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Abstract

Feature design is a crucial step in many hyperspectral
signal processing applications like hyperspectral signature
classification and unmixing, etc. In this paper, we describe
a technique for automatically designing universal features
of hyperspectral signatures. Universality is considered both
in terms of the application to a multitude of classification
problems and in terms of the use of specific vs. generic train-
ing datasets. The core component of our feature design is
to use a non-homogeneous hidden Markov chain (NHMC)
to characterize wavelet coefficients which capture the spec-
trum semantics (i.e., structural information) at multiple lev-
els. Results of our simulation experiments show that the
designed features meet our expectation in terms of univer-
sality.

1. Introduction

In hyperspectral imaging, several signal processing
problems can be formulated in terms of supervised learning.
For example, the identification of endmembers from a num-
ber of classes can be posed as a series of class-wise detec-
tion problems. Initial efforts in these areas considered su-
pervised learning approaches that acted directly on the spec-
tra or considered representations of the spectra that are inde-
pendent of the particular problem at hand. Common exam-
ples include Fourier and Wavelet transforms (e.g. [2, 15]).

However, the common wisdom is that one can tailor the
feature design process in order to obtain improved perfor-
mance for the particular supervised learning problem. In
other words, one can select features from the data that are
customized for the specific problem. The rich literature fol-
lowing this concept include commonly used approaches in-
cluding principal component analysis (PCA) [16, 19], inde-
pendent component analysis (ICA) [1, 20]. However, the
main drawback from this formulation is that this process as-
sumes that only one fixed supervised learning problem is to
be considered, while the reality in hyperspectral signal pro-

cessing is that a multitude of problems can be formulated in
a particular data capture setting.

In practice, one commonly sees that class-wise features
are identified by hand by expert practitioners to train rule-
based systems such as the Tetracorder [3]. While this ap-
proach does provide features that are suitable for a variety
of supervised learning problems, the process taxes practi-
tioners with a significant amount of time in developing these
features, and it will need to take place whenever a new class
of data is added to the set of feasible observations. It is
therefore desirable to automate the feature design process
(in a fashion similar to PCA, ICA, and other common algo-
rithms) while retaining the universal application domain of
hand-picked feature design.

Thus, to deal with such broad nature of hyperspectral
signal processing, one may consider the design of features
that would be suitable for a class of supervised learning
problems rather than a particular problem. In this paper,
we consider feature design schemes that are universal with
regards to a family of supervised learning problems that will
be considered using the features obtained.

This goal of problem universality, however, appears at
first contradictory to common wisdom in machine learning:
one commonly aims to match the training and testing set
to avoid modeling aspects of the data that are not relevant
to the problem at hand. Thus, it is natural to expect that
choosing a universal feature design will bring suboptimal
performance in individual problems.

Nonetheless, in the hyperspectral signal processing field,
there is also common wisdom that a compact set of semantic
information that is observed in the data by expert practition-
ers suffices for successful supervised learning; this concept
is in fact the foundation behind the aforementioned hand-
picked feature design. Thus, one can posit that if a feature
design scheme is successful in capturing this semantic in-
formation, then its performance on a particular supervised
learning program should not differ much from that obtained
by features designed specifically for that problem. Further-
more, if such features can be obtained, then they could po-



tentially be studied by expert practitioners in the manner
similar to that usually performed on the original data.

The consideration of this contrast between global and lo-
cal approaches in feature design brings up a second con-
cept of data universality. Our consideration here is that this
type of universality can be evaluated by the degree to which
the performance of individual supervised learning problems
depends on the dataset from which the feature design was
based on (with the options being local vs. global sets or,
in other words, a dataset specific to the supervised learning
problem vs. a universal dataset).

