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ABSTRACT

We consider the problem of designing features for the identi-
fication of reflectance spectra that capture the semantic infor-
mation used by experts in ad-hoc labeling rules, such as the
shape and position of absorption bands in spectra. We pro-
pose the use of statistical models on wavelet coefficients that
allow us to quantify the presence of spectrum discontinuities
at multiple scales. Such models are now feasible to train due
to the availability of large-scale datasets of hyperspectral im-
ages. Using a non-homogeneous hidden Markov model, we
can succinctly express the semantic information in the spec-
trum in terms of binary state labels representing its energy
content in a multiscale time-frequency analysis. Experimen-
tal results show that the features succeed in outperforming
existing approaches in encoding and quantifying the semantic
features of the spectra that are relevant in classification tasks.

Index Terms— Classification, Spectral Libraries, Feature
Selection, Wavelets, Hidden Markov Chains

1. INTRODUCTION
Recent improvements in the spatial and spectral resolution of
hyperspectral imaging systems (HSIs) have enabled scientists
and engineers to consider complex information extraction ap-
plications including spectral identification, hyperspectral im-
age segmentation [1] and spectral unmixing [2]. Unfortu-
nately, such improvements also strain the computational and
visualization resources that are available to manage, under-
stand, and decode the information that is present in the ac-
quired hyperspectral data. Practitioners must therefore navi-
gate through massive quantities of very high-dimensional data
to identify relevant features that encode the information de-
sired for the application of interest.

We are interested in facilitating the information extraction
process via the use of mathematical models for hyperspectral
signals, which we can easily adapt to be relevant to the partic-
ular problem of interest. We expect to extract features from
the model that can capture scientifically meaningful cues and
serve as spectral signatures of the materials under study. The
aim is to encode the physical information used by scientists
to discriminate between the spectra of different minerals into
numerical features, which we refer to as semantic features.

Experienced researchers characterize reflectance spectra
in terms of their shape and the positions/widths of their ab-
sorption bands. Such “diagnostic” information is encoded by

complicated ad-hoc rules. One such approach is the tetra-
corder [3] which compares continuum-removed signatures
from observed pixels to a library of laboratory samples by
means of a modified least squares fit. Other approaches use
parametric models to represent the absorption features (e.g.
[4]) but still rely on rules to match observations to a library.
Physically motivated rule-based methods suffer from the need
to create new rules when previously unknown spectral species
are added to the library.

Mathematical signal models have also been proposed to
represent reflectance spectra. Some recent approaches based
on cubic splines have been successful in spectral unmix-
ing [5]. Models that leverage wavelet decompositions are
of particular interest because they allow the representation
of diagnostic absorption features at different scales. Current
wavelet-based approaches are either ad-hoc in nature or lim-
ited to filtering techniques that manipulate the data but do not
extract information [6, 7].

We propose a model for wavelet-domain representations
that is able to encode the same diagnostic information as
physically-based models without relying on ad hoc rules, in-
terpreting unknown spectra based on training data obtained
automatically from the library. Our approach applies Hid-
den Markov Models (HMM) [8] to wavelet coefficients from
hyperspectral signals. HMMs succinctly capture correla-
tions between wavelet coefficients in overlapping spectral
ranges and at adjacent scales. As in [7], we use a continuous
wavelet transform to obtain maximum flexibility on the set of
scales and offsets considered. The resulting model provides a
collection of N Non-Homogeneous Hidden Markov Chains
(NHMCs), each corresponding to a particular spectral band.
As an example, a set of energy labels generated by the model
provides a map from each signal spectrum to a binary space
that encodes the presence of fluctuations at different scales
and wavelengths, effectively representing the semantic cues
that allow for discrimination of spectra.

2. CONTINUOUS WAVELET TRANSFORM
The wavelet transform is a widely used tool in signal and im-
age processing that provides a multiscale analysis of a signal’s
content, effectively encoding in a compact fashion the loca-
tions and scales at which the signal structure is present [9].

