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Humans are visual animals, and imaging sensors that extendeach — cameras — have
improved dramatically in recent times thanks to the intaiaun of CCD and CMOS digital
technology. Consumer digital cameras in the mega-pixejeaare now ubiquitous thanks to the
happy coincidence that the semiconductor material of ehfmiclarge-scale electronics integration
(silicon) also happens to readily convert photons at visualelengths into electrons. On the
contrary, imaging at wavelengths where silicon is blindassiderably more complicated, bulky,
and expensive. Thus, for comparable resolution, a $50@atlighmera for the visible becomes a
$50,000 camera for the infrared.

In this paper, we present a new approach to building simphaaller, and cheaper digital
cameras that can operate efficiently across a much broaéetrapbrange than conventional
silicon-based cameras. Our approach fuses a new camerideatate based on a digital mi-
cromirror device (DMD — sesidebar: Spatial Light Modulators) with the new mathematical theory
and algorithms otompressive samplinCS — seeSidebar: Compressive Sampling in a Nutshell).

CS combines sampling and compression into a single nonaddipear measurement process
[1-4]. Rather than measuring pixel samples of the scenerunel®, we measure inner products
between the scene and a set of test functions. Interestragigiom test functions play a key role,
making each measurement a random sum of pixel values takemsathe entire image. When
the scene under view is compressible by an algorithm likeGIBE JPEG2000, the CS theory
enables us to stably reconstruct an image of the scene fnoar fleeasurements than the number
of reconstructed pixels. In this manner we achieve sub-Mydunage acquisition.

Our “single-pixel” CS camera architecture is basically gtical computer (comprising
a DMD, two lenses, a single photon detector, and an analaligital (A/D) converter) that

computes random linear measurements of the scene underf™Mieanmage is then recovered or
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Fig. 1. Aerial view of the single-pixel compressive sampling (C&nera in the lab [5].

processed from the measurements by a digital computer. dinera design reduces the required
size, complexity, and cost of the photon detector array dtmva single unit, which enables the
use of exotic detectors that would be impossible in a comveat digital camera. The random CS
measurements also enable a tradeoff between space anduiing dnage acquisition. Finally,
since the camera compresses as it images, it has the cgpabiifficiently and scalably handle
high-dimensional data sets from applications like vided hyperspectral imaging.

This article is organized as follows. After describing therdware, theory, and algorithms
of the single-pixel camera in detail, we analyze its theoa¢tand practical performance and
compare it to more conventional cameras based on pixel sigag raster scanning. We also
explain how the camera is information scalable in that itsdoan measurements can be used
to directly perform simple image processing tasks, suchasget classification, without first
reconstructing the underlying imagery. We conclude witlndaw of related camera architectures

and a discussion of ongoing and future work.
I. The Single-Pixel Camera

Architecture

The single-pixel camera is an optical computer that sedalnimeasures the inner products
ylm] = (x, ¢,,) between anV-pixel sampled version of the incident light-field from the scene

under view and a set of two-dimensional (2D) test functiéas,} [5]. As shown in Fig. 1, the



light-field is focused by biconvex Lens 1 not onto a CCD or CM&®npling array but rather
onto a DMD consisting of an array df tiny mirrors (seeSidebar: Spatial Light Modulators).

Each mirror corresponds to a particular pixekirand¢,,, and can be independently oriented
either towards Lens 2 (corresponding td at that pixel ing,,) or away from Lens 2 (corre-
sponding to & at that pixel ing,,). The reflected light is then collected by biconvex Lens 2 and
focused onto a single photon detector (the single pixel) ititagrates the produat|n]¢,,[n] to
compute the measurememnin] = (x, ¢,,) as its output voltage. This voltage is then digitized
by an A/D converter. Values ob,, between 0 and 1 can be obtained by dithering the mirrors
back and forth during the photodiode integration time. Taaob¢,, with both positive and
negative valuesH1, for example), we estimate and subtract the mean light gittefrom each
measurement, which is easily measured by setting all nsitmithe full-on 1 position.

To compute CS randomized measurements @2 as in (1), we set the mirror orientations
¢m randomly using a pseudo-random number generator, megsufeand then repeat the process
M times to obtain the measurement veciorRecall from Sidebar: Compressive Sampling in a
Nutshell that we can sef/ = O(K log(N/K)) which is < N when the scene being imaged
is compressible by a compression algorithm like JPEG or Z@BG. Since the DMD array is
programmable, we can also employ test functippsdrawn randomly from a fast transform such
as a Walsh, Hadamard, or Noiselet transform [6, 7].