The tradeoff between improving the performance of su-
pervised learning through careful training and designing
features featuring problem universality has been previously
considered in the literature. In the real-world image pro-
cessing paper [18], a set of control experiments involving
image classification are performed on two set of features.
The first set of features are designed for a specific class of
target objects. The second set of features are learned inde-
pendently from the problem at hand using an arbitrary set
of natural images downloaded from the Internet. The over-
all performance of object-specific features is better than that
of the universal features, while the latter becomes competi-
tive for smaller training sets. In another natural image pro-
cessing paper [17], a method to calculate the importance
of universal patches is proposed, and good image classifi-
cation performance can be achieved by using a relatively
low number of highly important patches. To the best of our
knowledge, this aspect of universality to a set of supervised
learning problems has not been previously formalized.

In this paper, we attempt to formalize a framework for
universality that considers the two aforementioned aspects
on problem and data universality. We then apply our for-
mulation to evaluate the universality performance of a pre-
viously introduced feature design scheme for hyperspectral
signatures [5–7, 13], which we also summarize in this paper.
Finally, we present numerical results that highlight the im-
proved universality of our proposed feature design scheme
in comparison with commonly used baselines for feature
design from training data.

2. A Framework for Universality

We consider a feature design scheme F : X → Y from
the input signal space to a feature space, denoted y = F(x)
that is then used for a supervised learning problem where
the goal is to learn a mapM : XM → L, where XM ⊆ X
is the domain of the map and L denotes the label space. Al-
though the feature design scheme may or may not be depen-
dent on the specific mapL, we let it be dependent on a train-
ing data set XT so that we write y = FXT

(x). A machine
learning algorithm creates a map estimate M̂ : Y → Lwith

the goal of minimizing the label map estimate error metric

E(F ) =
|{x ∈ XM :M(x) 6= M̂(F (x))}|

|XM|
, (1)

where | · | is the cardinality of a set. Since we consider a
family of feature design schemes that depend on a training
dataset, we instead define the error metric as a function of
the training set:

E(XT ) =
|{x ∈ XM :M(x) 6= M̂(FXT

(x))}|
|XM|

.

2.1. Universality for the Training Data

The common wisdom in machine learning is that the fea-
ture design scheme should consider only the data in the do-
main of the map M (and as much of that data as possi-
ble) in its formulation, i.e., we should aim for a procedure
y = FXM(x). In practice, it is indeed observed that when-
ever the setXT * XM, i.e., when some of the data relevant
to the supervised learning problem is ignored during feature
design, then the performance of supervised learning suffers,
i.e., E(XT ) � E(XM). In the other direction, training
with a set XT ⊃ XM can lead to a feature selection that
learns structure that is irrelevant to the problem, particularly
when the set XM is a subset of X with distinct character-
istics not observed in its complement. Thus, this common
wisdom states that one should expectE(XM) < E(X ′) for
any set X ′ 6= XM, X ′ ⊆ X .

Nonetheless, if the type of information relevant to model
the mapping M is captured by the feature design scheme
FX , then one would expect that E(X) ≈ E(XM). That is,
there would be little performance loss if the feature design is
trained on all available data rather than only on data specific
for the machine learning problem at hand.

2.2. Universality for a Family of Supervised
Learning Problems

The quantification of performance loss due to the use
of all data available for feature design may seem like a
moot point, given that in general it will be optimal to use
the domain of the map to be learned during feature design.
However, we also consider the case where there is a fam-
ily of mappings M̄ = {M1,M2, . . . ,MM} that need to
be learned simultaneously. A simple example is spectrum
classification where prior information is available about the
spectra present in the scene, which may be different for each
data capture. Thus, the estimate for each map can be written
as M̂i : Y → L, and their performances can be measured
in the same way as before, although now being problem-
dependent:

Ei(XT ) =
|{x ∈ XMi

:Mi(x) 6= M̂i(FXT
(x))}|

|XMi
|

,



for each i = 1, . . . ,M . As the particular problem to be
faced is unknown, one can feasibly aim for a minimax crite-
rion by studying the worst-case performance over the fam-
ily of problems, given by Ē(XT ) = max1≤i≤LEi(XT ).
In words, we desire for the effect of training from all
data on the performance of supervised learning to be uni-
formly bounded over all learning problems of interest. In-
tuitively, if the universality capability of a feature design
scheme is good enough, then the magnitudes of the differ-
ences between the classification rates for both classification
schemes should not be too large, which means Mi(x) ≈
M̂i(FXT

(x)) for arbitrary i.

