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This paper describes our methods for repairing and restoring images of hidden

paintings (paintings that have been painted over and are now covered by a new surface

painting) that have been obtained via noninvasive X-ray fluorescence imaging of their

canvases. This recently developed imaging technique measures the concentrations of

various chemical elements at each two-dimensional spatial location across the canvas.

These concentrations in turn result from pigments present both in the surface painting

and in the hidden painting beneath. These X-ray fluorescence images provide the best

available data from which to noninvasively study a hidden painting. However, they are

typically marred by artifacts of the imaging process, features of the surface painting,

and areas of information loss. Repairing and restoring these images thus consists of

three stages: (1) repairing acquisition artifacts in the dataset, (2) removal of features in

the images that result from the surface painting rather than the hidden painting, and (3)

identification and repair of areas of information loss. We describe methods we have

developed to address each of these stages: a total-variation minimization approach to

artifact correction, a novel method for underdetermined blind source separation with

multimodal side information to address surface feature removal, and two application-

specific new methods for automatically identifying particularly thick or X-ray absorbent

surface features in the painting. Finally, we demonstrate the results of our methods on a

hidden painting by the artist Vincent van Gogh.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, imaging and digital image processing
have increasingly been used to aid in art restoration and
reconstruction. The primary motivation is that imaging
can be applied without harm to a work of art, and digital
image processing techniques can then be used on the
resulting data in order to enhance features of interest,
ll rights reserved.

: þ1 303 492 2758.

es).
remove obstructive artifacts, repair damages, virtually
undo the effects of aging, and/or merge data from multi-
ple imaging methods (e.g. from visible, infrared, and
ultraviolet light) to create a virtual restoration or recon-
struction. The resulting virtual restoration can be valuable
to art historians and the general public in its own right, or
it can provide guiding information for art conservators
intending to perform a physical restoration. See [1–3] for
a review of this emerging area.

As examples of what has been achieved so far, such
work may find and virtually repair specific areas of
damage, such as cracks in the painting surface [4–12] or
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lacunae [13,14]. It may alternatively virtually undo the
effects of aging on the materials that the work contains,
for example, restoring fading pigments to their original,
more vibrant, colors [15–18] or virtually removing a layer
of darkened varnish from the surface [19,11,12]. In extreme
cases, small fragments of a destroyed work may be pieced
back together [20,21] or information, e.g. color, about large
missing sections of the work may be estimated from a few
small surviving fragments [22]. In addition to paintings,
many other types of artwork, including aging photographs
[23], film sequences [24,25], frescoes [26,22], daguerro-
types [27], and mosaics [28] are treated as well. Indeed,
some researchers have released suites of image processing
tools to be used by art scholars so that they may conduct
virtual restoration themselves [29,30].

One problem for which this strategy of non-invasive
imaging combined with digital image processing is parti-
cularly well-suited, but that, to our knowledge, has not
been previously investigated, is that of virtually recon-
structing hidden paintings, i.e. paintings that have been
painted over. Since these hidden paintings often lie
beneath priceless works of art, they may only be reached
Fig. 1. Comparison of different types of non-invasive imaging on Vincent van G

light, (b) traditional X-ray imaging and (c) infrared imaging of portions of th

painting produced via the synchrotron X-ray fluorescence imaging technique o
via non-invasive imaging. Many such hidden paintings
exist: for example, a recent X-ray analysis of 130 Van
Gogh paintings at the Van Gogh Museum in Amsterdam
showed that almost 20 of the 130, i.e. roughly 15%,
contained some sort of hidden painting [31]. In some
cases, these hidden paintings are finished works by the
artist; in other cases, they may be preliminary studies for
later projects. While some previous work has been done
to enhance X-ray images of paintings [32], imaging of
underdrawings [33] (e.g. preliminary sketches made on
the canvas before painting), or overwritten texts such as
are found in palimpsests [34], we are not aware of any
prior work that attempts to restore images of hidden
paintings themselves, as separate from the surface paint-
ing. Quality images of these hidden paintings can poten-
tially aid art historical scholarship about the painter and
his/her work. More broadly, they can also provide a look
at these important lost pieces of our cultural heritage for
the general public.

To reconstruct these hidden paintings, however, we
must start with high quality imaging data of them. A
number of non-invasive imaging methods have historically
ogh’s ‘‘Patch of Grass’’ including (a, d) the surface painting under visible

e painting, and (e)–(g) three different chemical channel images of the

f [37].
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been used to gain information about underlayers of the
painting, the most common of which are classic X-ray
photography, infrared imaging, and multispectral imaging.
X-ray photography produces a single image of the canvas
showing the combined X-ray absorbance of all layers in the
painting (see Fig. 1(b)). Infrared imaging uses infrared light
to penetrate the top layers of the painting and reveal
infrared-reflective/absorbent features beneath the surface
(see Fig. 1(c)). It is particularly successful at imaging any
underdrawings the artist made on the canvas before
painting [35]. Multispectral imaging combines images
under several different wavelengths of visible, infrared,
and perhaps ultraviolet light [36]. However, the data these
can provide is limited, as can be seen in Fig. 1.

