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Abstract. Target classification fusion problem in a distributed, wireless sensor network is investigated.
We propose a distance-based decision fusion scheme exploiting the relationship between sensor to target
distance, signal to noise ratio and classification rate, which requires less communication while achieving
higher region classification rate when compared to conventional majority-vote-based fusion schemes. Sev-
eral different methods are tested, and very encouraging simulation results using real world experimental
data samples are also observed.
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1. Introduction

It will soon become feasible to deploy massive amount of low-cost miniature sensors
to monitor large regions over ground surface, underwater, or atmosphere. These sensor
nodes will be integrated with miniature power supply, sensors, on-board processors, and
wireless radio communication modules, capable of forming a large-scale ad hoc wire-
less network [Estrin et al., 3]. Common signal processing tasks performed in a sensor
system include event detection, and parameter estimation. While these detection, classi-
fication, and tracking algorithms have been well developed for conventional centralized
signal processing systems, much less is known for a distributed wireless sensor network
system. A distinct feature of such a system is that it contains multiple, physically scat-
tered sensing and processing modules that must collaborate with each other to achieve
high performance. Conventional centralized information and data fusion techniques are
unsuited for such an application because too much data must be communicated from
individual sensors to a centralized fusion center. Instead, a family of novel distributed,
localized, and location centric signal processing and information fusion algorithms must
be developed to meet this demand.

In this paper, we propose a distance-based decision fusion method for the collab-
orative target classification of moving vehicles using acoustic spectral features. A key
innovation of this approach is to use the distance between the target and the sensor as
a parameter to select sensors that give reliable classification result to participate deci-
sion fusion. Intuitively, sensors that are far from the target will have lower probability
of making correct classification decisions. This intuitive concept is verified using real
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world experimental data recorded at a military training ground using a prototype wire-
less sensor network. In the rest of this paper, the background of wireless sensor network
architecture will be introduced in section 2.1. The sensor network signal processing al-
gorithms will be surveyed in section 2.2 with special attention to the task of target clas-
sification and its performance with respect to sensor-target distance. The distance-based
classification fusion method will be discussed in section 3, completed with simulation
results using real world experimental data.

2. Distributed wireless sensor network signal processing
2.1. Wireless sensor nodes and network

We assume that a number of sensor nodes are deployed in an outdoor sensor field. Each
sensor node consists of an on-board computer, power source (battery), one or more sen-
sors with different modalities, and wireless transceivers. Depicted in figure 1(a) is a
prototype sensor node used in the DARPA SensIT project, manufactured by Sensoria,
Inc. With this sensor node, there are three sensing modalities: acoustic (microphone),
seismic (geophone), and infrared (polarized IR sensor). The acoustic signal is sampled
at 5 kHz at 12 bit resolution. The on-board computer is a 32-bit RISC processor running
the Linux operating system.

The sensor field (cf. figure 1(b)) is an area of approximately 900 x 300 meters in
a California Marine training ground. The sensors, denoted by dots of different colors in
figure 1(b) are laid out along side the road. The separation of adjacent sensors ranges
from 2040 meters. We partition the sensors into three geographically local regions.
Sensors within each region will be able to communicate freely. One sensor within each
region is designated as a manager node. The manager node will be given the authority
to communicate with manager nodes of surrounding regions. This hierarchy of commu-

Figure 1. (a) A Sensoria sensor node, (b) sensor field layout.
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nication ensures that only local wireless traffic will be engaged, and hence contributes
to the goal of energy conservation.

Military vehicles, including the Assault Amphibian Vehicle (AAV), the Dragon
Wagon (DW), the High Mobility Multipurpose Wheeled Vehicle HMMWYV), and others
are driving passing through the roads. The objective is to detect the vehicles when they
pass through each region. The type of the passing vehicle then will be identified, and the
accurate location of that vehicle will be estimated using an energy-based localization
algorithm. In the following discussion, we will assume there is at most one vehicle
in each region. During the experimentation in November 2001, multi-gigabyte data
samples have been recorded and are used in this paper. We will call these data Sitex(02
data set.