3. Feature Design for Hyperspectral
Signatures

In this section, we present a feature design scheme which
relies on a statistical model for the data and requires a set
of training data to estimate relevant model parameters. We
will also show the semantic information extraction capabil-
ity of the proposed feature design scheme. A full overview
of the feature design scheme is provided in [5–7, 13]. We
include an abridged description below to make this paper
self-contained.

For our experiment, we consider a feature design scheme
based on statistical model of wavelet coefficients of the
spectra under consideration. The wavelet transform is well
known for its capability to highlight the presence of discon-
tinuity in a signal, making it well-suited for the represen-
tation of spectral fluctuations of semantic value [9]. Fur-
thermore, the statistical modeling of wavelet coefficients
enables the distinction between fluctuations that have po-
tentially discriminating value (i.e., those that appear only
for a subset of the data being considered) from those that
do not have discriminative power (i.e., those that are preva-
lent throughout the data being considered). The features we
consider here apply hidden Markov models (HMMs) to the
wavelet coefficients derived from the observed hyperspec-
tral signals so that the correlations between wavelet coeffi-
cients in overlapping spectral ranges and at adjacent scales
can be captured by the models. This idea is inspired by
the hidden Markov tree (HMT) model proposed in [4]. As
for the wavelet transform, we use an undecimated wavelet
transform (UWT) in order to obtain maximum flexibility on
the set of scales and offsets (spectral bands or wavelengths1)
considered.

3.1. Undecimated Wavelet Transform

A one-dimensional real-valued UWT of an N -sample
signal x ∈ RN is composed of wavelet coefficientsws, each
labeled by a scale l ∈ 1, ..., L and offset n ∈ 1, ..., N , where
L 6 N . The coefficients are defined using inner products

1We use these three equivalent terms interchangeably in the sequel.

as wl,n = 〈x, φl,n〉, where φl,n ∈ RN denotes a sampled
version of the mother wavelet function φ dilated to scale l
and translated to offset n:

φl,n(λ) =
1√
l
φ

(
λ− n
l

)
,

where λ is a scalar. To improve the interpretability of the
notation, we will change our notation for scales in the se-
quel from l = 1, 2, . . . , L to s = L,L − 1, . . . , 1 (i.e., we
reverse the ordering of the scales). With this change, small
values of s correspond to coarse scales while large values of
s correspond to fine scales. All the coefficients can be or-
ganized into a two-dimensional matrix W of size L × N ,
where rows represent scales and columns represent sam-
ples. In this case, each coefficient ws,n, where s < L, has a
child coefficient ws+1,n at scale s + 1. Similarly, each co-
efficient ws,n at scale s > 1 has one parent ws−1,n at scale
s − 1. Such a structure in the wavelet coefficients enables
the representation of fluctuations in a spectral signature by
chains of large coefficients appearing within the columns of
the wavelet coefficient matrix W .

3.2. Statistical Modeling of Wavelet Coefficients

Crouse et al. [4] proposed the use of hidden Markov
models (HMM) to capture the statistics of DWT coeffi-
cients. The statistical model is motivated by the compres-
sion property of the DWT, which leads to the use of a zero-
mean Gaussian mixture model (GMM) with two Gaussian
components to capture the compression property, where one
Gaussian component with a high-variance characterizes the
small number of “large” coefficients (labeled with a state L),
while a second Gaussian component with a low-variance
characterizes the large number of “small” wavelet coeffi-
cients (labeled with a state S). The state Ss ∈ {S,L} of a
wavelet coefficient2 is said to be hidden because its value is
not explicitly observed. The likelihoods of the two Gaussian
components pSs