Hence, new types of imaging are being developed. In
2008, a team headed by coauthors Dik and Janssens
developed a novel synchrotron-based X-ray fluorescence
imaging method [37]. This non-invasive technique, when
performed on a painting, provides a set of images showing
the spatial distributions of specific chemical elements,
including As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, Sb, Sr, and
Zn. See Fig. 1(e)–(g) for examples. Furthermore, a more
recent portable imaging method developed by coauthor
Alfeld et al. [38] also uses X-ray fluorescence to produce
chemical channel images, but eliminates the need for a
Fig. 2. Results of our total variation minimization technique for shifting line ar

line alignment artifacts. (b) Corrected antimony channel image after applying

have almost all been repaired by our method. (c) Close-up of section of original

(d) Close-up of the same section of the corrected image.
synchrotron, allowing museums to produce (slightly noi-
sier) images of this type in-house. This information
regarding various chemical elements, as compared to
other methods, provides the richest available data to use
in studying a hidden painting.

However, even these new X-ray fluorescence images
can come with significant artifacts and damages. It is our
goal in this paper to develop image processing methods
that can restore and repair these damages and artifacts in
the acquired images. Specifically, three types of damages/
artifacts are treated. First, as in any imaging process, this
particular imaging technique can produce its own unique
type of imaging artifacts: a set of pixel shifts, line by line,
in the acquired image. This is illustrated in Fig. 2. We will
aim to shift these pixels back to where they belong.
Second, features of the surface and hidden paintings
containing the same pigment are mixed together in the
corresponding chemical element’s image. An example can
be seen in the mercury (Hg) channel shown in Fig. 1(f)
where both the woman’s lips from the hidden painting
and a group of pink flowers from the surface painting
(upper left) are visible. In order to obtain images that only
reflect the hidden painting, we will aim to remove the
surface painting features from such mixed images. Third,
surface painting features can block signals from the
tifact correction. (a) Original acquired antimony channel image showing

our total variation minimization technique. The line alignment artifacts

acquired antimony image in (a), illustrating the line alignment artifacts.
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underlayers from reaching the surface to be imaged,
creating areas of information loss in the chemical element
images. This can be observed in the similar pattern of
black spots in each of Fig. 1(e)–(g). In some areas, the loss
is complete; in others, the signal has merely been atte-
nuated. We will aim to identify these areas of loss or
attenuation, inpainting the areas of complete loss, and
boosting signal strength in areas of attenuation.

In addition to serving the hidden painting recovery
application, each of these methods represents a novel
contribution to signal processing methodology as well. First,
the line-shifting artifacts seen are unique in form to this
application, distinct from anything previously seen in the
literature, and hence require a tailor-made new approach.
Second, while the problem of separating surface and hidden
painting features in the images could be considered as an
underdetermined blind source separation task and treated
with existing approaches, to do so would be to fail to take
advantage of all the side information that is available in our
particular situation. RGB color photographs of one source,
the surface painting, are readily available and provide a rich
source of additional information that can be used to
enhance the source separation result. However, since this
side information is taken using a different imaging modality
(color photography) than that used for the two sources
(which are chemical element images), it is nontrivial to use
this side information intelligently. To take advantage of this
side information, we have thus developed a new method for
underdetermined source separation with different-modality
side information. This problem is potentially found in other
source separation contexts, but has not to our knowledge
been treated before in the literature, so our solution to it
may potentially contribute to other application domains as
well. Finally, while inpainting has been well-studied in the
literature and hence no new inpainting methods are devel-
oped here, our methods for identifying where losses are
likely to have occurred, using image analysis of the surface
painting features, are new contributions. We provide two
such novel loss-identification methods.

This paper is organized as follows. Section 2 will
discuss our method for correcting the line shifting arti-
facts. Section 3 will detail our method for removing
surface features from the images so that only the hidden
painting is reflected in the resulting image. Section 4 will
describe our methods for identifying and inpainting areas
of information loss. Throughout, we will be demonstrat-
ing our methods on an X-ray fluorescence imaging dataset
of the painting ‘‘Patch of Grass’’ by the artist Vincent van
Gogh, which has an unknown woman’s portrait beneath it
(see Fig. 1). We believe that these methods together will
allow for automated repair and restoration of X-ray
fluorescence images of hidden paintings, improving their
legibility for both art scholars and the general public.
(Portions of these methods were described in our
previous conference papers on this work; see [39,40].)