The single-pixel design reduces the required size, coritpgj@nd cost of the photon detector
array down to a single unit, which enables the use of exotiealers that would be impossible in
a conventional digital camera. Example detectors incluga@omultiplier tube or an avalanche
photodiode for low-light (photon-limited) imaging (moren dhis below), a sandwich of several
photodiodes sensitive to different light wavelengths farlimodal sensing, a spectrometer for
hyperspectral imaging, and so on.

In addition to sensing flexibility, the practical advantage the single-pixel design include
the facts that the quantum efficiency of a photodiode is higfen that of the pixel sensors in a
typical CCD or CMOS array and that the fill factor of a DMD camch 90% whereas that of a
CCD/CMOS array is only about 50%. An important advantageigilight is the fact that each
CS measurement receives abduf2 times more photons than an average pixel sensor, which

significantly reduces image distortion from dark noise agatirout noise. Theoretical advantages
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Fig. 2. Single-pixel photo album. (256 x 256 conventional image of a black-and-whRe (b) Single-
pixel camera reconstructed image framh= 1300 random measurement)x sub-Nyquist). (c256 x 256
pixel color reconstruction of a printout of the Mandrill té®age imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, alld— 6500 random measurements.

that the design inherits from the CS theory include its ursighity, robustness, and progressivity.
The single-pixel design falls into the class of multiplexreaas [8]. The baseline standard
for multiplexing is classical raster scanning, where ttst tenctions{¢,, } are a sequence of delta
functionsd[n — m] that turn on each mirror in turn. As we will see below, there smbstantial
advantages to operating in a CS rather than raster scan motlgling fewer total measurements

(M for CS rather thanV for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-ahde printout of an R”) x and
reconstructed image taken by the single-pixel camera prototype in Fig. 1 usWg- 256 x 256
and M = N/50 [5]. Fig. 2(c) illustrates anV = 256 x 256 color single-pixel photograph of
a printout of the Mandrill test image taken under low-liglainditions using RGB color filters
and a photomultiplier tube withi/ = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related t@awelet coefficient; minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuati® the scene using a projector
displaying a sequence of random pattefis,} and collect the reflected light using a single
lens and photodetector. Such a “structured illuminatioatup has advantages in applications
where we can control the light source. In particular, thexeiatriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging dual photography [9].



Shutterless video imaging

We can also acquire video sequences using the single-paxetéi@. Recall that a traditional
video camera opens a shutter periodically to capture a sequaef images (called video frames)
that are then compressed by an algorithm like MPEG thatljomtploits their spatio-temporal
redundancy. In contrast, the single-pixel video camerals@® shutter; we merely continuously
sequence through randomized test functippsand then reconstruct a video sequence using an
optimization that exploits the video’s spatio-temporaluedancy [10].

If we view a video sequence as a 3D space/time cube, then #tefuections ¢, lie
concentrated along a periodic sequence of 2D image slicesigh the cube. A naive way to
reconstruct the video sequence would group the correspgrmdeasurementg/m| into groups
where the video is quasi-stationary and then perform a 2mdray-frame reconstruction on each
group. This exploits the compressibility of the 3D video eub the space but not time direction.

A more powerful alternative exploits the fact that even tfloeachy,, is testing a different
2D image slice, the image slices are often related tempotiatbugh smooth object motions in
the video. Exploiting this 3D compressibility in both theagp and time directions and inspired
by modern 3D video coding techniques [11], we can, for examattempt to reconstruct the
sparsest video space/time cube in the 3D wavelet domain.

These two approaches are compared in the simulation studirdted in Fig. 3. We employed
simplistic 3D tensor product Daubechies-4 wavelets in afles. As we see from the figure, 3D
reconstruction from 2D random measurements performs alasosell as 3D reconstruction from

3D random measurements, which are not directly implemémtatih the single-pixel camera.