(L) = p(Ss = L) and pSs
(S) = p(Ss = S)

should meet the condition that pSs
(L) + pSs

(S) = 1.
The conditional probability of a particular wavelet coeffi-
cient ws given the value of the state Ss can be written as
p(ws|Ss = i) = N (0, σ2

i,s), where i = {S,L}, and the dis-
tribution of the same wavelet coefficient can be written as
p(ws) = pSs

(L)N (0, σ2
L,s) + pSs

(S)N (0, σ2
S,s).

In cases where a UWT is used, the persistence prop-
erty of wavelet coefficients [10, 11] (which implies the high
probability of a chain of wavelet coefficients to be con-
sistently small or large across adjacent scales) can be ac-
curately modeled by a non-homogeneous hidden Markov
chain (NHMC) that links the states of wavelet coefficients
in the same offset. This means the state Ss of a coefficient

2Since the same model is used for each chain of coefficients
{S1,n, . . . , SL,n}, n = 1, . . . , N , we remove the index n from the sub-
script for simplicity in this sequel whenever possible.



ws is only affected by the state Ss−1 of its parent (if it ex-
ists) and by the value of its coefficient ws. The Markov
chain is completely determined by the likelihoods for the
first state and the set of state transition matrices for the dif-
ferent parent-child label pairs (Ss−1, Ss) for s > 1:

As =

(
pS→S,s pL→S,s

pS→L,s pL→L,s

)
, (2)

where pi→j,s := P (Ss = j|Ss−1 = i) for
i, j ∈ {L,S}. The training process of an HMM
is based on the expectation maximization (EM) algo-
rithm which generates a set of HMM parameters θ =
{pS1

(S), pS1
(L), {As}Ls=2, {σS,s, σL,s}Ls=1} including the

probabilities for the first hidden states, the state transition
matrices, and Gaussian variances for each of the states. We
define the L×N matrix S containing the collection of state
values for all scales and spectral bands. The iterative parts
of the algorithm can be briefly described as follows:

1. E step: Perform maximum likelihood estimation of the
state labels using a forward-backward algorithm Sl =
arg maxS p(S|W,θl) [14]; this joint conditional proba-
bility mass function (PMF) will be used in the M step.

2. M step: Update the model parameters to maxi-
mize the expected value of the joint likelihood of
the wavelet coefficients and state estimates: θl+1 =
arg minθ ES [ln f(W,S|θl)|W,θl] [4].

3. Set l = l+ 1. If converged, then stop; otherwise, repeat.

In contrast to the prior work of [4], we design our NHMC
to feature k-state GMMs for the wavelet coefficients. We
increase the number of states from 2 to k > 2 because a
two-state zero-mean GMM provides an overly coarse dis-
tinction between sharper fluctuations and flatter regions in
a hyperspectral signature. In our cases of interest, spectrum
classification requires a labeling granularity for the signa-
ture fluctuations that is finer than that achieved by binary
labels. The necessary changes to the model training algo-
rithm are straightforward; see [7] for details.

Because of the overlap between wavelet functions at a
fixed scale and neighboring offsets, adjacent coefficients
may have correlations in relative magnitudes [12]. How-
ever, for computational reasons, in this paper we only con-
sider the parent-child relationship of the wavelet coeffi-
cients in the same offset. Namely, we train an NHMC sepa-
rately on each of the N wavelengths sampled by the hyper-
spectral acquisition device.