2. Scanning artifact correction

This section describes the first of three stages of
hidden painting restoration that we propose in this paper:
correction of scanning line artifacts. Chemical element
images obtained through the X-ray fluorescence imaging
technique may contain horizontal lines or portions
thereof whose pixels are shifted horizontally left or right
with respect to the lines above and below (see Fig. 2).
This shifting behavior is the result of a timing problem in
the acquisition. The analysis is performed with the aid of a
scanning X-ray beam that irradiates the object pixel by
pixel, line by line horizontally, switching direction with
each line [37]. Occasionally, this scanning beam gets
delayed, which results in some of the pixels getting
captured later than scheduled and thus appearing shifted
in their respective horizontal lines. In each distorted line,
the amount of shift increases/decreases monotonically,
although the direction varies by line. All chemical element
images are acquired in one scan, so shifts are identical
across all of them. Examination of the portrait under
‘‘Patch of Grass’’ reveals that approximately 70–80 of
the 698 horizontal lines (� 10%) are damaged, with a
fairly uniform distribution through the entire picture.

For each horizontal line, we model the shift on that
line, i.e. the displacement of each pixel as a function of
horizontal position, as a piece-wise constant function
with at most d discontinuities. The shift function Sl,aðnÞ

thus has domain f1, . . . ,Lg, where L is the length of each
horizontal line in pixels, and range f�M, . . . ,Mg, where M

is the maximum allowable shift (we chose M¼25). It has
as parameters the locations l1,l2, . . . ,ld where a change in
the shift size occurs due to a timing problem, and
a1,a2, . . . ,ad, which represent the amount of shifting
introduced at each. The resulting piecewise constant
function is then given by

Sl,aðnÞ ¼

0, 0rno l1

a1, l1rno l2

a1,þa2, l2rno l3

^ ^
Xd

k ¼ 1

ak, ldrnrL

8>>>>>>>>><
>>>>>>>>>:

We found that allowing up to d¼2 discontinuities in each
line was enough to capture most of the occurring shift
patterns.

We then determine the appropriate parameters
flj,ajg

d
j ¼ 1 through total variation minimization. The ratio-

nale is that introducing artificial horizontal line shifts into
an otherwise normal image will reduce vertical continuity
in the image and increase the total variation as measured
in the vertical direction. We thus minimize the variation,
as measured vertically, as a strategy for correcting these
artifacts. Once the parameters are determined for each
line, we can use them to repair the line, by shifting pixels
back to their (supposed) original positions.

Our method has two variants, titled single and dual

[41]. In the single method, the parameters are chosen to
minimize the total variation of the tested line with
respect to the line above. In the dual method, the para-
meters are chosen to minimize the total variation of the
tested line with respect to both the lines above and below.

For the single method, this means that letting gi and fi be
the values of the ith pixel of the line in question and the line
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above it, respectively, we estimate the shift parameters as

argmin
l1 ,...,ld ,a1 ,...,ad

XminðL,L�
Pd

k ¼ 1
akÞ

p ¼ 1

9f p�gpþ Sl,aðpÞ
92

¼ argmin
l1 ,...,ld ,a1 ,...,ad

Xdþ1

n ¼ 1

Xln�1

j ¼ ln�1

9f j�g
jþ
Pn�1

k ¼ 1
ak

92

where we have set l0 ¼ 1, ldþ1 ¼minðL,L�
Pd

k ¼ 1 akÞ. We
further require that ln�1þ

Pn�1
k ¼ 1 akrL for all n and

ln�1þ
Pn�1

k ¼ 1 akZ1 for all n, so that the sum in Eq. (1)
remains defined. In the case of d¼2, this simplifies to

argmin
l1 ,l2 ,a1 ,a2

Xl1�1

j ¼ 1

9f j�gj9
2
þ
Xl2�1

j ¼ l1

9f j�gjþa1
92

þ
XminðL,L�a1�a2Þ

j ¼ l2

9f j�gjþa1þa2
92

Each line is corrected before moving on to the next.
However, to avoid the correction of spurious shifts, only
shifts whose pixel size in absolute value 9ak9 is greater than
the threshold T (we used T¼5) are actually corrected.

