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Universal MAP estimation [2] 

• ெݔ = arg max௩ ݂ ݒ ݂| ݕ ݒ = arg min௩ Ȳ ݒ  

• Ȳ ݒ = െ ln ݂ ݒ + ௬ି௩ మ
మ

ଶఙమ
; optimal risk: Ȳଡ଼(x)  

• Work on discretized space to reduce complexity 
1. Map indices ݆ א {1, … ,ܼ} to    via discretizer ܳ(݆) 
2. Estimate ݒ = ܳ ݓ , ݓ  = ,ଵݓ … ேݓ, א 1, … ,ܼ ே 

• Universal prior [3] ܲ ݓ = 2ିு(௪) 
•  [4] (ݓ)ܪ depth conditional empirical entropy-ݍ

 
 
 

• Objective function Ȳு ݓ = (ݓ)ܪܰ + ௬ିொ ௪ మ
మ

ଶఙమ×୪୬(ଶ)  

Background 

\

 
Markov chain Monte Carlo (MCMC) [2,4] 

• Boltzmann PMF ௦ ݓ = ଵ
ೞ

exp(െݏȲு(ݓ))  
• Generate random samples with Gibbs sampler 
• Iteration: Process one entry of ݓ with Gibbs sampler 
• Super-iteration: Process all entries of ݓ 

 
• No, fixed quantizer slows down convergence 
 

 

Level-adaptive (LA-MCMC) [2]  

• ܳ௧ = arg min
ொത

ݕ െ Ȱ തܳ ݓ ଶ
ଶ 

 

 

Merge / Add levels 
 
 
 
 
 
 
Size-and level-adaptive MCMC (SLA-MCMC) 
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Horizontal lines are levels; circle radius reflects population of level 

LA(r): run LA-MCMC for ݎ super-iterations; D1 holds if current objective function 
better than before; D2 holds if newly added level(s) is (are) populated 

MCMC and enhancements 

Does it reconstruct signals well? 

How to minimize  error with fixed number of levels? 

How many levels to use? 

 
Experimental settings: 
 

• Compare SLA-MCMC with LA-MCMC, CoSaMP, and  
turboGAMP 

• Signal length ܰ=10000, 7000-2000=ܯ, AWGN 
• SNR=5 and 10 dB 
• Error metric: Mean signal-to-distortion ratio  
ܴܦܵܯ      = 10 logଵ  ௫

ெௌா   

Numerical results 

SLA-MCMC, LA-MCMC, turboGAMP, and CoSaMP estimation results for a two-
state Markov source with non-zero entries drawn from a uniform distribution ܷ[0,1] 

SLA-MCMC estimation results for a four-state Markov switching source (generates 
pattern +1,+1,-1,-1,+1,+1,-1,-1,  with 3% glitches) 
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Noisy compressed sensing (CS) [1] 
 
 
 
 
 
 

• Goal: reconstruct ݔ given ݕ and Ȱ 
Conventional CS algorithms 

• Assume sparsity or compressibility 
• Need prior knowledge about signal structure        

 
 

Universal CS algorithms 
• Focus on recovery of stationary ergodic non-i.i.d. 

signals with unknown statistics 

Motivation 

What if prior knowledge not available? 
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 input signal :ݔ
Ȱ: measurement matrix 
 Gaussian noise  :ݖ
 measurements :ݕ
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