The continuous wavelet transform (CWT) of a spectral
signal x(f) supported over [0, F ] is composed of wavelet co-
efficients ws,u labeled by a scale s ∈ R+ and offset u ∈
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Fig. 1: Top: Example spectral signature (N = 325 samples). Left:
Corresponding CWT coefficient array (s = 9) using a Daubechies-4
wavelet. Small/large coefficient magnitudes are shown in blue/red.
Right: State labels obtained for the example spectral signature using
a NHMC model. White corresponds to large labels; black to small.

[0, F ], and defined as ws,u = 〈x, ψs,u〉 =
∫
x(f)ψs,u(f)df,

where ψs,u denotes the mother wavelet ψ dilated to scale s
and translated to offset u, i.e., ψs,u(f) = ψ ((f − u)/s) /

√
s.

Each coefficientws,u at scale s can be described as a disconti-
nuity detector over a portion of the signal of size proportional
to s around the offset u.

The wavelet coefficients over a grid of scales s = 1, . . . , S
and offsets u = 0, F/N, 2F/N, . . . , F − F/N can be orga-
nized into a 2-D array W ∈ RS×N , where each row repre-
sents a different scale and each column represents a differ-
ent band (cf. Fig. 1). For simplicity, we identify each offset
u = nF/N by its index n = 0, . . . , N − 1. A large wavelet
coefficient (in magnitude) generally indicates the presence of
a singularity inside its support; a small wavelet coefficient in-
dicates a smooth region. The wavelet coefficients of a piece-
wise smooth signal exhibit a peaky non-Gaussian distribution.

A pair of coefficients ws,n and ws+1,n at the same offset
and neighboring scales are referred to as a parent and child
coefficient, respectively; the columns of coefficients in Fig. 1
correspond to sequences of parent/child wavelet coefficients.
It is easy to see that parent and child wavelet functions are
nested inside one another. Due to such nesting, edges and dis-
continuities in general manifest themselves in the wavelet do-
main as chains of large coefficients propagating across scales,
a phenomenon known as persistence. Thus, wavelets both en-
code and exhibit structure from piecewise smooth signals, a
property that is exploited repeatedly in signal processing.

In contrast to the commonplace dyadic wavelet trans-
form, the CWT provides maximum flexibility on the choice
of scales and offsets used in the multiscale analysis, as both
parameters can take arbitrary real values. The tradeoff for
such flexibility is the redundancy that arises in the wavelet
representation: the size of the wavelet representation is S
times larger than the length of the sampled signal.

3. NON-HOMOGENEOUS
HIDDEN MARKOV CHAINS

Inspired by the use of Hidden Markov Trees (HMTs) for
statistical modeling of dyadic wavelet coefficients [10], we
rely on an NHMC to model the CWT coefficients. In con-
trast to HMTs, the choice of CWT yields a collection of
non-homogeneous hidden Markov chains connecting each

+

Fig. 2: Modeling of the heavy-tailed wavelet coefficient distribution
as a mixture of Gaussians corresponding to large and small states.

wavelet coefficient with its parent and child (if they exist).
As in HMTs, each wavelet coefficient ws,n is statistically
modeled using a mixture of two Gaussians (cf. Fig. 2): the
first component features a large variance σ2

L,s,n that mod-
els large nonzero coefficients and receives a small weight
pLs,n (to encourage few such coefficients and preserve energy
compaction), while the second component features a small
variance σ2

S,s,n that models small and zero-valued coefficients
and receives a large weight pSs,n = 1 − pLs,n. We distinguish
these two components by associating to each wavelet coef-
ficient ws,n an unobserved hidden state Ss,n ∈ {S, L}, with
probabilities p(Ss,n = S) = pSs,n and p(Ss,n = L) = pLs,n.
The value of Ss,n determines which of the two components
of the mixture model is used to generate the probability distri-
bution f(ws,n) for ws,n: f(ws,n|Ss,n = S) = N (0, σ2

S,s,n)

and f(ws,n|Ss,n = L) = N (0, σ2
L,s,n), with σ2

L,s,n > σ2
S,s,n.