Il. Single-Pixel Camera Tradeoffs

The single-pixel camera is a flexible architecture to immata range of different multiplex-
ing methodologies, just one of them being CS. In this sectimnanalyze the performance of CS
and two other candidate multiplexing methodologies andpamea them to the performance of a
brute-force array ofV pixel sensors. Integral to our analysis is the considanatfd®oisson photon
counting noise at the detector, which is image-dependeatcividuct two separate analyses to
assess the “bang for the buck” of CS. The first is a theoretoalysis that provides general

guidance. The second is an experimental study that indidade the systems typically perform



(a) frame 32 (b) 2D meas (c) 2D meas (d) 3D meas
+ 2D recon + 3Drecon + 3D recon

Fig. 3. Frame 32 from a reconstructed video sequence using (top ¥bws 20,000 and (bottom row)
M = 50,000 measurements (simulation from [10]). (a) Origimahfe of anN = 64 x 64 x 64 video

of a disk simultaneously dilating and translating. (b) Feaby-frame 2D measurements + frame-by-frame
2D reconstruction; MSE 3.63 and0.82, respectively. (c) Frame-by-frame 2D measurements + [8iiht
reconstruction; MSE .99 and0.24, respectively. (d) Joint 3D measurements + joint 3D reaoesbn;
MSE =0.76 and0.18, respectively.

in practice.

Scanning methodologies

The four imaging methodologies we consider are:

Pixel array (PA): a separate sensor for each of tNepixels receives light throughout the
total capture timel'. This is actually not a multiplexing system, but we use it las gold
standard for comparison.

Raster scan(RS): a single sensor takeég light measurements sequentially from each of
the IV pixels over the capture time. This corresponds to test fonst{¢,,} that are delta
functions and thu® = I. The measuremenisthus directly provide the acquired image
Basis scan(BS): a single sensor take¥ light measurements sequentially from different
combinations of theN pixels as determined by test functiofs,,} that are not delta
functions but from some more general basis [12]. In our aig)ywe assume a Walsh basis
modified to take the values 0/1 rather than; thus ® = W, whereW is the 0/1 Walsh
matrix. The acquired image is obtained from the measuresneby 2 = 1y = W—1y.
Compressive sampling([CS): a single sensor takédg < N light measurements sequentially
from different combinations of théV pixels as determined by random 0/1 test functions
{ém }. Typically, we setM = O(K log(N/K)) which is < N when the image is com-

pressible. In our analysis, we assume thatMieows of the matrix® consist of randomly



drawn rows from a 0/1 Walsh matrix that are then randomly jpexech (we ignore the first
row consisting of all 1's). The acquired image is obtainashfrthe measuremenisvia a

sparse reconstruction algorithm such as BPIC &ear: Compressive Sampling in a Nutshell).

Theoretical analysis

In this section, we conduct a theoretical performance amlgf the above four scanning
methodologies in terms of the required dynamic range of thetqaetector, the required bit
depth of the A/D converter, and the amount of Poisson photamting noise. Our results are
pessimistic in general; we show in the next section that ttezae performance in practice can
be considerably better. Our results are summarized in Tabfen alternative analysis of CS
imaging for piecewise smooth images in Gaussian noise has t@ported in [13].

Dynamic range: We first consider the photodetector dynamic range requivechdtch the
performance of the baseline PA. If each detector in the PAahagar dynamic range of 0 tb,
then it is easy to see that single-pixel RS detector need ek that same dynamic range. In
contrast, each Walsh basis test function contaifi@ 1's, and so directsV/2 times more light
to the detector. Thus, BS and CS each require a larger lingsndic range of 0 taVD/2. On
the positive side, since BS and CS collect considerably gt per measurement than the PA
and RS, they benefit from reduced detector nonidealities dikrk currents.

Quantization error: We now consider the number of A/D bits required within theuiesg
dynamic range to match the performance of the baseline PAring of worst-case quantization
distortion. Define the mean-squared error (MSE) betweentrie imagexz and its acquired
versionz as MSE = %[z — Z||3. Assuming that each measurement in the PA and RS is
guantized toB bits, the worst-case mean-squared quantization errorhf@rquantized PA and
RS images isMSE = /ND2-5-1 [14]. Due to its larger dynamic range, BS requirBs+
log, N bits per measurement to reach the same MSE distortion I8imte the distortion of CS
reconstruction is up t6@'y times larger than the distortion in the measurement vest®jdebar:
Compressive Sensing in a Nutshell), we require up to an addition&bg, Cy bits per measurement.
One empirical study has found roughly th@f; lies between 8 and 10 for a range of different
random measurement configurations [15]. Thus, BS and CSresquhigher-resolution A/D

converter than PA and RS to acquire an image with the same-a@ss quantization distortion.