2.2. Sensor network signal processing tasks

In a distributed wireless sensor network, the bulk of signal processing tasks are distrib-
uted over individual nodes. In particular, at each sensor node, the on-board computer
will process the sensed acoustic, seismic and PIR data to detect the presence of a poten-
tial target, and to classify the type of vehicle that is detected. In this paper, we will focus
on the processing of the acoustic sensing channel only.

2.2.1. CFAR target detection

For each of the 0.75 second duration, the energy of the acoustic signal will be computed.
This single energy reading then will be fed into a constant false alarm rate (CFAR)
energy detector [Li et al., 6] to determine whether the current energy reading has a mag-
nitude that exceeds a computed threshold. If so, a node-detection event will be declared
for this duration. Otherwise, the energy reading is considered as contributions from the
background noise.

In figure 2, a sample energy time series is plotted for a period of 500 seconds. The
two horizontal lines represent the threshold with two different false alarm rates. These
thresholds vary with time as they are updated by the energy readings that do not exceed
the thresholds.

%197

Figure 2. Illustration of CFAR detection. The upper line is the threshold. Vertical axis is energy. When the
energy exceeds the threshold, detection is made.
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From figure 2, it is clear that when the background noise energy increases, the
threshold increases as well. If the signal energy distribution, which is assumed to be un-
known in the CFAR detection, remains unchanged, the probability of miss will increase.
Furthermore, in this outdoor, unrestricted environment, we observe that when the wind-
gusts blow directly into the microphone, it often create a surge of false detection events.
These anomalies are likely to cause performance degradation.

2.2.2. Target classification

Once a positive target-detection decision has been made, a pattern classifier using maxi-
mum likelihood pattern classifier [Li et al., 6] is invoked. The acoustic signal is recording
usinga sampling frequency of 4960 Hz. We use a 50-dimensional feature vector-based
on the Fourier power spectrum of the corresponding acoustic time series within the
0.75-second duration. This feature is created by averaging by pairs the first 100 points
of the 512-point FFT, which are then normalized; the resolution of the frequency spec-
trum sampling is 19.375 Hz due to the averaging. Some typical features can be seen in
figure 3.

Since the original acoustic time series contains both the acoustic signal sensed from
the moving vehicle as well as background noise, the probability of correct classification
may vary as the signal to noise ratio changes. It is intuitive to predict that if a sensor node
is far away from the target vehicle, its SNR is lower, and hence the probability of correct
classification will be lower. This is particularly easy to explain based on the maximum
likelihood classifier architecture. In the ML classifier, we assume that the feature vector
x is drawn from a conditional probability (likelihood function):

1
P(x | k) ~ exp{—z(x —x) T2 M x - xk)}, (D)

kit

rature: Dimension

Figure 3. Figure of typical normalized acoustic features for different vehicle classes.
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Figure 4. Distribution of correct (dark marks) and incorrect (light marks) classifications based on distance

and SNRg4g.

where x; is the mean feature vector of the kth type of vehicle and X is the covariance
matrix estimated from the training data samples. The ML classifier determines that
x belongs to the £* class of vehicle if P(x | k*) > P(x | k) for any k # k*. As x is
perturbed with higher background noise, it is more likely that the margin

P(x | k%) — &aé(P(x | ). (2)

will shrink. As such, the probability of misclassification will increase. The level of
noise can be determined calculating the signal to noise ratio SNRdB, and should be in-
versely proportional to the distance between the node and the vehicle. To validate this
conclusion, we conducted an experiment using a portion of the Sitex02 data set that was
recorded when a vehicle is cruising across the east-west segment of the road in the sen-
sor field. With the ground-truth data, we calculate the relative average distance between
each sensor to the vehicle as well as the SNR4g for each node during each 0.75-second
interval. We also perform target classification using the FFT spectrum of the acoustic
signal during that interval, and record the classification result based on distance and
SNRgg.