For the dual method, we perform a similar minimiza-
tion, but incorporate both the pixel values of the line
above fa

i and those of the line below fb
i into the minimiza-

tion:

argmin
l1 ,...,ld ,a1 ,...,ad

Xdþ1

n ¼ 1

Xln�1

j ¼ ln�1

9f a
j�g

jþ
Pn�1

k ¼ 1
an
92
þ9f b

j �g
jþ
Pn�1

k ¼ 1
an
92

where l0 and ldþ1 are again defined as above. No threshold
is used here since the dual method seems to suffer less
from spurious small shifts. In the d¼2 case, this becomes

argmin
l1 ,l2 ,a1 ,a2

Xl1�1

j ¼ 1

ð9f a
j�gj9

2
þ9f b

j�gj9
2
Þ

þ
Xl2�1

j ¼ l1

ð9f a
j�gjþa1

92
þ9f b

j�gjþa1
92
Þ

þ
XminðL,L�a1�a2Þ

l ¼ l2

ð9f a
j�gjþa1þa2

92
þ9f b

j�gjþa1þa2
92
Þ

When using this method, we estimate the correction
for each horizontal line based on the lines above and
below it, but save this information for later, rather than
correcting the line immediately. Only after we finish
estimating the corrections for all lines in the image do
we proceed to correct all the found shift patterns. How-
ever, we may find afterwards that lines are still misa-
ligned since each line’s correction has been based on the
original positions of the lines above and below, which
may have changed in the meantime. Hence, the method is
applied iteratively, with the repaired channel hopefully
converging to the true one.

Since the single method assumes the top horizontal
line in each image to be correct and then corrects each
subsequent line once based on the one above, this method
is fast and works well when the erroneously shifted lines
are uniformly sparse across the image, but problems can
arise when an area of the image has many consecutive
lines with shifts, because inexact fixes can propagate to
the lines below. Meanwhile, the more intensive iterative
dual method seems to be more robust and can be used in
areas of high density acquisition errors without worry
that errors will propagate from one line to the next.
Hence, we use a combination of the two methods. We
use the single method with T¼5 if the image area is not
particularly dense with shifts. However, in images or
areas that are dense with shifts, we use the single method
with a threshold of T¼15 first, followed by 30 iterations
of the dual method. See Fig. 2 for the result of this
approach on the ‘‘Patch of Grass’’ hidden painting. As
can be seen, this strategy corrected all but a few of the
shift patterns in the image. Hence, it seems to be a
successful method for artifact repair in X-ray fluorescence
images.

3. Removal of surface features

We now move on to the second of three stages of
hidden painting restoration that we propose in this paper:
removal of surface painting features from the images.
As explained previously, each chemical element image
obtained through X-ray fluorescence imaging gives the
total amount of the element at each x–y location in
the canvas, without regard to the element’s depth under
the surface of the painting. Each chemical channel image
is thus a mixture of both hidden painting and surface
painting features containing this element. However, since
only the hidden painting is of interest to us, we would
ideally like to remove those features corresponding to the
surface painting from each chemical channel image, leav-
ing only the features of the hidden painting behind.

The problem of separating surface and hidden painting
features in each chemical channel image can be viewed as
a source separation problem. We wish to split each
chemical channel image C into two, an image Chidden that
contains only the hidden painting’s features and an image
Csurf containing only the surface painting’s features. In the
absence of other information, this might be considered as
a typical underdetermined blind source separation pro-
blem [42–44] and be treated as such.

However, in this situation, we have additional infor-
mation that we would like to take advantage of. Color
visible light photographs of the surface painting can easily
be taken and used to provide additional information to aid
in the source separation. This side information, while
potentially useful, is nontrivial to incorporate since it
comes from a different type of imaging than the sources
themselves. While the sources show concentrations of
chemical elements, a color photograph of the surface
painting shows only the RGB color of the final pigment
mixture. Hence, pigments show up very differently in
the chemical element and color visible light images.
The problem is thus one of underdetermined source
separation with different-modality side information.

While one can easily imagine this problem arising in
other fields, we are not aware of any previous work that
tackles this particular type of problem. Hence, in this
section, we will propose a new method for this type of
source separation.
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In solving this problem, we are inspired by the metrics
for measuring relatedness between images acquired
through different imaging modalities that are popular in
the multimodal image registration literature (see e.g.
[45,46]). In this prior work, the goal is to align two images
of the same subject from different imaging modalities
(e.g. a color and an infrared image of the same object).
Quality of alignment is evaluated via a similarity metric

between the two images that is designed to reflect
similarity of image content, while being robust to differ-
ences of modality. Most commonly, each pair of pixel
values obtained by drawing a value from the same
location in each of the two images is modeled as an
independent realization of a pair of unknown random
variables. Entropic measures, such as the (negative of)
estimated joint entropy or the estimated mutual informa-
tion for this pair of random variables, are then used as the
similarity metric between the images. The hypothesis
underlying these metrics is that, even if they come from
different imaging modalities, images are most likely to be
of the same subject if the corresponding pixel values in
the two images are highly dependent.