The persistence of large and small coefficients from par-
ent to child is well-modeled by a Markov chain that links their
coefficient states. This induces the NHMC graphical model
on the coefficient array W , where the state Ss,n of a coeffi-
cient ws,n is affected only by the state Ss−1,n of its parent
ws−1,n. The NHMC is then completely determined by the set
of state transition matrices for the different parent-child label
pairs (Ss,n,Ss+1,n):

As,n =

[
pS→S
s,n pS→L

s,n

pL→S
s,n pL→L

s,n

]
.

The persistence property implies that the values of pL→L
s,n and

pS→S
s,n are significantly larger than their complements pL→S

s,n

and pS→L
s,n , respectively. Note that all the probabilities pSs,n

and pSs,n can be computed from {As,n}, pS1,n, and pS1,n.
We separately train an NHMC on each of the N wave-

lengths or frequencies sampled by the hyperspectral acqui-
sition device in order to capture the dynamics of observable
spectral signatures for each wavelength individually. While
the overlap between wavelet functions at a fixed scale and
neighboring offsets introduces correlations between the cor-
responding wavelet coefficients, we consider each NHMC of
parent-child wavelet coefficients independently for compu-
tational reasons. The set of NHMC parameters Θn include
the probabilities for the first hidden states pS1,n and pL1,n, the
state transition matrices {As,n}Ss=1, and Gaussian variances
{σ2

L,s,n, σ
2
S,s,n}Ss=1 — each of these for 1 ≤ n ≤ N .

NHMC training (e.g., picking the values of Θn) is per-
formed via an expectation maximization (EM) algorithm that



maximizes the likelihood of a library of training data given
the model parameters. The iterative algorithm can be briefly
described as follows (with some initial set of parameters Θ0

n):

1. E step: Calculate p(Sn|Wn,Θ
i
n), the joint probabil-

ity for the hidden state variables, using a forward-
backward algorithm [8].

2. M step: Choose new model parameters by maximiz-
ing the expected likelihood of the coefficients and state
labels: Θi+1

n = arg maxΘESn [ln f(W,S|Θ)|W,Θ].
The values are obtained by computing weighted means
of the likelihoods/variances over the training set [10].

3. If converged, stop; otherwise, increment i and repeat.
The model training dataset is, ideally, as large and diverse as
possible, ultimately aiming to obtain a universal model for
all observable samples. Given the model, the state labels
{Ss,n} for a given observation are obtained using a Viterbi
algorithm [8, 10] that employs the Gaussian parameters and
transition probabilities in {Θn}. The algorithm also returns
the likelihood f(W |Θ) of a wavelet coefficient array W un-
der the model Θ as a byproduct. We propose the use of the
parameters Θ, state labels S, and likelihood f(W |Θ) as rep-
resentations of the original hyperspectral signal x. In the se-
quel, we discuss particular example problems that use the set
of state labels S and present promising preliminary results.

4. MATERIAL IDENTIFICATION

Material identification is one of the most common applica-
tions in hyperspectral data processing. The goal is to iden-
tify the dominant material species in an observed spectrum by
comparing it with a library of reference signatures for com-
mon materials. Challenges in material identification arise due
to the effect of the atmosphere, illumination geometry, instru-
mental artifacts and sensor noise on remotely sensed spectra.

Physically-based approaches for spectral representation
are routinely used in material identification [3, 4, 11]. Au-
tomated approaches for material identification often require
the computation of similarity measures between the unknown
spectrum and each of the library spectra to determine the
best match. Popular examples include cross-correlation spec-
tral matching [12], spectral information divergence [13], and
spectral angle mapping [14]. Such measures lack the sophis-
tication needed to quantify subtle spectral differences.