Then, we collect such results for all the nodes in both regions that cover the road
segment and compiled them into a histogram as shown in figure 5. It is quite clear that
as the target-sensor distance increases and the signal to noise ratio decreases, the prob-
ability of correct target classification decreases. In fact, this probability dropped below
0.5 when the target-sensor distance is greater than 100 meters. This empirically derived
probability of correct classification will offer great information to facilitate the develop-
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Figure 5. Probability of correct target classification versus distance betweens sensor node and the target and
the signal to noise ratio. Darker marks represent higher correct classification probability.

ment of a distance-based, region-wide classification fusion method to be discussed in a
moment.

2.2.3. Region-based information fusion

Within a short message submitted by individual sensor nodes to the manager node of
the region, information is sent on the corresponding energy reading (a non-negative
number), CFAR detection result (yes/no), classification result (one integer k), and de-
tection results of PIR and seismic channels. Hence, its length is less than 30 bytes and
would take little energy and bandwidth to transmit via the wireless channel.

At the region manager node, information fusion tasks will be performed. First, a
region-wide detection decision will be made by majority votes from all sensor nodes that
reported detection at any of the three sensing modality channels. If the sum of all these
votes exceeds a preset threshold, it is deemed that there is indeed a vehicle present within
the region. This will then trigger an energy-based target localization algorithm [Li and
Hu, 5] to yield an estimate of the vehicle location. The location information then will
be sent to a Kalman filter based tracking algorithm to facilitate data association, track
filtering and track prediction. Details of these tasks will be reported in the near future.

3. Distance-based classification fusion

Apart from the localization and tracking of the target, it is also necessary to classify
the type of vehicle within the region based on target classification results reported from
member sensor nodes. Note that in our current system architecture, the target localiza-
tion may be performed prior to region-wide target classification. Hence, if the target po-
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sition is relatively accurate, it is possible to use the estimated target location and known
sensor coordinates to calculate the target-sensor distance. Then, one may estimate the
empirically derived probability of correct classification at a particular sensor node based
on the distance information as described in section 3.2.

3.1. Data fusion

Statistically speaking, data fusion [Brooks and Iyengar, 2] is the process of estimating
the joint posterior probability (likelihood function in the uninformed prior case) based
on estimates of the marginal posterior probability. Let x(i) denote the feature vector
observed at the ith sensor node within the region, and let C; denote the kth type of
vehicle. The goal is to identify a function f(-) such that

P(x € Ce | x(1),...,x(N)) = P(x € Ci | x).
~ f(g(P(x € Cx | x(1))), 1 <i <N). 3)

In our current work, we let the maximum function g(zx) = 1if zx > z;, k # j,
and g(zx) = 0, otherwise. Hence, our approach is known as decision fusion. Conven-
tionally, there are two basic forms of the fusion function f.

3.1.1. Multiplicative form
If we assume that x(i) and x(j) are statistically independent feature vectors, then

N
P(xecku):ﬂp(xeck | x(0)). 4)

i=l1

This approach is not realistic in the sensor network application and cannot be easily
adapted to a decision fusion framework.

3.1.2. Additive form

The fusion function is represented as a weighted sum of the marginal posterior probabil-
ity or local decisions:

N
P(x e C)=) wig(P(x € Ce | x(1))). (5)
i=1

A baseline approach of region-based decision fusion would be simply choose
w; = 1 for 1 <i < N. This would be called the simple voting fusion method.