For example, consider the case of attempting to align a
grayscale M � N 256-grayscale-level image I1 (perhaps
representing an infrared image) with an M � N RGB color
image I2. To estimate the entropy of the underlying
random variable associated with I1, we can define pI1

ðbÞ,
our estimate of the probability of this underlying random
variable taking on the value b, as the fraction of pixels in
I1 taking this value

pI1
ðbÞ ¼

9fðm,nÞ9I1ðm,nÞ ¼ bg9
MN

where the notation 9 � 9 represents set cardinality.
We would then estimate the entropy of the random
variable underlying image I1 as usual via

HðI1Þ ¼�
X

b2Z256

pI1
ðbÞ logðpI1

ðbÞÞ

Similarly, we would estimate the conditional entropy of
the random variable underlying image I1 given the ran-
dom variable underlying image I2 by defining

pI2
ðb2Þ ¼

9fðm,nÞ9I2ðm,nÞ ¼ b2g9
MN

for all b2 2 Z
3
256

pI1 ,I2
ðb1,b2Þ ¼

9fðm,nÞ9I1ðm,nÞ ¼ b1,I2ðm,nÞ ¼ b2g9
MN

for all b1 2 Z256,b2 2 Z
3
256

and then letting

HðI19I2Þ ¼�
X

b12Z256

X
b22Z

3
256

pI1 ,I2
ðb1,b2Þ log

pI1 ,I2
ðb1,b2Þ

pI2
ðb2Þ

We might then expect that out of all possible transforma-
tions (e.g. translations, scalings, rotations, etc.) TðI1Þ of I1,
the one that is optimally aligned with image I2 is the one
that minimizes HðTðI1Þ9I2Þ (or maximizes the mutual
information HðTðI1ÞÞ�HðTðI1Þ9I2Þ.

Inspired by this previous work, we propose that after
our source separation procedure, we would expect that
the pixel values of the ‘‘surface’’ source Csurf should be
highly dependent on those in the corresponding location
in the color surface image Isurf. Meanwhile, the pixel
values of the ‘‘hidden painting’’ source Chidden should be
completely independent of those of the color surface
image Isurf. An initial attempt at an algorithm would thus
try to encourage HðChidden9Isurf Þ to be large and HðCsurf 9Isurf Þ

to be small.
However, it turns out that such a choice leads to a

trivial solution. By setting Chidden ¼ C and Csurf ¼ 0, the
algorithm can maximize HðChidden9Isurf Þ while keeping
HðCsurf 9Isurf Þ at 0, simply as a result of maximizing the
entropy of Chidden while minimizing that of Csurf. For this
reason, we instead choose to work with a normalized
conditional entropy function; instead of aiming to max-
imize HðChidden9Isurf Þ, we aim to maximize the normalized
conditional entropy HðChidden9Isurf Þ=HðChiddenÞ, which
reflects only the proportion of Chidden’s entropy explained
by Isurf, rather than the overall total entropy of Chidden.
This choice incorporates the same intuition that one
source should be dependent on the surface image and
the other independent of it, while avoiding the trivial
solutions obtained by merely maximizing HðChiddenÞ while
minimizing HðCsurf Þ.

Finally, we also try to ensure that both sources after
source separation behave like smooth real-world images
with sharp edges by encouraging each to have a low total
variation. The total variation of an M�N image I is
typically estimated as

TVðIÞ ¼
XM�1

m ¼ 1

XN�1

n ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIðmþ1,nÞ�Iðm,nÞÞ2þðIðm,nþ1Þ�Iðm,nÞÞ2

q

To summarize, for each chemical element, this trans-
lates into minimizing over Csurf and Chidden:

HðCsurf 9Isurf Þ

HðCsurf Þ
�

HðChidden9Isurf Þ

HðChiddenÞ
þlTVðChiddenÞþlTVðCsurf Þ

ð1Þ

subject to the constraint

C ¼ Csurf þChidden

where C is the original chemical element image, Isurf is the
RGB-color visible light surface image, Csurf and Chidden are
the two sources we are splitting into, l 2 R is a positive
constant, and the functions Hð�Þ, Hð�9�Þ, and TVð�Þ are as
defined above.

We note that, as in most image processing applications
involving minimization or maximization of an estimated
entropy (see e.g. [45,46]), it is unnecessary to obtain a
completely accurate and unbiased entropy estimate. Since
we only aim to find values of the arguments resulting in
minimum (maximum) entropy, the entropy estimator
only needs to serve as a monotonic function of the true
entropy to ensure that the correct solution is found.

We solve this optimization problem via gradient des-
cent, but we perform this gradient descent on the wavelet
coefficients of Csurf and Chidden which helps to maintain
coherent image features and avoid pixelwise overfitting.
We use a multiresolution approach, allowing the wavelet
coefficients at the coarsest scales to converge before start-
ing to work on the wavelet coefficients of the next finest
scale as well. The two sources are each initialized to 1

2 C.
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If desired, standard histogram estimators (see [47]) can be
used to more coarsely estimate the entropy values,
speeding the computation.

