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ABSTRACT

We study the compressed sensing (CS) signal estimation
problem where a signal is measured via a linear matrix mul-
tiplication under additive noise. While this setup usually
assumes sparsity or compressibility in the signal during es-
timation, additional signal structure that can be leveraged
is often not known a priori. For signals with independent
and identically distributed (i.i.d.) entries, existing CS al-
gorithms achieve optimal or near optimal estimation error
without knowing the statistics of the signal. This paper ad-
dresses estimating stationary ergodic non-i.i.d. signals with
unknown statistics. We have previously proposed a universal
CS approach to simultaneously estimate the statistics of a
stationary ergodic signal as well as the signal itself. This
paper significantly improves on our previous work, espe-
cially for continuous-valued signals, by offering a four-stage
algorithm called Complexity-Adaptive Universal Signal Es-
timation (CAUSE), where the alphabet size of the estimate
adaptively matches the coding complexity of the signal. Nu-
merical results show that the new approach offers comparable
and in some cases, especially for non-i.i.d. signals, lower
mean square error than the prior art, despite not knowing the
signal statistics.

Index Terms— MAP estimation, Markov chain Monte
Carlo, non-i.i.d. signals, signal estimation, universal algo-
rithms.

1. INTRODUCTION

Many systems in science and engineering are approximately
linear, and linear inverse problems have attracted great atten-
tion in the signal processing community. A signal x ∈ RN is
recorded via a linear operator under additive noise:

y = Φx+ z,

where Φ is an M ×N matrix and z ∈ RM denotes the noise.
By posing a sparsity or compressibility requirement on the
signal and using this requirement as a prior during signal esti-
mation, compressed sensing (CS) has shown that it is indeed
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possible to accurately estimate x from y,Φ, and the statistics
of z even when M � N [1, 2].

For independent and identically distributed (i.i.d.) signals,
existing CS algorithms [3] achieve optimal or near optimal
estimation error without knowing the statistics of the signal.
When addressing stationary ergodic non-i.i.d. signals, how-
ever, one might not be certain about the structure or statistics
of the signal prior to estimation. It would nonetheless be de-
sirable to formulate algorithms to estimate x that are agnostic
to the particular statistics of the signal. Therefore, we shift our
focus from the standard sparsity or compressibility priors to
universal priors [4, 5] that assign a probability to a sequence
despite not knowing its statistics.

In prior work [6], we minimized the empirical entropy,
which approximates the Kolmogorov complexity [7]1 of the
signal, with a regularization term corresponding to a log like-
lihood for the noise. The concrete formulation proposed in [6]
used Markov chain Monte Carlo (MCMC) [9] to minimize
the objective function. Our approach resembles maximum a
posteriori (MAP) estimation with a universal prior used for
the signal x. Preliminary results were promising, but the esti-
mation quality for continuous-valued signals fell short of that
observed for discrete-valued signals.

This paper significantly improves on our earlier work
by introducing a four-stage algorithm called Complexity-
Adaptive Universal Signal Estimation (CAUSE), which al-
lows the alphabet size of the estimate to vary dynamically
in order to match the coding complexity of the signal. Our
numerical experiments show that our improved algorithm
offers comparable and in some cases, especially for non-i.i.d.
signals, lower mean square error than the prior art, despite
not knowing the signal statistics a priori.

2. BACKGROUND

Setting: Consider the noisy measurement setup via a linear
operator under additive noise y = Φx + z, where the signal
x ∈ RN is generated by a stationary ergodic source X , and
must be estimated from y,Φ, and the statistics of z. Note that
we specifically focus on non-i.i.d. sources, and the distribu-

1A recent paper [8], developed independently from and appearing simul-
taneously with our prior work [6], also considered the performance of Kol-
mogorov complexity minimization for CS estimation. The paper [8] offered
theoretical results but no algorithmic approach.



Algorithm 1 : Merging two nearest adjacent levels
1: procedure [Q, w] = Merge(Q, w)
2: . Find nearest adjacent levels Q(j),Q(j + 1)

3: . Create a new level Q(ν) = Q(j)+Q(j+1)
2

4: if wn = j or j + 1, ∀n ∈ {1, .., N} then
5: wn = ν
6: end if
7: . Remove levels j and j + 1

tion fX that generates x is unknown. Also, whenever we refer
to a signal, we mean a signal generated by a certain source.