3.2. Maximum a posterior decision fusion

With distance-based decision fusion, we make each of the weighting factors w; in equa-
tion (5) a function of distance and signal to noise ratio, that is w; = h(d;, s;) where d;
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is the distance between the ith sensor and the target and s; is the signal to noise ratio
defined as

Es - En
SNRsp =10 - 10g10<T), 6)

where E; is the signal energy and E, is the noise mean energy, both determined by
the CFAR detection algorithm. We can use then the characterization gathered from the
experiment referred in section 2 to formulate a Maximum A Posterior (MAP) probability
gating network, using the Bayesian estimation

PxeCilx)=P(x e Cylx,di,si) - P(ds,s;). (7)

The prior probability P(d;, s;) is the probability that the target is at the distance
range d;, and the acoustic signal SNRyg is at the s; range, and can be estimated empir-
ically from the experiments. The conditional probability P(x | d;, s;) is also available
from the empirically gathered data. With these, we may simply assign the following
weights in equation (5):

w; = P(x | di, si) - P(d;, si). ®)

In other words, if a particular sensor’s classification result is deemed as less likely to be
correct, it will be excluded from the classification fusion.
We now have another possible choice of w;. That is,

o 1, di<dj,j§éi,
P {0, otherwise. )

This choice of weights represents a nearest neighbor approach, where the result of
the closest node to the target is assumed to be the region result.

We can use other choices that are functions only of distance. In this work, we use
a simple threshold function:

L 1, di < dmax’
Wi = {O, otherwise. (10)

We compare these three different methods of choosing w; to the baseline method
of setting w; = 1 for all i, and test them using seven different experiments in the Sitex(02
data set, using one out of » training and testing. Our metrics are the classification rate
and the rejection rate.

The classification rate is the ratio between the number of correctly classified sam-
ples and the total numbered of samples classified as vehicles. The rejection rate is the
rate between the number of samples rejected by the classifier and the total number of
samples ran through the classification algorithm. Consequentially, the acceptance rate is
the complement of the rejection rate.

There are two rejection scenarios with our current classifier scheme; one is at the
node level, where one of the classes characterized during training collects typical sam-
ples of events with high energy that do not correspond to vehicles. These events are
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Table 1
Classification rate fusion results using 4 methods.

Fusion MAP Bayesian dmax =50m  Nearest neighbor ~ Majority voting

method 77.19% 80.82% 83.55% 75.58%

AAV3 33.87% 50.79% 73.33% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 90.63% 84.31% 91.84%
DWwW3 80.00% 83.78% 85.71% 82.50%
Dwé6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 75.00% 75.86% 63.33%
Dwi2 70.00% 65.52% 65.63% 64.29%

Table 2

Rejection rate fusion results using 4 methods.

Fusion MAP Bayesian ~ dmax =50m  Nearest neighbor Majority voting

method 9.53% 21.56% 7.40 % 10.40%
AAV3 3.13% 1.56% 6.25% 7.81%
AAV6 4.29% 27.14% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 31.43% 17.14% 14.29%
Dwi2 30.23% 32.56% 25.58% 34.86%

incorrectly detected and include such noises as wind, radio chatter and speech. The
other is at the region level, where the region fusion algorithm does not specify satisfac-
torily a region classification result, i.e. no nodes were closer than dp,« to the vehicle for
the distance-based region fusion algorithm.

It is desired to obtain high classification rates while preserving low rejection rates.
The results are listed in tables 1 and 2. To analyze the impact of localization errors in
the different methods, errors were injected to the ground truth coordinates following a
zero-mean Gaussian distribution with several standard deviations. The results are shown

in tables 3-8.

3.3. Results and analysis

For tables 1-8, the cells that give the highest classification rate are highlighted, including
tied cases. It is seen that nearest neighbor method yields out the best results consistently
when the error is low or nonexistent — in 9 out of 14 cases. The distance-based and
MAP-based methods give comparable results in cases where the error is larger (each
method has the highest rate in 4 to 6 cases out of 14). However, the rejection rates
are unacceptable for the distance-based method, even with nonexistent error, with an
average of 35%.
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Classification rate fusion results using 4 methods, and error injection with o = 12.5 m.

