A New Compressive Imaging Camera Architecture
using Optical-Domain Compression

Dharmpal Takhar, Jason N. Laska, Michael B. Wakin, Marco F. Duarte, Dror Baron
Shriram Sarvotham, Kevin F. Kelly, Richard G. Baraniuk

Department of Electrical and Computer Engineering
Rice University

ABSTRACT

Compressive Sensing is an emerging field based on the revelation that a small nuailiaear projections of a compressible
signal contain enough information for reconstruction armtpssing. It has many promising implications and enables t
design of new kinds o€ompressive Imaging systems and cameras. In this paper, we develop a new carkiteeture that
employs a digital micromirror array to perform optical adktions of linear projections of an image onto pseudorando
binary patterns. Its hallmarks include the ability to obtan image with a single detection element while sampling the
image fewer times than the number of pixels. Other attragtioperties include its universality, robustness, sdiéhgb
progressivity, and computational asymmetry. The mosiguaing feature of the system is that, since it relies on alsing
photon detector, it can be adapted to image at wavelengtharth currently impossible with conventional CCD and CMOS
imagers.
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1. INTRODUCTION

Imaging sensors, hardware, and algorithms are under sioggressure to accommodate ever larger and higher-
dimensional data sets; ever faster capture, sampling, @@ gsing rates; ever lower power consumption; commuaoicat
over ever more difficult channels; and radically new sensirggalities. Fortunately, over the past few decades, there
has been an enormous increase in computational power aadtdahge capacity, which provides a new angle to tackle
these challenges. We could be on the verge of moving fromgitédlisignal processing” (DSP) paradigm, where analog
signals (including light fields) are sampled periodicatiycteate their digital counterparts for processing, to arfpota-
tional signal processing” (CSP) paradigm, where analogedtare converted directly to any of a number of intermediat
“condensed” representations for processing using variounsinear techniques.

1.1. Compressive sensing

CSP builds upon a core tenet of signal processing and inttwméheory: that signals, images, and other data often
contain some type aftructure that enables intelligent representation and processifge nbtion of structure has been
characterized and exploited in a variety of ways for a variéipurposes. Current state-of-the-art compression ilgos
employ a decorrelating transform to compact a correlatgaass energy into just a few essential coefficiehts. Such
transform coders exploit the fact that many signals havesgarse representation in terms of some basis, meaning that
a small numberK of adaptively chosen transform coefficients can be tratsthitr stored rather thalv > K signal
samples. For example, smooth images are sparse in the Foasis, and piecewise smooth images are sparse in a wavelet
basis? the commercial coding standards JPE®d JPEG2000directly exploit this sparsity.

The standard procedure for transform coding of sparse Isigg () acquire the fullNV-sample signat; (ii) compute
the complete set of transform coefficientst)(locate theK largest, significant coefficients and discard the (many)llsma
coefficients; andi{) encode thevalues and locations of the largest coefficients. In cases wheé¥eis large andK is
small, this procedure can be quite inefficient. Much of thigpatiof the analog-to-digital conversion process ends umgoe
discarded (though it is not known a priori which pieces aredegl). Arguably, this “sample first, ask questions later”
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process places unnecessary demands on DSP systems ladytiouaging systems where each digital sample requises it
own imaging sensor (pixel).

This raises a simple question: For a given signal, is it fdsgsd directly estimate the set of large coefficients that
will not be discarded by the transform coder? While this seémprobable, the recent theory 6bmpressive Sensing
(also known as Compressed Sensing, or CS) introduced by&8aRdmberg, and Tad and Donoh& demonstrates that
a signal that ig<-sparse in one basis (call it tlsparsity basis) can be recovered fromi nonadaptive linear projections
onto a second basis (call it tineeasurement basis) that is incoherent with the first, where wheris a small oversampling
constant. While the measurement process is linear, thasecetion process is decidedignlinear.

1.2. Compressive imaging

A critical aspect of CS measurementsrigltiplexing: each measurement is a function of several of the signal lesnop
image pixels. From this reduced set of measurements, ittdbbespossible (using CS techniques) to extract the salien
signal information. This principle of “sample less, compldter” shifts the technological burden from the sensoh#o t
processing. Thus, CS is an enabling framework for the CS&digmn.

In this paper, we develop a new system to support what can Ikl cdompressive Imaging (CI). Our system in-
corporates a microcontrolled mirror array driven by pseaddom and other measurement bases and a single or multiple
photodiode optical sensor. This hardware optically computcoherentimage measurements as dictated by the C$;theor
we then apply CS reconstruction algorithms — describedeloto obtain the acquired images.