Our goal is to estimate x despite our lack of knowledge
about fX . Thus, we must search for an estimation mecha-
nism that is agnostic to the specific distribution fX . For con-
crete analysis, we assume the additive noise z ∈ RM to be
i.i.d. Gaussian, with mean zero and variance σ2

z . Other noise
distributions are readily supported.

Universal MAP estimation: The MAP estimator for x
that we proposed in [6] has the form

xMAP , arg max
w

fX(w)fY |X(y|w) = arg min
w

ΨX(w), (1)

where ΨX(w) , − ln(fX(w)) + 1
2σ2

z
‖y−Φw‖22 denotes the

objective function (risk) and ‖ · ‖2 denotes the `2 norm; our
ideal risk would be ΨX(xMAP ).

The above optimization problem (1) is defined over a
continuous-valued x. However, in order to reduce complex-
ity, we process a discretized space instead. Let Q be a dis-
cretizer from the real numbers to a finite set of representation
levels (levels for short) Q ⊂ R comprised of two parts: (i)
Q1 : R→ {1, . . . , Z}, where Z is the alphabet size of Q, as-
signs representation indices to the continuous-valued signal;
and (ii) Q2 : {1, . . . , Z} → Q maps to continuous-valued
levels. We further denote Q(j) to refer to the mappingQ2 be-
tween a group of representation indices j ∈ {1, . . . , Z}N and
the corresponding levels in order to denote its dependence on
Q. To keep the presentation simple, we assume that the levels
are monotone increasing with the representation index, i.e.,
Q(1) < Q(2) < ... < Q(Z).

The continuous-valued optimization (1) becomes an opti-
mization over a finite space due to discretization. Let w =
[w1, . . . , wN ] ∈ {1, . . . , Z}N be the sequence of indices
used to represent a possible discretized signal Q(w) ∈ QN .
In contrast to conventional MAP estimation with prior p(w),
we propose a universal lossless compression formulation fol-
lowing the conventions of Weissman and co-authors [10, 11].
Let pU (w) = 2−Hq(w) be a universal prior where Hq(w) is
the q-depth conditional empirical entropy [5]. Our objective
function becomes ΨHq (w) , NHq(w) + c1‖y − ΦQ(w)‖22,
where c1 is a constant derived from σ2

z ; ΨHq (w) offers a
trade-off between low entropy/complexity and the residual
‖y − ΦQ(w)‖22. Under a mild assumption that x was gen-
erated by a stationary ergodic source with low entropy, we
hope to estimate x with low `2 error.

Optimization via MCMC: We use a stochastic MCMC
relaxation [9] to achieve the globally minimum solution in the

Algorithm 2 : Adding one level between most distant adja-
cent levels

1: procedure [Q, w] = Add(Q, w)
2: . Find most distant adjacent levels Q(j),Q(j + 1)

3: . Create a new level Q(ν) = Q(j)+Q(j+1)
2

4: . Pr
(
wn = j|w\nfixed

)
= ps(wn = j) according to (2)

5: if wn = j or j + 1,∀n ∈ {1, ..., N} then

6: pM =

{
ps(wn=j+1)

ps(wn=j)+ps(wn=j+1)
, if wn = j

ps(wn=j)
ps(wn=j)+ps(wn=j+1)

, if wn = j + 1

7: Set wn = ν with probability pM
8: end if

limit of infinite computation. MCMC performs Gibbs sam-
pling from the Boltzmann probability mass function,

ps(w) ,
1

ζs
exp(−sΨHq (w)), (2)

where s > 0 is inversely related to temperature in simulated
annealing and ζs is a normalization constant. In each itera-
tion, the n-th element wn is sampled from its marginal distri-
bution, while the rest of w, w\n , {wi : i ∈ {1, . . . , N} \
{n}}, remains unchanged. We call the operation of sampling
all elements in w a super-iteration.

Optimal discretizer: In our previous work [6], we al-
lowed the discretizer to be adaptive to the data; in partic-
ular, we used the optimal discretizer for w given by Q∗ =
arg min

Q
‖y − ΦQ(w)‖22. Our earlier work discussed how to

accelerate updates to Q∗ when a single element of w is mod-
ified in each iteration. For brevity, we refer the reader to
Baron and Duarte [6] for further details about our previous
algorithm, including pseudo-code and software.