TABLE |
Comparison of the four camera scanning methodologies.

Pixel Array | Raster Scan Basis Scan Compressive Sampling
Number of measurements N N N M< N
Dynamic range D D ND ND
Quantization (total bits) NB NB N(B+1logy, N) | M(B +log, N +log, Cn + 1)
Photon counting MSE £ NE (3N —2)L <3C3YMZE

Photon counting noise:In addition to quantization error from the A/D convertercla
camera will also be affected by image-dependent Poiss@emrthie to photon counting [16]. We
compare the MSE due to photon counting for each of the scgmmigthodologies. The details
are worked out imppendix: Poisson Photon Counting Calculations and are summarized in Table
I. We see that the MSE of BS is about three times that of RS. Ma&e whenM < %
the MSE of CS is lower than that of RS. We emphasize that in tBec&se, we have only a
fairly loose upper bound and that there exist alternativeré&®nstruction algorithms with better
performance guarantees, such as the Dantzig Selector [3].

Summary: From Table I, we see that the advantages of a single-pixekamver a PA
come at the cost of more stringent demands on the sensor dynange and A/D quantization
and larger MSE due to photon counting effects. Additiondhy linear dependence of the MSE
on the number of image pixel¥ for BS and RS is a potential deal-breaker for high-resofutio

imaging. The promising aspect of CS is the logarithmic depace of its MSE onV through
the relationshipV/ = O(K log(N/K)).

Experimental results

Since CS acquisition/reconstruction methods often perforuch better in practice than the
above theoretical bounds suggest, in this section we cardsinple experiment using real data
from the CS imaging testbed depicted in Fig. 1. Thanks to tlogrammability of the testbed,
we acquired RS, BS, and CS measurements from the same hardiarfixed the number of
A/D converter bits across all methodologies. Figure 4 shiespixel-wise MSE for the capture
of a N = 128 x 128 pixel “R” test image as a function of the total capture tiffie Here the
MSE combines both quantization and photon counting efféais CS we tookM/ = N/10 total
measurements per capture and used a Daubechies-4 wawatefdyahe sparse reconstruction.

We make two observations. First, the performance gain of 88 BS contradicts the above
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Fig. 4. Average MSE for Raster Scan (RS), Basis Scan (BS), and CasipeeSampling (CS) single-pixel
images as a function of the total image capture fimgeal data).

worst-case theoretical calculations. We speculate tatomtribution of the sensor’s dark current,
which is not accounted for in our analysis, severely degrd®8’s performance. Second, the
performance gain of CS over both RS and BS is clear: imagesither be acquired in much

less time for the same MSE or with much lower MSE in the sameusof time.

I1l. Information Scalability and the Smashed Filter

While the CS literature has focused almost exclusively aobl@ms in signal and image
reconstruction or approximation, reconstruction is femgfly not the ultimate goal. For instance,
in many image processing and computer vision applicatidais is acquired only for the purpose
of making a detection, classification, or recognition diecisFortunately, the CS framework is
information scalableto a much wider range of statistical inference tasks [17-T8kks such
as detection do not require reconstruction, but only regestimates of the relevant sufficient
statistics for the problem at hand. Moreover, in many casissgossible to directly extract these
statistics from a small number of random measurements utitteer reconstructing the image.

Thematched filtelis a key tool in detection and classification problems thatlire searching
for a target template in a scene. A complicating factor ig tfeen the target is transformed in
some parametric way — for example the time or Doppler shifaafadar return signal; the
translation and rotation of a face in a face recognition ;taskhe roll, pitch, yaw, and scale of
a vehicle viewed from an aircraft. The matched filter deteojmerates by forming comparisons
between the given test data and all possible transformmtdrthe template to find the match

that optimizes some performance metric. The matched fileeysdier operates in the same way
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but chooses the best match from a number of different patetntinsformed templates.

The naive approach to matched filtering with CS would firsbrestruct the images under
consideration and then apply a standard matched filteriolgnique. In contrast, themashed
filter (for dimensionally reduced matched filter) performs all f dperations directly on the
random measurements [18].