Our imaging system enjoys a number of desirable features:

e Single detector: By time multiplexing a single detector, we can use a less ®sige and yet more sensitive photon
detector. This is particularly important when the dete@xpensive, making alN-pixel array prohibitive. A single
detector camera can also be adapted to image at wavelehgthereé currently impossible with conventional CCD
and CMOS imagers.

e Universality: Random and pseudorandom measurement basasiasesal in the sense that they can be paired
with any sparse basis. This allows exactly the same encatiiatggy to be applied in a variety of different sensing
environments; knowledge of the nuances of the environmenieeded only at the decoder. Random measurements
are alsduture-proof: if future research in image processing yields a bettersffyainducing basis, then the same set
of random measurements can be used to reconstruct an etenduetlity image.

e Encryption: A pseudorandom basis can be generated using a simple hlgaicording to a random seed. Such
encoding effectively implements a form eficryption: the randomized measurements will themselves resemble
noise and be meaningless to an observer who does not knowdbeiated seed.

e Robustness and progressivity:Random coding is robust in that the randomized measurerhamtsequal prior-
ity, unlike the Fourier or wavelet coefficients in currerdrtsform coders. Thus they allowpaogressively better
reconstruction of the data as more measurements are obtained; one or mosen@egnts can also be lost without
corrupting the entire reconstruction.

e Scalability: We can adaptively select how many measurements to compwuteder to trade off the amount of
compression of the acquired image versus acquisition timeontrast, conventional cameras trade off resolution
versus the number of pixel sensors.

e Computational asymmetry: Finally, Cl places most of its computational complexity iretdecoder, which will

often have more substantial computational resources tieaartcoder/imager. The encoder is very simple; it merely
computes incoherent projections and makes no decisions.

This paper is organized as follows. Section 2 provides & bowerview of the CS theory. Section 3 outlines our
proposed Cl system. Section 4 presents preliminary exgetimhresults, and Section 5 concludes.



2. COMPRESSIVE SENSING BACKGROUND
2.1. Sparse representations

Consider a lengthiv, real-valued signat: of any dimension indexed agn), n € {1,2,..., N}. For two-dimensional
(2D) images we simply choose a 1D ordering of fiepixels. We use the terms “signal” and “image” interchandggab

below. Suppose that the badis= [/1, ..., ¥ N] provides akK-sparse representationofthat is
N K
2= 0(n)pn = 0(ng) tn,. (1)
n=1 =1

Herez is a linear combination of{ vectors chosen fron¥, {n,} are the indices of those vectors, aftt{n)} are the
coefficients; the concept is extendable to tight frathadternatively, we can write in matrix notation

r = Vo, 2)

wherex is anN x 1 column vector, theparse basis matrix U is N x N with the basis vectors,, as columns, and is an

N x 1 column vector withK nonzero elements. Usinlg ||,, to denote thé, norm; we can write thal}#||o = K. Various
expansions, including wavelets Gabor base$, and curvelet® are widely used for representation and compression of
natural images and other data.

For the moment, we will focus on exactly-sparse signals and defer discussion of the more genaratisit where
the coefficients decay rapidly but not to zero. Similar piptes hold for “compressible” signals that are well-appnoated
using K terms, and this robustness is critical to the success ofoaging system.

2.2. Incoherent projections

In CS, we do not measure or encode flissignificantd(n) directly. Rather, we measure and encdde< N projections
y(m) = (z, L) of the signal onto @econd set of basis functiong¢,,},m € {1,2,..., M}, wheregl denotes the
transpose of,, and(-, -) denotes the inner product. In matrix notation, we measure

y = oz, )

wherey is anM x 1 column vector, and thexeasurement basis matrix ® is M x N with each row a basis vecter,,. Since
M < N, recovery of the signat from the measurementsis ill-posed in general; however the additional assumptibn
signalsparsity makes recovery possible and practical.

The CS theory tells us that when certain conditions hold, elprthat the basi§¢,,} cannot sparsely represent the
elements of the basig/,, } (a condition known asncoherence of the two bases® 1) and the number of measurements
M is large enough, then it is indeed possible to recover thefderge {6(n)} (and thus the signat) from a similarly
sized set of measuremer{tg(m)}. This incoherence property holds for many pairs of basefdiing for example, delta
spikes and the sine waves of the Fourier basis, or the Fobaigis and wavelets. Significantly, this incoherence also
holds with high probability between an arbitrary fixed baaisl a randomly generated one (consisting of i.i.d. Gaussian
or Bernoulli/Rademacher1 vectors). Signals that are sparsely represented in framgsans of bases can be recovered
from incoherent measurements in the same fashion.