The wavelet representations exploited by our model pro-
vide a succinct characterization of diagnostic mineral fea-
tures. Intuitively, the presence of a fluctuation in a spectral
signature is represented by chains of large state labels Ss,n
appearing for the corresponding sampled wavelengths (cf.
Fig. 1). Thus, it is easy to identify the presence of such
semantic cues simply by inspecting the state labels obtained
from the NHMC. The discriminating nature of the state la-
bels allows for efficient and simple classification algorithms
such as nearest-neighbor search, in contrast with existing ad-
hoc approaches that aim to capture these cues using custom
similarity measures.
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Fig. 3: Comparison of classification results for USGS spectral li-
brary. Left column: spectrum being identified (pyrophy3); middle
column: correct endmember (pyrophy2); right column: incorrect
endmember returned by the approach of [7] (kaolini1). Top row:
reflectances; middle row: filtered signatures from [7]; bottom row:
labels from NHMC for wavelet coefficients.

We showcase the potential of our NHMC-derived repre-
sentation by studying two material identification scenarios.
The first problem considers the classification of 57 clay min-
eral samples in 12 different classes from the USGS spectral
library (cf. [7, Table 2]). The approach of [7] computes a 10-
level continuous wavelet decomposition of the mineral spec-
tra and produces a signature by filtering the wavelet decom-
position to ignore the 4 coarsest scales. This signature is used
as a feature for a minimum angle classifier; the reported accu-
racy is 89%, and we reached an accuracy of 84% in our imple-
mentation. In contrast, we use the state labels S assigned to
each material sample as a feature vector and employ a simple
nearest-neighbor search classifier. Since the state labels are
binary, we use the Hamming distance as a metric of similar-
ity. The results show a classification rate of 95%, significantly
outperforming the approach of [7]. As can be seen in Fig. 3
(sample pyrophy3), the approach of [7] incorrectly selects an
endmember that provides a better match to the remnants of the
continuum after filtering. In contrast, our state labels selects
the correct endmember: it encodes the presence of discon-
tinuities and determines their relevance through the library’s
NHMC statistical model.

The second problem considers the segmentation of a hy-
perspectral image acquired by the AVIRIS spectrometer over
Cuprite, NV in 1995 [15–17]. The hyperspectral image rep-
resents a section of Cuprite of size 350× 400 pixels. Spectral
bands covering the short wave infrared (SWIR) spectral range
(2.0 – 2.5 µm) were selected due to the presence in that range
of diagnostic absorptions for the minerals in the scene and in
order to avoid residual atmospheric contributions to the spec-
tra. A USGS library is used to train the NHMCs, and each
spectrum in the image is mapped to one of the library spec-
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Fig. 4: Mineral identification results for AVIRIS image data with USGS library. Continuous line: image sample; dotted line: library sample.

tra using Hamming distances on the obtained state labels S.
Figure 4 shows example matches in the library for several im-
age spectra. The first three examples show correct matchings
for alunite, kaolinite, and montmorillonite samples. The last
figure shows a kaolinite sample that is incorrectly matched to
montmorillonite in the library. Note that the kaolinite sample
in the second figure is more reminiscent of the library sam-
ple of the same material, while the ridges of the last kaolinite
sample are less prominent, causing a mislabeling. A prelim-
inary study on the overall accuracy improvement of the pro-
posed method over traditional automated approached used a
random sampling of spectral matches, under visually assess-
ment by researchers. The proposed method exhibited an ac-
curacy 15% higher than the classical SAM method.

5. CONCLUSIONS AND FUTURE WORK

We presented a novel mathematical representation of hyper-
spectral signals that encode scientifically meaningful infor-
mation by means of a statistical model of the signal’s wavelet
representation. We leveraged the multiscale analysis proper-
ties of the wavelet transform to succinctly express informa-
tive semantic cues on the spectrum’s structure. The method
was validated on material identification tasks where it outper-
formed some classic classification approaches. Further work
will expand the set of applications of the proposed model to
include image segmentation, where an augmented model can
capture spatial correlations in the field of view and provide
further discrimination between classes. Finally, we will char-
acterize the effect of the physics of acquisition and other non-
idealities in the applicability of the proposed models.
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