3.3. Label Computation

Given the model parameters θ, the state label values
{Ss}Ls=1 for a given observation are obtained using a Viterbi
algorithm [4, 14]. For a particular wavelet coefficient ws, a

k-dimensional conditional probability vector is defined with
elements being the conditional PMF of the wavelet coeffi-
cient p(ws|Ss = i) ∼ N (0, σ2

i,s) under each possible state
value i = 0, . . . , k − 1. A variable δi,s is defined as the
“best score” that ends in a particular state i at scale s from
its previous state, while the variable ψi,s is the most likely
state at a particular scale s− 1 to have children s with state
i. These two variables are defined as

ψi,1 = 0, (3)
δi,1 = pi,1 · p(w1|S1 = i), (4)
ψi,s = arg max

j=0,...,k−1
(δj,s−1pj→i,s), (5)

δi,s = δψi,s,s−1pψi,s→i,s · p(ws|Ss = i), (6)

for i = 1, . . . , k − 1 and s = 2, . . . , L. The algorithm
also returns the likelihood p(W |θ) of a wavelet coefficient
matrix W under the model θ as a byproduct. We propose
the use of the state label array S as classification features
for the original hyperspectral signal x. It is easy to identify
the presence of such features simply by inspecting the labels
obtained from the NHMC.

3.4. Additional Modifications to NHMC

Because of the shape of the Haar wavelet function used
in our featured design scheme, the signs of Haar wavelet
coefficients of a reflectance spectrum capture whether the
slopes increase or decrease as a function of wavelength.
This characteristic of Haar wavelet coefficients can be uti-
lized to design state labels that capture the slope orientations
of the corresponding reflectance spectra. Thus, we make a
simple modification by adding the sign of a Haar wavelet
coefficient to its counterpart in the corresponding state la-
bel matrix.

Unfortunately, a large number of GMM states might also
have negative influence on classification results. As men-
tioned above, the GMM state of a particular wavelet coef-
ficient is not only determined by its magnitude. This may
cause different maps between coefficient value ranges and
GMM states across scales and offsets. In practice, this vari-
ance may sometimes affect the interpretability of features
obtained from GMM labels. Furthermore, the likelihood
of such variability in the value-to-state mappings could in-
crease when we use multi-state GMM. Thus, we desire a
modification to the model that features the simplicity of a
binary-state GMM (to preclude mismatch in coefficient-to-
state mappings across wavelengths and states) and the spec-
tral fluctuation characterization capability of a multi-state
GMM (providing finer fluctuation characterization than a
binary-state GMM).

Our modified wavelet coefficient statistical model con-
sists of a binary-state NHMC with a “small” state (0) mod-
eled by a standard zero-mean Gaussian distribution and a
“large” state (1) modeled by a mixture of k-1 Gaussian



Figure 1. Comparison of label arrays obtained from several statis-
tical models for wavelet coefficients. Top: example normalized re-
flectance. Second: Corresponding state label matrix from a 2-state
GMM NHMC model. Third: Corresponding state label matrix
from a 6-state GMM NHMC model. Bottom: Corresponding state
label matrix from a MOG NHMC model with k = 6. All state
labels are added with signs of corresponding wavelet coefficients.

distributions. We denote this modified model mixture of
Gaussians (MOG) NHMC in the sequel. Note that we use
numbers here instead of letters for the state labels to dis-
tinguish between the 2-state GMM NHMC and the 2-state
MOG NHMC.

In order to obtain a MOG NHMC model, the first step
is to train a k-state GMM NHMC model that yields state
labels Ss ∈ {0, . . . , k − 1}. After that, all the states
are quantized into two states so that we can get a MOG
NHMC that yields state labels Zs ∈ {0, 1} with probabil-
ities qi,s = P (Zs = i), i = 0, 1. We provide an example
comparison between labels obtained from the GMM and the
MOG NHMCs in Fig. 1.