2.3. Signal recovery viay optimization

The recovery of the sparse set of significant coeffici¢fits)} can be achieved usimgptimization by searching for the
signal with ¢y-sparsest coefficients®d(n)} that agrees with thé/ observed measurementsyn(recall thatM < N).
Reconstruction relies on the key observation that, givemestechnical conditions ot and W, the coefficient vectof is
the solution to théy minimization R

¢ = argmin [|f]lp s.t.y = ®VO (4)

with overwhelming probability. (Thanks to the incoherebegtween the two bases, if the original signal is sparse i the
coefficients, then no other set of sparse signal coeffici&ntan yield the same projectiops

*The o “norm” ||0]|o merely counts the number of nonzero entries in the vettor



In principle, remarkably few incoherent measurements ageiired to recover d-sparse signal vid, minimiza-
tion. Clearly, more thark’ measurements must be taken to avoid ambiguity; it has beablisked that< + 1 random
measurements will suffice: 13

Unfortunately, solving thig, optimization problem is prohibitively complex, requiriagcombinatorial enumeration of
the (I]\ff) possible sparse subspaces. In fact/theecovery problem is known to be NP-compléte Yet another challenge
is robustness, since the recovery may be very poorly camdit. In factboth of these considerations (computational
complexity and robustness) can be addressed, but at thasxpéslightly more measurements.

2.4. Signal recovery via/; optimization

The practical revelation that supports the new CS theorlgdsit is not necessary to solve thgminimization problem
to recover the set of significaf®(n)}. In fact, a much easier problem yields an equivalent saiuibanks again to the
incoherency of the bases); we need only solve fo¢ihgparsest coefficientsthat agree with the measuremepts® 1519

f = argmin ||0]; s.t.y= OVe. (5)

This optimization problem, also known &asis Pursuit,2° is significantly more approachable and can be solved with
traditional linear programming techniques whose comjariat complexities are polynomial iN.

There is no free lunch, however; according to the theorygtimeink’ + 1 measurements are required to recover sparse
signals via Basis Pursuit. Instead, one typically requirtes> ¢K measurements, whete> 1 is anoversampling factor.
As an example, for Gaussian random matrices, the rule of bhum 1og2(% + 1) provides a convenient approximation
to the required oversampling factor.

2.5. Signal recovery via greedy pursuit

At the expense of slightly more measurements, iterativedyr@lgorithms have also been developed to recover thelsigna
x from the measuremenis Examples include the iterative Orthogonal Matching Pur@MP),!! matching pursuit
(MP),2! and tree matching pursuit (TMP)?22 algorithms. OMP, for example, iteratively selects the gexfrom® ¥ that
contain most of the energy of the measurement vegtdrhe selection at each iteration is made based on inner pt®du
between the columns @V and a residual; the residual reflects the componenttbfit is orthogonal to the previously
selected columns. OMP is guaranteed to converge within i@ fmimber of iterations. In CS applications, OMP requires
¢ ~ 21In(N) to succeed with high probability.

TMP algorithms are especially well suited for reconstmgthatural images. This class of algorithms exploits the
structure of images that are sparse in a wavelet (or cujMadeis; the wavelet basis functions can be grouped by scale
and sorted in each group by offset. Two wavelet functionsoinsecutive scales are said to be linked biather-child
relationship when the support of the coarser-scale waeeletpletely contains that of the finer-scale wavelet. For 2D
signals such as images, each parent wavelet is linked tocfildren wavelets; the graph described by these links is a
quad-tree.

Thanks to the singularity analysis properties of wavelatsselet coefficient values tend to propagate through scales
A large wavelet coefficient (in magnitude) generally indésathe presence of a singularity inside its support; a small
wavelet coefficient generally indicates a smooth regiorankis to the nesting of child wavelets inside their pareniges
manifest themselves in the wavelet domain as chains of lawg#icients propagating through the scales of the wavelet
guad-tree. Wavelet coefficients also have decaying madgstat finer scale’s. This induces the large wavelet coefficients
of piecewise smooth images to form a connected subtreenvtteiwavelet quad-tree.

