the inherent structure in piecewise smooth signals to achieve faster, better reconstruction. Table
I shows the computational complexity of the different algorithms. Our only reservation is once again on its
rate of convergence.

Future research directions include finding measurement bases that will allow for faster reconstruction, as
well as algorithms that will allow for scaled reconstruction as more CS measurements are received through
a communications channel. It is worth mentioning that probabilistic formulations of the parent-child re-
lationship in the wavelet coefficient tree, such as that proposed in [9] may benefit the performance of the
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algorithm, while requiring training of the model on the class of signals that the compression system will
observe.
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