3.5. Illustration of Extracted Semantic Information

The state label arrays obtained from the NHMC model
characterize four important semantic features of the corre-
sponding hyperspectral signatures: (i) the orientations of
the signature slope, which is reflected in the state label val-
ues; (ii) the extent of the signature slope, which is reflected
in the duration of corresponding state label values through
different wavelengths; (iii) the intensity of the signature
slope, which is reflected on the depth of the corresponding
state label values through the scales; and (iv) the locations
of the absorption bands. In order to showcase the semantic
information captured by our designed features, we illustrate
these four types of semantic features in several example re-
flectance spectra. To begin, we calculate the mean of each
column in a state label array and then transform it to an in-
teger by using round. In this way, we obtain what we call
a state label mean vector of the same length as the corre-
sponding reflectance spectrum whose possible element val-
ues are 0,±1, · · · ,±(k−1), where k is the number of Gaus-

Figure 2. Semantic information extracted in some sample spectral
curves based on GMM with 2 states. Top row: Sample spectral
curves with extracted semantic information. Bottom row: corre-
sponding state label array.

sian states used in the corresponding GMM. Fig. 2 shows
three example reflectance spectra with the corresponding
extracted semantic information based on an NHMC with 2
Gaussian states as well as the corresponding state label ar-
rays. We plot the reflectance spectral curve by using three
different colors to encode the value of the state label mean
vector: green, red, and blue portions represent wavelengths
for which the state label mean vector elements are 0, +1,
and −1, respectively. Finally, we calculate all the middle
points between the end of a 1’s series and the beginning
of a −1’s series, and mark those points on the plotted re-
flectance spectra to find the locations of absorption bands.
As expected, spectral curves in Fig. 2 have blue increasing
slopes, red decreasing slopes, and green flat regions.

4. Experiment and Result Analysis
In this section, we present multiple experimental results

that evaluate the proposed concept of universality for the
feature design scheme proposed in the previous section. We
will consider a family of spectrum classification problems
to evaluate universality by comparing the performance of
features designed with a training set specific to each indi-
vidual problem versus features designed with all available
data being used in the training set.

4.1. Classification System Overview

We provide an overview of the NHMC-based hyperspec-
tral classification system in Fig. 3. The system consists
of two modules: an NHMC model training module and a
performance testing module. For illustration convenience,
the figure shows an example of a binary-state GMM in the
NHMC, which is the simplest model in all NHMC models
proposed in this paper. We also explore the performance of



Figure 3. System overview. Top: The NHMC Training Module collects a set of training spectra, computes UWT coefficients for each, and
feeds then to a NHMC training unit that outputs Markov model parameters and state labels for each of the training spectra, to be used as
classification features. Bottom: The Performance Testing Module considers a test spectrum, obtains its UWT coefficients, and generates
a state array from the NHMC obtained during training. A nearest-neighbors classifier searches for the most similar state array among the
training data, and returns the class label for the corresponding spectrum.

the system for k-ary states extensions, k = 2, 3, . . ., as well
as MOG. The training stage uses a training library of spec-
tra containing samples from the classes of interest to train
the NHMC model, which is then used to compute state esti-
mates for each of the training spectra using a Viterbi Algo-
rithm. The state arrays will then be used as classification
features coupled with a nearest neighbor (NN) classifier.
As for the similarity metric used in NN classifier, we use
cosine similarity, Euclidean distance, and Manhattan dis-
tance. The testing module considers a spectrum under test
and computes the state estimates under the trained NHMC
model using the parameters obtained during training. The
module then applies the classification scheme being tested,
returning the class label of the selected training spectrum.

4.2. Study Data

The dataset used in this paper is a part of the RE-
LAB spectral database with 26 mineral reflectance spectrum
classes. Since the spectra in the original database have dif-
ferent wavelength ranges, we only use the spectral region
from 0.35 µm to 2.6 µm (if applicable) which contains al-
most all of the visible and near-infrared region of the elec-
tromagnetic spectrum. We only use the spectra with spectral
resolution being 5 nm to eliminate the differences in spec-
tral resolution in different sources. A different number of
samples is present in each mineral class. Thus, in order to
ensure the same weight of each class in the training process,
we use the Hapke mixing model [8] to generate additional
mixtures of existing spectra in a given class until all classes
have the same number of samples. We do this to prevent
different mineral types from having different contributions
to the model obtained and influencing the final classification

accuracy. The final dataset contains 1690 reflectance spec-
tra with each class including 65 reflectance spectra. Addi-
tionally, we eliminate the influences caused by illumination
conditions by performing normalization on each spectrum
by its maximum value.