Since greedy algorithms select the dictionary vector tkptains the most energy from the image, it turns out to be
unnecessary to cheell possible coefficients at each iteration. Rather, the nestsignificant coefficient at each stage is
likely to be among the children of the currently selectediidients. By limiting the greedy algorithm to search only@my
these elements of the dictionary, the computational coxitglef the TMP algorithm is significantly reduced compared t
the original MP algorithn?! Additionally, by considering the contribution of all thesetents of the chain of coefficients
anchored at the root of the quad-tree, the salient edgerésatif the signal under consideration can reconstructdd wit
higher priority and accuracy by the TMP algoritHi.

While requiring a similar order of computation to linear gramming-based reconstruction algorithms, greedy algo-
rithms are often significantly faster in practice.
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Figure 1. Compressive Imaging (Cl) camera block diagram. Incidgfttfield (corresponding to the desired imagés reflected off a
digital micro-mirror device (DMD) array whose mirror origtions are modulated in the pseudorandom pattern sugpfigie random
number generators (RNG). Each different mirror patterrdpees a voltage at the single photodiode (PD) that correlsptm one
measuremenj(m). FromM measurements we can reconstruct a sparse approximation to the desiregkimasing CS techniques.

2.6. Other signal recovery algorithms

The introduction of CS has inspired new measurement schantefast reconstruction algorithms. For instance, Ref. 23
employs group testing and random subset selection to dstitmalocations and values of the nonzero coefficientsittlgtr
sparse signals. The scheme provides a compact represardathe measurement basis as well as a®4s¥polylog V)
reconstruction algorithm that succeeds with high prolitgbiAdditionally, the complexity of the measurement cdétion

(3) is very low for signals that are sparse in the space doridie algorithm can be extended to signals sparse in othesbas
and to compressible signals; however its main drawbacleifattye oversampling facterequired for high probability of
successful reconstruction. Similar algorithms have bestiibed elsewheré.

3. ACOMPRESSIVE IMAGING TESTBED

CSI/CI principles enable the design of flexible new imagingicks and techniques. Our hardware realization of the ClI
concept is @ingle pixel camera; it combines a micro-controlled mirror array displayingrae sequence of/ pseudo-
random basis functions with a single optical sensor to camjmeoherent image measuremeptss in (3) (see Figure 1).
By time multiplexing a single detectd?, we can employ a less expensive and yet more sensitive phetsos We can
also adaptively select how many measurements to computdén tw trade off the amount of compression of the acquired
image versus acquisition time; in contrast, conventionaieras trade off resolution versus the number of pixel senso

3.1. Camera hardware

Micro-actuated mirrors have proven to be a commerciallpleidMEMS technology for the video/projector display market
as well as laser systems and telescope opfid¢s.our system, we employ a Texas Instruments (T1) digitalroviirror
device (DMD). The combination of a TI DMD developer’s kit aadcessory light modulator package (ALP) allows us to
operate in the variety of modes necessary to test variougp@®aches.

The DMD consists of an array of electrostatically actuatedroamirrors where each mirror the array is suspended
above an individual SRAM cell. The DMD micro-mirrors form i@l array of sizel 024 x 768. Each mirror rotates about
a hinge and can be positioned in one of two stateR2(degrees and-12 degrees from horizontal); thus light falling on
the DMD may be reflected in two directions depending on theraation of the mirrors. While the DMD was originally
created for displaying images in televisions and digitajgctors, other groups have recently begun to use it formceth
image acquisitio” 3°

In our CI setup (see Figures 1 and 2), the desired image isefbom the DMD plane with the help of a biconvex
lens; this image acts as an object for the second biconvexaéich focuses the image onto the photodiode. The light is
collected from one out of the two directions in which it is eetied (e.g., the light reflected by mirrors in thé2 degree
state). The light from a given configuration of the DMD migdés summed at the photodiode to yield an absolute voltage
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Figure 2. Compressive Imaging (Cl) camera hardware setup.

that yields a coefficieng(m) for that configuration. The output is amplified through anawpp circuit and then digitized
by a 12-bit analog-to-digital converter.

3.2. Optical multiplexing

The output voltage of the photodiode can be interpretedatier product of the desired imagewith a measurement
basis vector(m). In particular, lettingo(m) denote the mirror positions of the-th measurement pattern, the voltage
reading from the photodiodecan be written as

v(m) « {x, p(m)) + DC offset, (6)

where

¢(m) = 1{p(m):+12 degrees} (7)
and1 is the indicator function. (The DC offset can be measuredityrgy all mirrors to—12 degrees; it can then subtracted
off.)