Fig. 3 shows the result on this procedure on a synthe-
tically generated toy example. Here, the classic ‘‘peppers’’
and ‘‘baboon’’ images have been mixed to create a model
chemical image. An RGB color ‘‘peppers’’ image models
side information of a different modality. We see that this
method seems to produce a reasonably good separation of
the two underlying sources. Indeed, the mean-squared
error between the recovered sources and the true ‘‘ground
truth’’ sources is found to be 173.7.

Fig. 4 shows a result of this procedure on a real
painting: separating the Hg channel of ‘‘Patch of Grass,’’
shown in Fig. 4(a). Fig. 4(b) shows the color visible light
image of the corresponding part of the surface painting,
registered to the Hg channel image. Fig. 4(c) and (d) then
show the recovered hidden-painting and surface sources,
respectively. Here, we see that the pink flowers in the
surface painting have mostly been removed from the
hidden-painting source; they remain after our source
separation process, but are quite faint. Meanwhile,
the woman’s face remains approximately as legible in
the hidden-painting source as it was to start, but is now
quite difficult to make out in the surface source. Hence,
Fig. 3. Results of the procedure for underdetermined source separation describ

into sources consists of one half ‘‘peppers’’ image with one half ‘‘baboon’’ image

information. (c,d) The two sources after separation. The hidden-painting source

mostly ‘‘peppers’’. Note that the legibility of the ‘‘baboon’’ image has greatly in
we see that, in the hidden-painting source, our method
has preserved the hidden painting’s features, while
diminishing the effect of the surface features, exactly as
desired. While not perfect, this result serves as a clear
proof-of-concept for our new source separation approach.

In future work, we hope to explore this approach further.
In particular, we wish to develop better algorithms for
minimizing the objective function in (1), since the gradient
descent approach is quite slow, and does not necessarily
reach the global optimum. Indeed, even the example results
shown here continued to slowly improve with more itera-
tions run, seemingly for as long as we cared to continue.
This suggests that future efforts at streamlining our
approach’s computational efficiency will likely allow even
better source separation results to come from it.

4. Identification and inpainting of areas of attenuation

Finally, in this section, we will discuss the third stage
of hidden painting restoration that we propose in this
paper: identification and inpainting/repair of areas of
information loss. As previously noted, X-ray fluorescence
imaging data of the hidden painting may contain areas of
information loss or attenuation where a particularly thick
or X-ray-absorbent surface feature has blocked signal
ed in Section 3 on a synthetic example. (a) The mixture to be separated

. (b) An RGB color version of ‘‘peppers’’ is used as different-modality side

shown in (c) is mostly ‘‘baboon’’, while the surface source shown in (d) is

creased after applying the method.



Fig. 4. Results of the procedure for underdetermined source separation described in Section 3 on a real painting example. (a) The Hg channel of ‘‘Patch of

Grass’’, to be separated into surface and hidden-painting sources. (b) An RGB color image of the surface painting, to be used as side information in the

source separation. (c,d) The (c) hidden-painting and (d) surface sources after separation. Notice that after separation, the pink flowers from the surface

are bright in the surface source and greatly diminished in the hidden-painting source. Meanwhile, the face from the hidden painting is clear in the

hidden-painting source and hard to make out in the surface source.

A. Anitha et al. / Signal Processing 93 (2013) 592–604 599
from the underlayers from reaching the sensors to be
imaged. This is clearly seen in Fig. 1, in which all three
channels of X-ray fluorescence imaging show a similar
pattern of black spots, and we observe additional dar-
kened streaks across the images, most notably in the
antimony channel.

Two main attributes of the surface painting features
determine the extent of these losses. First, some pigments
are more X-ray absorbent that others and are thus more
likely to obstruct signals passing through them. Second,
particularly thick layers of paint on the surface are more
likely to block signal than thinner features are. Together,
these two attributes determine whether signal will be
completely lost in an area or merely attenuated.

In this section, we develop two methods to automati-
cally identify areas of probable loss or attenuation, one
based on the thickness of surface painting features
(Section 4.1) and one based on the composition of these
features (Section 4.2). Taking the union of the potentially
problematic areas returned by these two methods as
the set of areas to potentially correct, we can then
distinguish between areas of complete loss and areas of
attenuation only (Section 4.4). This allows us to boost
signal appropriately in areas of partial attenuation
(Section 4.3) and to inpaint in areas of complete loss
(Section 4.4).

4.1. Identification of thick surface features and estimation

of their height

Our first method to identify areas of potential informa-
tion loss attempts to do so based on the thickness of the
paint layer from the surface painting. The procedure uses
raking light photography of the painting, which is com-
monly used to study the painting’s texture. In raking light
photography, a light source is placed at a shallow angle at
the border of the painting. This results in a photograph
(Fig. 5(a)) in which the ridges present in the painting are
highlighted by their brightness; additionally, these ridges
cause shadows to appear opposite to the location of the
light source.