Unfortunately, the resulting dataset features a significant
separation between the different classes, and so it is diffi-
cult to differentiate the performances of the different pro-
posed methods, which are very high. In order to discrim-
inate among the methods, we introduced mixing into the
database as an attempt to increase the variance among re-
flectance spectra in each given class. Our mixing method-
ology is designed to resemble the image blurring process
common in hyperspectral imaging. First, we randomly or-
der the reflectance spectra in the database into a 3-D ar-
ray (a so-called datacube) with two spatial dimensions and
one spectral dimension. We then perform identical spatial
blurring on each wavelength using a 3 × 3-pixel Gaussian
smoothing operator. Finally, we build a new library from
the blurred pixels’ spectra while retaining the original la-
bels. By performing this image-based blurring, each spec-
trum in the resulting database exhibits a mixture of struc-
tural features from spectra in multiple classes, which pro-
vides a more challenging spectrum classification setup. We
vary the Gaussian blurring kernel variance among a range of
values to adjust the amount of mixing performed: the domi-
nant material percentage (DMP) of the original pixel in the
corresponding blurred pixel is obtained as the normalized
weight of the central element in a Gaussian smoothing op-
erator. In our experiment, we vary the DMP from 50% to
100% with a step of 5%.



4.3. Performance Evaluation

We evaluate the universality of our proposed features
based on the classification performance of different sub-
sets of the whole database with NN classification coupled
with different similarity metrics. We also evaluate the uni-
versality of several popular approaches for data-dependent
feature selection. In this experiment, we construct new
databases for classification problems by randomly select-
ing 7 classes, 13 classes, and 20 classes of mineral spectra
from the original 26-class database with different values of
DMP for the purpose of universality capability evaluation.
For each DMP value, we obtain databases for 10 separate
combinations of each 7-class, 13-class, and 20-class case.

We randomly separate each newly built database into a
training library and a validation set. The spectrum number
ratio of each pair of training library and validation set is 4 :
1. We provide two hyperspectral classification schemes. In
Scheme A, the features are obtained from a data-dependent
feature design scheme trained on the specific classes in-
volved in this classification problem, while in scheme B the
features are obtained from the same data-dependent feature
design scheme trained on all 26 classes available. The clas-
sification is then performed via NN search in the space of
the features obtained for the particular scheme.

For each classification problem, we calculate the clas-
sification rates of both classification schemes mentioned
above (A, B) with databases containing different numbers
of classes. The top row of Fig. 4 shows examples for the
obtained classification rates using the proposed NHMC-
based feature design scheme with a 4-state MoG and added
wavelet coefficient signs. Since the results are similar for
the three choices of similarity functions proposed, we show
the results only for Euclidean distance for brevity. Each
DMP value corresponds to 10 experiments. In some cases
the figures appear to show less than 10 results for a DMP
value, especially when training set is small. This is due
to multiple experiments exhibiting the same classification
rates under each one of the classification schemes (A,B)
given above, which makes several points overlap with one
another in the figure.

Through the results in the top row of Fig. 4, we can find
that in most cases the markers are slightly above but quite
close to the y = x line. For low DMP values, more markers
deviate from the y = x line than for higher DMP values. As
the DMP value increases, the positions of those markers get
stabilized and come closer to the y = x line. Furthermore,
Scheme B seems to be more competitive when training set
is small. The mixing process introduces uncertainties into
the results of classification due to the fact that mixing is
randomly performed in this experiment; thus, features from
other spectra will be randomly added to the target spectrum.
Intuitively, mixing with smaller DMP values result in larger
uncertaintities in classification performance. This behavior

justifies the more diverse distribution of markers for low
DMP values.