Equation (6) holds the key for implementing a Cl system. Fogien imagez, we take M measurements
{y(1),y(2),...,y(M)} corresponding to mirror configuratiodg(1)p(2). .., p(M)}.T Since the patterng(m) are pro-
grammable, we can select them to be incoherent with theigparducing basis (e.g., wavelets or curvelets). As men-
tioned previously, random or pseudorandom measuremetdrpatenjoy a useful universal incoherence property with
any fixed basis, and so we employ pseudorandolr degree patterns on the mirrors. These correspond to pseudor
dom0/1 Bernoulli measurement vectors, = 1{,(m)=+12 degrees}- (The measurements may easily be convertetito
Rademacher patterns by setting all mirrorg{i) to +12 degrees and then lettingm) <« 2y(m) — y(1) for m > 1.)
Other options for incoherent CI mirror patterns includé/0/1 group-testing patterns:2*  Mirrors can also be duty-
cycled to give the elements ¢ffiner precision, for example to approximate Gaussian measemnt vectors:”

This system directly acquires a reduced sebbfncoherent projections of aN -pixel imagex without first acquiring
the V pixel valuest The key idea is that each measurement multiplexes sevexlyglues, and CS methodologies can
be used to tease them out.

Since the camera is “progressive,” better quality imagagérK) can be obtained by taking more measuremaiits
Also, since the data measured by the camera is “future-gino@iv reconstruction algorithms based on better sparsifyi
image transforms can be applied at a later date to obtainkestter quality images.

fWe assume that the imageis stationary during the acquisition process. Currentis ts possible in controlled environments;
ultimately the fast switching rates of the DMD will allow fapplications in practical settings.

*In our setup, the number of reconstructed pixels (and theisetsolution of the final image) corresponds to the numbericfamir-
rors in the DMD arrayNV = 1024 x 768.



3.3. Related work

Two notable previous DMD-driven applications involve cocdl microscopy™ 32 and micro-optoelectromechanical
(MOEM) systemg7 30

The three primary differences between our CI/DMD camera M@EM systems are the placement of the DMD
between the image and the detector (as opposed to placeetergdn the light source and the image); the replacement
of the CCD detector with a single photodiode; and the large sf MOEM data sets. In a MOEM system, a DMD is
positioned between the image source and the sensing eleitsennction is to limit the number of image pixel columns
being sensed at a given time by reflecting off light from untedrpixels and allowing light from the desired pixels to
pass through. A MOEM system obtains the sum of the intessitiesets of columns from the sensed image; the purpose
of multiplexing is to increase the signal-to-noise raticled measurements, which is lower when each column is sensed
separately due to the low illumination caused by DMD modaiatin Refs. 27—-29 the authors propose sety tiadamard
patterns, which allows for simple demultiplexing, and ramized Hadamard patterns, which yield a uniform signal-to-
noise ratio among the measurements. MOEM data sets areargey fequiring a large amount of storage and processing.
In contrast, in our CI/DMD camera, compression in the opticanain greatly reduces the storage and processing of the
image.

Other efforts on Cl include Refs. 33, 34, which employ ogtedaments to perform transform coding of multispectral
images. These designs obtain sampled outputs that comgéspaoded information of interest, such as the wavelenfyth o
a given light signal or the transform coefficients in a basimterest. The elegant hardware designed for these puspose
uses concepts that include optical projections, groupigst and signal inference.

4. EXPERIMENTAL RESULTS
4.1. Hardware configuration

In the optical setup depicted in Figure 2, the object is fibatminated by an LED light source. To minimize noise, the
initial measurements have been performed by lock-in dieteetith the LED driven at 1kHz.

For simplicity, the initial images are square in shape aedefore use only @68 x 768 array of pixels on the DMD.
This array can be further sub-divided into blocks dependindghe desired resolution for the reconstructed image, e.g.
for a64 x 64 pixel image we actuaté2 x 12 blocks of micro-mirrors in unison. Additionally, since tlMD array is
programmed on the fly, it can be adaptively sectioned to lgjgh{zoom in on) part of the image (as opposed to acquiring
the entire image and then digitally zooming through posipssing) or to adaptively modify the projection basis fioms
during acquisition for enhanced reconstruction perforcean

4.2. Imaging results

For our imaging experiment, we displayed a printout of thtete"R” in front of the camera; Figure 3(a) shows the
printout. We set the camera to acquiréf x 64 pixel image (henceN = 4096). This size was chosen to ensure
quick reconstruction during tests so that focusing andrabgistments could be made. The image quality benefits from
the reduced resolution since activating the DMD in blockpiokls reflects more light, thus reducing the sensitivity
requirement on the photodetector and thus noise. As westlidater, better hardware exists for some of the components,
and higher resolution images will result.