3. COMPLEXITY-ADAPTIVE
UNIVERSAL SIGNAL ESTIMATION

While promising, our previous work [6] did not estimate
continuous-valued signals to the same degree of accuracy
as that of discrete-valued ones. For example, despite the
continuous-valued nature of a Markov-uniform signal (cf.
Section 4), the optimal discretizer Q∗ spent multiple levels
on zero-valued entries of the signal and only had one or two
nonzero levels, which magnified the noise, slowed down the
convergence of the algorithm, and increased the mean square
error of the nonzero components of the signal.

Ideally, we want to employ as many levels as the run time
allows for continuous-valued signals, while employing the
same number of levels as the alphabet size for discrete sig-
nals. Inspired by this observation, we propose to first use a
fixed number of levels, and then add or remove levels depend-
ing on whether either option further minimizes the objective
function. Additionally, the performance on discrete-valued
signals could benefit from adjusting the alphabet size to the
same number of discrete values of the signal. With these ob-
servations in mind, we design the CAUSE algorithm, which
has four stages.



Algorithm 3 : Complexity-Adaptive Universal Signal Esti-
mation

1: procedure [x̃,QO, wO, CO] = CAUSE(Φ, y, σ2
z ,K, r)

2: . Input: Discretize x̂ = ΦT y by a uniform discretizer

3: Q =
[
−Z−1

2
:
√

2
Z−1

: Z−1
2

]
, obtaining w

4: . Stage 1: [Q1o , w1o , C1]=MCMC(Q, w, σ2
z , r)

5: Set T =
(
maxQ1o −minQ1o

)
/ (K × (Z − 1))

6: . Stage 2:
7: while ∃j ∈ {1, ..., Z − 1} s.t. |Q(j)−Q(j + 1)| < T do
8: [Q2, w2]=Merge(Q1o , w1o)
9: end while

10: [Q2o , w2o , C2]=MCMC(Q2, w2, σ
2
z , r)

11: . Stage 3: Run Trials 1 to 3
12: Trial 1: [Q3/1, w3/1]=Merge(Q2o , w2o)

[Q3/1, w3/1, C3/1]=MCMC(Q3/1, w3/1, σ
2
z , r)

13: Trial 2: [Q3/2, w3/2]=Add(Q2o , w2o)
[Q3/2, w3/2, C3/2]=MCMC(Q3/2, w3/2, σ

2
z , r)

14: Trial 3: [Q3/3, w3/3, C3/3]=MCMC(Q2o , w2o , σ
2
z , r)

15: . Stage 4: D = the Trial minimizing C3/·
16: Set Q4 = Q3/D, w4 = w3/D, C4 = Co = C3/D

17: while C4 ≤ Co and run time does not expire do
18: Set Co = C4,Qo = Q4, wo = w4, x̃ = Qo(wo)
19: switch D do
20: case 1: [Q4, w4]=Merge(Q4, w4)
21: case 2: [Q4, w4]=Add(Q4, w4)
22: case 3: exit CAUSE
23: end switch
24: [Q4, w4, C4]=MCMC(Q4, w4, σ

2
z , r)

25: end while

Before describing CAUSE in detail, we begin by intro-
ducing two procedures in Algorithms 1 and 2 that are used in
CAUSE (Algorithm 3). The variables in round parentheses
are inputs of each algorithm, and variables in square paren-
theses are outputs.

The CAUSE algorithm is shown in Algorithm 3, where we
denote the MCMC-based algorithm in our previous work [6]
by [Qo, wo, C] = MCMC(Q, w, σ2

z , r), where w are the in-
dices of levels representing the starting point of the algorithm,
σ2
z is the noise variance, and r is the number of super iter-

ations to run; MCMC outputs the optimized representation
levels Qo, the corresponding sequence wo, and the risk C.
Note that one can use other discretizers in Line 2, and the
colon marks in Line 3 refer to the step size. One can also
change the number of super-iterations r in MCMC(·); larger
r improves estimation quality while requiring longer runtime.
The parameter K allows CAUSE to determine how close two
levels can be before being merged in Stage 2.