To identify the locations of ridges, we use the satura-
tion channel of the raking light picture, shown in Fig. 5(b).
The saturation of a color is a metric of its light intensity
and its distribution across the spectrum of different
wavelengths/colors. In the figure, high values of saturation
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Fig. 5. Use of raking light photograph of ‘‘Patch of Grass’’ to estimate the thickness of paint ridges on the surface of the painting and identify probable

areas of attenuation: (a) Raking light photograph demonstrating thickness of various pigments on surface. (b) Saturation channel of raking light

photograph. (c) Ridge map from raking light photograph. (d) Shadow map from raking light photograph. (e) Height metric calculated from shadow map.

(f) Attenuation function (linear approximation) estimated from height map and antimony image.
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correspond to colors that are diffused in the spectrum,
i.e. grayscale colors, while low values of saturation corre-
spond to pure, bright colors. Thus, one can identify ridges
that reflect the raking light by masking low saturation
values and identify dark shadows by masking high satura-
tion values. Fig. 5(c) and (d) shows masked images where
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the upper threshold and lower thresholds were set to 0.3
and 0.5, respectively. These ridge and shadow maps have
been processed morphologically via opening (erosion and
dilation in sequence) to remove spurious detections con-
sisting of single pixels in the image.

After identifying ridges and shadows, the ridge height
can be estimated by exploiting the shadow information.
We measure the length of the shadow in the direction of
the raking light and label the corresponding ridge (which
is directly adjacent to the shadow in the same direction)
with the calculated shadow length, providing us with a
ridge height estimate shown in Fig. 5(e).

Ridges that have a large estimated height represent
thick surface features that are likely to be attenuating or
obstructing to signal beneath. Hence, we can identify all
pixels for which the estimated surface height is above a
threshold value as areas of potential information loss or
attenuation. We will use the height information that we
have estimated to correct attenuation later in Section 4.3.

4.2. Identifying X-ray absorbent surface features

To identify surface features that likely block or attenuate
signal based on their composition, we will also want to use
an image of the surface painting. For this, it will be easiest
to identify chemical composition with RGB surface color,
so that we can use the RGB color image of the surface
painting to map the distribution of various pigments.
However, alternatively, we could choose to use instead
the ‘‘surface’’ sources for each chemical element found in
Section 3, along with the method that follows.

In any case, we wish to identify surface hues that are
highly correlated with darkened areas in multiple chemical
channels. Thus, for each RGB color C, we use the pixels of
this color in the surface painting as a mask applied to the
chemical channel images. We then compare the average
grayscale value of the masked-off region with the average
grayscale value in the hidden-painting sources in a small
surrounding area. Surface colors for which the masked
region is significantly darker than its surroundings are
likely attenuating. More precisely, for each color C and
chemical element E, we compute the mean of the masked
region

tC,E ¼ averageðfIEðx,yÞ9Isurfaceðx,yÞ ¼ CgÞ

where IE is the image for chemical element E and Isurface the
surface image, as well as the mean for the surrounding area

rC,E ¼ averageðfIEðx,yÞ9Isurfaceðx,yÞaC and (x0,y0

s:t:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0�xÞ2þðy0�yÞ2

q
rR, Isurfaceðx

0,y0Þ ¼ CgÞ

for a given distance threshold R (we used 50 pixels). We
then compare tC,E and rC,E to determine whether the pixels
under this surface color tend to be darker than the
surrounding pixels. If the ratio r=t exceeds a specified
threshold (we used 1.1) and r is sufficiently greater than 0,
we consider this color C attenuating.

An experiment on the Van Gogh selected shades of
yellow, dark green, and occasionally pink as those likely
to have attenuated the hidden painting’s signal. These
first two colors, yellow and dark green, clearly appear
in a pattern mimicking that of the attenuated regions (see
Fig. 1(d)). The pink is initially surprising, but on more
careful inspection, we see darkened areas in the antimony
channel corresponding to the pink flowers in the upper
left corner of the surface patch. Using the chosen colors,
we then produce a mask for areas of probable loss or
attenuation.

4.3. Undoing the effects of partial attenuation

The thickness map obtained in Section 4.1 gives us a
means to estimate the extent of and thus potentially
correct partial attenuation. We assume a linear relation-
ship between thickness and attenuation in areas where
thickness is the key contributor to attenuation. We can
then estimate the slope and offset of this linear relation-
ship, thereby creating an attenuation function or map that
we can invert for correction purposes.