Since our test image is piecewise constant (with sharp ¢digean be sparsely represented in the wavelet domain.
Figures 3(b) and 3(c) show the bdstterm Haar wavelet approximation of the idealized imageiguFe 3(a) withK =
400 and675, respectively. Figure 3(d) shows the projection of the inagtest image onto the surface of the DMD; this
image is a still frame from a video taken with a conventiongitel camera, and the poor quality is due to the low resotuti
of the obtained NTSC signal with the video capture card aada light level. Usingl/ = 1600 and2700 pseudorandom
projections (roughlyt x the K used in (b) and (c)), we reconstructed the images shown ur&sg3(e) and 3(f) using Basis
Pursuit.

From these results, it is clear that the recognizable featof the “R” can be recovered, even with half as many
measurements as the number of pixels acquired. The reaotistr quality is also progressively better with highéras
well as more robust to noisy measurements, enhancing tbasgaction of the singularities (sharp edges). The sauwte
noise include subtle nonlinearities in the photodiode umiiorm reflectance of the mirrors through the lens that esu



(a) ideal image (b) 400 largest wavelets (c) 675 largest letve

(d) image on DMD (e) 1600 measurements () 2700 measurements

Figure 3. CI/DMD imaging of a64 x 64 (N = 4096 pixel) image. Ideal image (a) of full resolution and apprated by its (b) largest
400 wavelet coefficients and (c) largest 675 wavelet coefitsi (d) Convention&R0 x 240 camera image acquired at the DMD plane.
CS reconstruction from (e) 1600 random measurements aB@@@) random measurements. In all cases, Haar wavelets aedear
approximation or reconstruction.

onto the photodiode (thus changing the weighting of theepatblocks), and nonuniform mirror positions; work is ongpi
to remove these sources of noise at the measurement seteipofistness of the CS reconstruction will tend to suppress
quantization noise from the A/D converter and photodiodeuii noise during detection.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a first prototype imagintgsyshat successfully employs compressive sensing (CS)
principles. The camera has many attractive features, dimdusimplicity, universality, robustness, and scal&jpilihat
should enable it to impact a variety of different applicaio Another interesting and potentially useful practiesttire

of our system is that it off-loads processing from data @bibe into data reconstruction. Not only will this lower the
complexity and power consumption of the device, but it willble adaptive new measurements schemes. The most
intriguing feature of the system is that, since it relies aingle photon detector, it can be adapted to image at wayglen
that are currently impossible with conventional CCD and C3/i@agers.

In current research, we are developing sequences of pimjdainctions that reduce the mechanical movement of the
mirrors, designing measurement matrices with lower ovepdimg factorse, analyzing and characterizing the noise and
resolution effects on reconstruction, and designing amplémenting fast reconstruction algorithms.

There are many possibilities for extensions to our systeatding:

e Plenty of measurement bases can be implemented with the DéyBridl Rademacher and Gaussian vectors.

¢ Reconstruction in a curvelet frarffeor joint wavelet/curvelet frame could provide higher-gtydmages due to their
pumped-up sparsification cabilities.

e Color, multispectral, and hyperspectral imaging can béeaell using a more complex photon sensing element such
as a dual sandwich photodetector or by combining multipletgdiodes.



We should be able to greatly reduce the size and complexityeasetup by replacing the DMD chip with a MEMS-
based shutter array placed directly over the photodidd€his will also enable imaging of wavelengths that poorly
reflect from the aluminum micromirror array.

We can implement super-resolution where multiple shiftifslets are incorporated to reconstruct images with sub-
pixel resolutior?® In our setup, the DMD can be mounted onto a micro/nano-pwsitg device to make measure-
ments with different lateral translations.

Video encoding using Cl can be achieved in several ways.i@patporal random patterns can be used to encode a
clip of video that is sparse in a 3D wavelet/curvelet domaiso, separate frames of video can be encoded indepen-

dently and decoded jointly by exploiting the correlationviieen the acquired framég. Preliminary experiments
with 3D incoherent measurements appear promising.

CS principles can be extended to multiple imagers acquicimgelated images as in a camera networR or
lightfield/lumigraph capture systeff.
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