Fusion MAP Bayesian dmax =50m  Nearest neighbor ~ Majority voting
method 77.14% 80.51% 81.89% 75.58%
AAV3 32.79% 56.45% 67.21% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 93.88% 90.63% 84.31% 91.84%
DW3 80.00% 81.08% 83.33% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 78.26% 75.86% 63.33%
Dw12 66.67% 57.14% 62.50% 64.29%
Table 4

Rejection rate fusion results using 4 methods, and error injection with o = 12.5 m.

Fusion MAP Bayesian dmax =50 m Nearest neighbor Majority voting
method 9.75% 22.32% 7.40% 10.40%
AAV3 4.69% 3.13% 6.25% 7.81%
AAV6 4.29% 25.71% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 34.29% 17.14% 14.29%
Dw12 30.23% 34.88% 25.58% 34.86%
Table 5
Classification rate fusion results using 4 methods, and error injection with o = 25 m.

Fusion MAP Bayesian dmax =50 m Nearest neighbor Majority voting
method 77.74% 79.42% 79.29% 75.56%
AAV3 37.70% 54.39% 55.36% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 100.00% 88.24% 91.84%
DW3 80.00% 82.86% 80.95% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 72.00% 72.41% 63.33%
DWwW12 70.00% 46.67% 58.06% 64.29%

Figure 6 shows the average performance of the different methods for all the error
injection scenarios. The results of the error impact experiments show that the MAP-
based classification fusion is not heavily affected by the error injection; the change for
the classification rate is less than 0.1% in average for an error injection up to o = 50 m
and the rejection rate increases 0.1% in average. The effects on the other methods are
more pronounced, with a change of 3% in average in classification rate for the near-
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Table 6
Rejection rate fusion results using 4 methods, and error injection with o = 25 m.

Fusion MAP Bayesian  dmax =50m  Nearest neighbor Majority voting

method 9.75% 24.78% 8.63% 10.40%
AAV3 4.69% 10.94% 12.50% 7.81%
AAV6 4.29% 30.00% 2.86% 7.14%
AAV9 3.92% 50.98% 0.00% 3.92%
DWwW3 4.76% 16.67% 0.00% 4.76%
DwW6 6.06% 6.06% 0.00% 0.00%
DW9 14.29% 28.57% 17.14% 14.29%
DwW12 30.23% 30.23% 27.91% 34.88%
Table 7

Classification rate fusion results using 4 methods, and error injection with o = 50 m.

Fusion MAP Bayesian  dmax =50m  Nearest neighbor ~ Majority voting

method 77.74% 80.48 % 76.72% 75.58%

AAV3 37.70% 51.28% 39.29% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 95.00% 86.27% 91.84%
DW3 80.00% 84.62% 78.57% 82.50%
DW6 100.00% 95.24% 96.97% 100.00%
DW9 66.67% 72.22% 71.43% 63.33%
Dw12 70.00% 65.00% 64.52% 64.29%

Table 8

Rejection rate fusion results using 4 methods, and error injection with o = 50 m.

Fusion MAP Bayesian ~ dmax =50m  Nearest neighbor Majority voting

method 9.95% 46.01% 9.24% 10.40%
AAV3 4.69% 39.06% 12.50% 7.81%
AAV6 5.71% 45.71% 4.29% 7.14%
AAV9 3.92% 60.78% 0.00% 3.92%
DW3 4.76% 38.10% 0.00% 4.76%
DW6 6.06% 36.36% 0.00% 0.00%
DW9 14.29% 48.57% 20.00% 14.29%
Dwi2 30.23% 53.49% 27.91% 34.88%

est neighbor method and an increase of 24% in the rejection rate of the distance-based
method.

These experiments show higher classification rates for the MAP and nearest neigh-
bor approaches compared to the baseline majority voting approach, while maintaining
comparable acceptance rates. Further research is needed on additional considerations to
avoid transmission of node classifications that have low probability of being correct; it
is expected that both the nearest neighbor method and an adapted minimum-threshold
MAP-based method will easily allow for these additions.
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Figure 6. Average classification and acceptance rate results for different classification region fusion meth-

ods.
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