To estimate the attenuation function, we merge infor-
mation from the antimony layer image (see Fig. 6(a)) with
information from the raking light photograph. First, we
perform basic registration of the raking light photograph
in Fig. 5(a) with respect to the image in Fig. 6(a). Denote
by IEðx,yÞ the intensity of the antimony image at pixel
(x,y). We estimate the amount of attenuation for each
pixel in the ridge map as

aðx,yÞ ¼ max
x0 ,y0 s:t: 9x0�x9rn,9y0�y9rn

IE ðx
0,y0Þ�IEðx,yÞ

i.e., the difference between the intensity of the pixel in
question and the maximum pixel intensity within a
certain n-neighborhood. Once this attenuation has been
estimated for every pixel in the ridge map, we average all
attenuation values for each different height value to
create a map between height estimates and attenuation
estimates. Fig. 5(f) shows the estimated map between
ridge height and estimated attenuation, together with a
best linear fit to the obtained mapping.

The linear functional approximation is then used to
correct the attenuation, by scaling and offsetting the
attenuated intensity values accordingly, with the results
shown in Fig. 6(c). We see that the algorithm has made an
attempt to correct values lying in many of the darkened
streaks of the image. Areas of complete loss often remain
uncorrected however, since there is little signal in these
areas to boost.

4.4. Distinguishing and inpainting areas of complete loss

Applying the attenuation correction method above has
little impact on areas of complete loss, because in these,
the appropriate correction is not proportional to the
intensity value. Fortunately, however, the persistence of
these areas of complete loss after attenuation correction
readily allows us to distinguish them from areas of only
partial loss.

To start, we form a new mask for areas of probable loss
by taking the union of those masks obtained in Sections
4.1 and 4.2. We process this mask morphologically to
remove single pixels and then segment this mask into



Fig. 6. Results of the two attenuated area identification and inpainting procedures. (a) Original antimony channel image showing attenuated regions. (b)

The same antimony image but with the estimated thickness map from Fig. 5(e) superimposed on top of it to show locations of estimated attenuation

using the thickness identification method. (c) The antimony channel after application of the thickness-based attenuation correction method. Darkened

streaks are reduced, but areas of complete loss remain. (d) Image from (c) with the probable areas of loss identified by the attenuating hue identification

method superimposed in green. (e) Same mask as in (d) but dilated to ensure that areas of loss are completely covered. (f) Final result after inpainting

using the mask in (e). Most losses have been corrected.
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contiguous areas. For each such area, we then measure
the average grayscale level underneath it after the
attenuation correction of Section 4.3. If this grayscale
level after correction remains below a certain threshold,
then we identify this as an area of complete information
loss that will need to be inpainted.
Finally, we construct a mask of all the contiguous areas
we decided to inpaint above, and we convolve this mask
with a small point spread function to ensure that it
completely covers the edges of all areas of loss. One
may then use any one of a number of standard inpainting
tools [48–50] to inpaint these areas of complete loss.
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We chose the method of Bertalmio and Sapiro [48] since it
aims to continue contours as smoothly as possible
through the inpainted region, and is thus well-suited for
inpainting brushstrokes. As in all inpainting applications,
we emphasize that the final inpainted result is just an
idea of what the lost regions might look like, based on the
content of the surrounding region, and may or may not
exactly reflect the true content of these lost areas.

5. Conclusions

In conclusion, we have presented a series of methods for
repairing and restoring images of hidden paintings that have
been obtained through X-ray fluorescence imaging. We first
showed how to correct line shifting errors produced by
timing glitches in the image scanning during acquisition via
a total variation minimization approach. We found that this
approach was able to correct the vast majority of all lines.
Second, we gave a method to solve the underdetermined
source separation problem with different-modality side
information that is presented when we wish to separate
each chemical channel image into its component surface and
hidden painting features. We found that this method did
well at separating the sources in both a synthetic ground
truth and a real painting example. Finally, we presented two
methods for identifying surface features that were likely to
have blocked or attenuated signal from the hidden painting
from getting through to be imaged. One method was based
on estimating the thickness of the surface features based on
raking light photography of the surface painting. The other
was based on trying to identify hues on the surface painting
that were highly correlated with darkened areas in the
hidden painting images. After identifying potentially lost or
attenuated areas through these methods, we corrected for
estimated attenuation based on the height of the surface
features above, and we inpainted those remaining areas of
complete signal loss. As a result, we were able to produce
chemical channel images of vastly improved quality.

It is our hope that these methods can be of use in eventual
imaging of the hundreds or even thousands of hidden
paintings currently residing beneath other paintings.
As mobile systems like the one of [38] develop further,
large-scale imaging projects of this type become more and
more possible. We hope that these methods will offer a
greatly improved look at these hidden paintings for art
scholars and conservators. Moreover, we hope in future work
to be able to build upon this work still further, eventually
providing full color visual reconstructions of these lost pieces
of our cultural heritage for study and for the general public
to enjoy.
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