The marker spread in the case of 7-class databases is the
most diverse, while that of the case of 20-class databases
has the strongest convergence. This may due to the fact that
the difference between the feature design training databases
used in schemes A and B becomes smaller as the number of
classes included in the classification problem increases. In
contrast, for classification problems with small number of
classes, the difference between the feature design training
databases used in both schemes is significant.

4.4. Comparison with Existing Data-Dependent
Feature Design Approaches

We compare the universality results of our proposed fea-
ture design approach with two approaches from the liter-
ature: principal component analysis (PCA) and indepen-
dent component analysis (ICA) based on the infomax cri-
terion [1]. After performing PCA on hyperspectral data,
we selected the first 10 principal components of each spec-
trum as classification features since the first 10 princi-
pal components cover over 99% of the power in each re-
flectance spectrum. For Infomax-based ICA, we separated
the hyperspectra data into 9 source components since we
mix each reflectance spectrum with its 8 nearest neigh-
bors in the database, which means there are totally 9
sources/endmembers contributing to a mixed spectrum. We
then used the 9 source components as classification features.
We still used the two hyperspectral classification schemes
mentioned above (A, B) to evaluate the universality perfor-
mance of the two feature-selection-based classification ap-
proaches. The second and third rows of Fig. 4 show the
results of PCA and ICA, respectively.

The classification results for PCA-based feature selec-
tion show quite diverse performance with regard to the dif-
ferent numbers of classes involved in each classification
problem. This may be due to a varying level of accuracy
for the subspace data model underlying the PCA approach
as the data involves more classes and becomes more diverse.
Furthermore, all experiments show a significant gap be-
tween the performance of schemes (A,B) due to the signif-
icant difference in modeling quality for PCA when trained
with local vs. global data, which implies the lack of univer-
sality of PCA-designed features.

As for the results of Infomax-based ICA, the overall clas-
sification rates of Scheme A is obviously better than that of
Scheme B. This implies that features in this experiment do
not contain comprehensive information for the dataset.

5. Conclusions and Further Work
Our experimental results aim to show the performance

gap between universal data training and problem-specific
data training for several different feature design methods.
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Figure 4. Universality performance of several feature design schemes. We compare the classification rates for training schemes A and
B over a family of classification problems with varying numbers of classes (left: 7; middle: 13; right: 20) and different feature design
schemes (top: NHMC, middle: PCA, bottom: ICA). Each subfigure compares the classification performance of both schemes for a certain
size of classification problems over 10 trials for each DMP value. The figures show that the NHMC features have significantly stronger
universality than the alternatives presented here.

Our expectation that our feature design scheme generally
had similar classification performance when trained both
with problem-specific and global or generic datasets bears
out in practice: the overall distribution of markers corre-
sponding to classification results under different number
of sample spectra in the object-specific training set and
different amount of mixing is quite concentrated near the
y = x line for the NHMC feature. Furthermore, the perfor-
mance differences between these two classification schemes
decreased as more classes were included in the problem,
while the classification rates of each scheme decreased as
the DMP was reduced. These phenomena demonstrate that
our designed feature contain comprehensive signature vari-
ation in the whole database, which meets our expectation
of universality. It has been previously pointed out in [18]
that feature design trained with universal data may in part
perform better than that trained with problem-specific data
due to the fact that the dataset used in the universal case is
larger (i.e., contains more data points) than the dataset used
in the problem-specific case. The limited dataset sizes that

we have available prevent us from comparing feature de-
sign schemes trained from universal and problem-specific
datasets of the same size, which may better quantify the
universality of the feature design scheme.

Additionally, we do not believe each feature designed by
our method is equally significant. Conceptually, an impor-
tant feature is one that is able to cause large change in classi-
fication performance; for example, [17] proposes a scheme
to measure the importance of features. Thus, further work
will focus on the selection of important features, which will
reduce the amount of relevant data.
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