The two key elements of the smashed filter are the generdilagihood ratio test and the
concept of an image appearance manifold [20]. If the panmacnegtnsformation affecting the
template image is well-behaved, then the set of transfortaegblates forms a low-dimensional
manifold in the high-dimensional pixel spa&e’ with the dimensionk equal to the number of
independent parametersThus, the matched filter classifier can be interpreted asityasy a
test image according to the closest template manifol&ih

The smashed filter exploits a recent result that the streotdira smoothK -dimensional
manifold in RY is preserved with high probability under a random projettio the lower
dimensional spac®" as long asM = O(K log N) [21]. This is reminiscent of the number
of measurements required for successful CS but witmow the manifold dimension. Thus, to
classify anN-pixel test image, we can alternatively compdre random measurements of the
test image to thé/-dimensional projections (using the sadgof the candidate image template
manifolds. The upshot is that all necessary computationsbeamade directly iR rather than
in RY. As in the conventional matched filter, a byproduct of theseki manifold search is an
estimate of the template parameters that best match thienege. Previous work in the computer
science community (the other “CS”) has also employed thexdaiLindenstrauss lemma [22]
to reduce the data dimensionality prior to computing fezgufior classification; however, they
have not considered the intrinsic manifold structure mestéd in many image processing and
computer vision settings.

Figure 5 demonstrates the effectiveness of smashed fgtioirthe task of classifying aiv =
128 x 128 pixel test image under an unknown translation in the vedraca horizontal directions
(henceK = 2). The three classes correspond to different translatibasbos, truck, or tank. The
test data was generated randomly from one of the three slafse random measurements were

1For the purposes of the discussion hereKadimensional manifold can be interpreted asKadimensional
hypersurface irR" .
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Fig. 5. Smashed filter image classification performance plotted asetion of the number of random
measurements! from a simulated single-pixel CS camera and the total adiprigimeT .

produced using a simulated single-pixel CS camera thastake account the Poisson photon
counting noise associated with a total measurement itefyangth 7. We average over 10,000
iterations of each experiment. We see that increasing tmebeu of measurements improves
performance at first; however, performance then degradestauhe reduced time available
to obtain each measurement. Correspondingly, increasiagdtal capture time improves the

performance of the algorithm.

IV. Other Multiplexing Camera Architectures

Two notable existing DMD-driven imaging applications itw@ confocal microscopy (which
relates closely to the raster scan strategy studied ab28e24] and micro-optoelectromechanical
(MOEM) systems [12, 25, 26]. In a MOEM system, a DMD is posigd between the scene and
the sensing array to perform column-wise multiplexing dgwing only the light from the desired
pixels to pass through. In [12, 25] the authors propose $esldadamard patterns, which enables
simple demultiplexing, and randomized Hadamard pattevh&h yield a uniform signal-to-noise
ratio among the measurements.

Other compressive cameras developed to date include [RRBRBh employ optical elements
to perform transform coding of multispectral images. Theassigns obtain sampled outputs that
correspond to coded information of interest, such as thesl@agth of a given light signal or the
transform coefficients in a basis of interest. The elegantdvare designed for these purposes
uses optical projections, group testing, and signal imiege Recent work in [29] has compared

several single and multiple pixel imaging strategies ofyirag complexities; their simulation
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results for Poisson counting noise agree closely with tladss/e.
Finally, in [30] the authors use CS principles and a randorgidens to boost both the

resolution and robustness of a conventional digital camera

V. Conclusions

For certain applications, CS promises to substantiallyeiase the performance and capabil-
ities of data acquisition, processing, and fusion systefmisgewlowering the cost and complexity
of deployment. A useful practical feature of the CS apprdadhat it off-loads processing from
data acquisition (which can be complicated and expensgite)data reconstruction or processing
(which can be performed on a digital computer, perhaps neh @o-located with the sensor).

We have presented an overview of the theory and practice iof@esyet flexible single-pixel
architecture for CS based on a DMD spatial light modulatonilé/there are promising potential
applications where current digital cameras have difficiitaging, there are clear tradeoffs and
challenges in the single-pixel design. Our current andr@anwvork involves better understanding
and addressing these tradeoffs and challenges. Othertipbtamenues for research include
extending the single-pixel concept to wavelengths wheeeDIMD fails as a modulator, such

as THz and X-rays.

Sidebar: Compressive Sampling in a Nutshell

Compressive Sampling (CS) is based on the recent undeirsgaticht a small collection of
nonadaptive linear measurements of a compressible sigrialage contain enough information
for reconstruction and processing [1-3]. For a tutorishtimeent see [4] or the paper by Romberg
in this issue.