4. NUMERICAL RESULTS

We implemented CAUSE in Matlab and tested it using sev-
eral signal sources. For each source, signals x of length N =
10000 were generated. Each such x was multiplied by a
Gaussian random matrix Φ, where the number of measure-
mentsM varied between 2000 and 7000. We then added mea-
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Fig. 1. CAUSE estimation results for a Markov4 source as a func-
tion of the number of Gaussian random measurements M for differ-
ent SNR values.

surement noise z whose variance was selected to ensure that
the signal to noise ratio (SNR) was 5 or 10 dB. We initialized
CAUSE with Z = 7 levels and set the parameter K = 10.
Additionally, we set r = 70 in Stage 1 and r = 10 in latter
stages. These choices of parameters provide a trade-off be-
tween run time and estimation quality. Next, we compared
the estimation performance of CAUSE to that of CoSaMP
(a greedy solver) [12] and turboGAMP (a message-passing
algorithm) [13]. We also ran GPSR [14], which is an opti-
mization based approach; its results were close to those of
CoSaMP and are not included here. For each value of M and
SNR, we computed the mean signal-to-distortion ratio (SDR)
of each algorithm over 25 draws of x, Φ, and z. For brevity,
we specifically include results for only two stationary ergodic
non-i.i.d. sources.

Four-state Markov source (Markov4): To evaluate the
performance of CAUSE for discrete-valued non-i.i.d. signals,
we examined a four-state Markov source, featuring the pattern
+1,+1,−1,−1,+1,+1,−1,−1,..., with 3% errors in state tran-
sitions, resulting in the Markov4 signal switching from −1 to
+1 or vice-versa either too early or too late. The Markov4
signal is not sparse at all and we are not aware of any basis
that can consistently transform it into a sparse representation.
Because existing implementations of CS algorithms are not
designed for the Markov4 signal and hence perform poorly
(yielding SDR’s below 5dB), we only include results for
CAUSE in Fig. 1. CAUSE successfully estimated Markov4
with reasonable quality even when M was relatively small. It
is worth noting that we also simulated a Bernoulli source with
3% nonzeros, which has the same entropy as the Markov4
source with 3% state transition errors. The performance of
CAUSE and turboGAMP for this Bernoulli source are within
2dB of the minimum mean square error (MMSE) perfor-
mance in the low SNR case, while CoSaMP lags behind in
performance. Therefore, CAUSE succeeded in estimating the
low-entropy Markov4 and Bernoulli signals by minimizing
ΨHq (w), which promotes low complexity signals.
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Fig. 2. CAUSE, turboGAMP, and CoSaMP estimation results for
a Markov-uniform source as a function of the number of Gaussian
random measurements M for different SNR values.

Markov-uniform source: We examined a source for
sparse signals whose supports (the locations of the nonzero
entries) are generated by a two-state Markov state machine
(nonzero and zero states), and the nonzero values are uni-
formly distributed between 0 and 1. The transition from the
zero to the nonzero state for adjacent entries has probabil-
ity 3

970 ; the transition from the nonzero to the zero state for
adjacent entries has probability 10%. These transition proba-
bilities yield 3% sparsity on average for the Markov-uniform
signal. For turboGAMP, we use the MarkovChain1 (depth-
1 Markov chain with one active state and one zero state)
model to fit the support, Gaussian mixture model to fit the
signal, and we provide the algorithm with the noise variance.
CoSaMP is provided with Φ, y, and the sparsity rate; CAUSE
is provided with Φ, y, and the noise variance.

Our previous work [6] performed poorly on this source
because the optimal discretizer Q∗ spent many levels for
zero-valued entries of the signal, and only one or two lev-
els for nonzeros. In contrast, CAUSE (i) merged multiple
levels that coincided to zero in Stage 2; (ii) decided that it
needed more nonzero levels in Stage 3; and (iii) kept adding
levels in Stage 4, thus reducing the square error consider-
ably. Fig. 2 shows that CAUSE achieves better performance
than CoSaMP while still 1–2 dB below turboGAMP. This
is an example of a source model that is well suited to the
turboGAMP algorithm, which allows turboGAMP to outper-
form CAUSE. Nonetheless, turboGAMP requires the source
distribution to be a good match to a parametric model fixed a
priori to achieve such performance. This is in comparison to
CAUSE, which effectively estimates the measured signal and
its statistics simultaneously.

It is interesting to view the performance of CAUSE in
light of a result by Donoho [15], who proved that MAP es-
timation with a Kolmogorov complexity prior can achieve
twice the MMSE for a scalar channel. We leave the study of
universal algorithms that achieve the MMSE for future work.
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