The traditional approach to digital data acquisition saapn analog signal uniformly at
or above the Nyquist rate. In a digital camera, the samplesobatained by a 2D array oV
pixel sensors on a CCD or CMOS imaging chip. We represenetbamples using the vector
with elementse[n], n = 1,2,..., N. SinceN is often very large, e.g. in the millions for today’s
consumer digital cameras, the raw image daia often compressed in the following multi-step
transform coding process.

The first step in transform coding represents the image mdef the coefficient§a;} of

an orthonormal basis expansian= Ef\il a;p; where {1 i]\i1 are the N x 1 basis vectors.
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Forming the coefficient vectax and theN x N basis matrix¥ := [¢1|¢] . .. |¢n] by stacking
the vectors{¢;} as columns, we can concisely write the samplesas Ya. The aim is to
find a basis where the coefficient vectaris sparse(where only K <« N coefficients are
nonzero) orr-compressiblgwhere the coefficient magnitudes decay under a power ladw wit
scaling exponent-r). For example, natural images tend to be compressible idifugete cosine
transform (DCT) and wavelet bases on which the JPEG and J®IPG-compression standards
are based. The second step in transform coding encodeshenijatues and locations of the
significant coefficients and discards the rest.

This sample-then-compress framework suffers from thréerent inefficiencies: First, we
must start with a potentially large number of sampM®ven if the ultimate desireft is small.
Second, the encoder must compute all of Mdransform coefficient§«;}, even though it will
discard all butK of them. Third, the encoder faces the overhead of encodiadatations of
the large coefficients.

As an alternative, CS bypasses the sampling process andlylisequires a condensed
representation using/ < N linear measurements betweerand a collection of test functions
{¢pm}M_, as iny[m] = (z, ¢,,,). Stacking the measurementgn] into the M x 1 vectory and

the test functiong’, as rows into an\/ x N matrix & we can write
y=dx = PdVa. Q)

The measurement process is hon-adaptive indhdobes not depend in any way on the signal

The transformation fromx to y is a dimensionality reductiorand so loses information in
general. In particular, sincé/ < N, giveny there are infinitely many’ such that®dx’ = y.
The magic of CS is tha® can be designed such that sparse/compressildan be recovered
exactly/approximately from the measurememnts

While the design ofd is beyond the scope of this review, an intriguing choice watks with
high probability is a random matrix. For example, we can dilagvelements ob as independent
and identically distributed (i.i.d %1 random variables from a uniform Bernoulli distribution [22
Then, the measuremengsare merelyM different randomly signed linear combinations of the
elements ofr. Other possible choices include i.i.d., zero-megfiy-variance Gaussian entries

(white noise) [1-3, 22], randomly permuted vectors froomdtad orthonormal bases, or random
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subsets of basis vectors [7], such as Fourier, Walsh-Hadhroa Noiselet [6] bases. The latter
choices enable more efficient reconstruction through fgstrishmic transform implementations.
In practice, we employ a pseudo-randdndriven by a pseudo-random number generator.

To recover the image from the random measuremenysthe traditional favorite method of
least squares can be shown to fail with high probabilitytdad, it has been shown that using

the ¢, optimization [1-3]
@ = argmin||o/|l; such that ®¥o' =y 2

we can exactly reconstruéf-sparse vectors and closely approximate compressiblengestably
with high probability using just\/ > O(K log(N/K)) random measurements. This is a convex
optimization problem that conveniently reduces to a lingagram known adasis pursuifl—
3]. There are a range of alternative reconstruction teclesichased on greedy, stochastic, and
variational algorithms [4].

If the measurementg are corrupted by noise, then the solution to the alterndtvenini-

mization, which we dulbasis pursuit with inequality constraif8PIC) [3]
a = argmin ||o/[]; such that ||y — ®¥d/||2 < e, (3)

satisfies|a — a2 < Cye+ Crok(x) with overwhelming probabilityCy andCx are the noise
and approximation error amplification constants, respelsti ¢ is an upper bound on the noise
magnitude, andrx (x) is the ¢ error incurred by approximating using its largestk’ terms.
This optimization can be solved using standard convex aragring algorithms.

In addition to enabling sub-Nyquist measurement, CS ergaysmber of attractive properties
[4]. CS measurements aumiversalin that the same random matrix works simultaneously for
exponentially many sparsitfying bas&swith high probability; no knowledge is required of the
nuances of the data being acquired. Due to the incoherentenaf the measurements, CS is
robustin that the measurements have equal priority, unlike therieowr wavelet coefficients
in a transform coder. Thus, one or more measurements candbewlthout corrupting the
entire reconstruction. This enablespeogressively better reconstructioof the data as more
measurements are obtained. Finally, C&83gmmetricain that it places most of its computational

complexity in the recovery system, which often has more tsuttiel computational resources than
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Fig. 6. (a) Schematic of two mirrors from a Texas Instruments digitecromirror device (DMD). (b)
A portion of an actual DMD array with an ant leg for scale. (fagorovided by DLP Products, Texas
Instruments.)

the measurement system.

Sidebar: Spatial Light Modulators

A spatial light modulator (SLM) modulates the intensity oflight beam according to a
control signal. A simple example of a transmissive SLM thtter passes or blocks parts of the
beam is an overhead transparency. Another example is al laqystal display (LCD) projector.

The Texas Instruments (TI) digital micromirror device (DM® a reflective SLM that
selectively redirects parts of the light beam [31]. The DMa@nsists of an array of bacterium-
sized, electrostatically actuated micro-mirrors, wheaxehemirror in the array is suspended above
an individual static random access memory (SRAM) cell (Sge@). Each mirror rotates about a
hinge and can be positioned in one of two state$(degrees and-10 degrees from horizontal)
according to which bit is loaded into the SRAM cell; thus ligalling on the DMD can be
reflected in two directions depending on the orientationhef mirrors.

The DMD micro-mirrors in our lab’s TI DMD 1100 developer'stkiand accessory light
modulator package (ALP)form a pixel array of sizel024 x 768. This limits the maximum
native resolution of our single-pixel camera. However, axpixel DMDs are already available

for the display and projector market.

Appendix: Poisson Photon Counting Calculations

This appendix derives the average mean squared error (MStBedour camera schemes
studied in the Single-Pixel Camera Tradeoffs Section uRdgsson counting noise (the last row

2Tyrex Services Group Ltdhtt p: // ww. t yrexser vi ces. com
3VIALUX GmbH, htt p: / / www. vi al ux. de
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of Table I). LetZ be the estimated version of the ideal imageé\ssuming that the pixel estimates

are unbiased and independent with variam%%, we calculate that

N
1, ] 1 )
BIMSE = |yl 73] = 3ol @

We now briefly review the Poisson model of photon detecticonsder a point in the scene
under view that emits photons at a rate Bfphotons/s; then over s the number of photons
follows a Poisson distribution with mean and variance- Pr. To form an unbiased estimate
P of the rate, we collect and count photons with a photodetemter 7 s and then normalize
the count by dividing byr. The variance of this estimator is ther% = P/r. To simplify the
analysis we assume that the photon rate of each image pjxgl n = 1,2,..., N is an i.i.d.
Gaussian random variable with meap;,,; = P. Let the total image capture time Hes.

In the PA, each pixek[n]| has its own dedicated sensor that counts photons for theeenti
period 7. The number of received photop$r] is Poisson with mean\[n] = Tx[n]. The time

normalized measuremenin| = p[n]/T has varianca%[n] = % and thus asV — oo we have

E [MSE| = Za :ii[— L (5)
N & TN L T T

The RS is similar, except that one sensor is time-sharedear of theN pixels, meaning
that the time for each measurement is reduced fiiono 7'/N. Accounting for this, we obtain
asN — oo that E [MSE ~ N£.

In BS and CS, the single sensor measures the sum of a grolNy dfpixels for T/N s
in BS andT'/M s in CS. AsN — oo, the photon rate incident at the sensor is approximately

NE[;[””, and so each measurement follows a Poisson distributiom mvééan and varianc&l

for BS andZEN for CS. The time-normalized measuremgfiz] thus has variancé,” for BS

and 22ZE for CS. Continuing for BS, we estimate the imagezas W ~'y. The variance of the

pixel estimates i€"tU” and thus the average MSE equal$MSE] = B2,

For CS, we estimate the image via a nonlinear optimizatiam tbquires that the entries of

o be ir rather than 0/1. Hence, we correct the measuremeiig recentering and scaling,

which changes the measurement varlancé’éVT%% and results in the measurement average squared

error normE[||ly — 7113 = M, o2, = M. Assuming that we reconstruct the image using
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a technique such as BPIC (ssigebar: Compressive Sampling in a Nutshell), we obtainE [MSE] <

303 ME.
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