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The Need for Compression

destination

e Transmitting raw data
typically inefficient
- reduced power consumption
- limited communication resources

- large amount of structure in sensed
signals



Correlation

e Can we exploit
intra-sensor and
Inter-sensor

correlation to jointly compress?
— signals are compressible and correlated

e Distributed source coding problem




Collaborative Compression

destination .

compressed
data

N

e Collaboration introduces

— inter-sensor
communication overhead

— complexity at sensors



Distributed
Compressed Sensing

destination . :\

compressed
data

Benefits:

e exploit both intra- and inter-
sensor correlations

e zZero inter-sensor
communication overhead



Compressed
Sensing




Sensing by Sampling

Sparse/compressible signals:
r = Vo
- \J/': compression basis (Fourier, wavelets...)
- (¢ : coefficient vector (few large, many small)
Compress = transform, sort coefficients, encode largest
Most computation at sensor
Lots of work to throw away >80% of the coefficients
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Compressed Sensing (CS)

e Measure linear projections onto incoherent basis @
where data is not sparse
— random sequences are universally incoherent

- mild over-measuring M ~ 4K < N
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e Computational complexity shifted from sensor to
receiver

See also Rabbat, Haupt, Singh and Nowak,; Bajwa, Haupt, Sayeed and Nowak.



From Samples to Measurements

e Replace samples by more general encoder
based on a few /inear projections (inner products)

— assume WLOG that J itself is sparse
- extendable to compressible signals
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From Samples to Measurements

e Random projections

y = PO
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CS Signal Recovery

e Reconstruction/decoding: given y = Px
(ill-posed inverse problem) find T

y = PO
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CS Signal Recovery

e Reconstruction/decoding: given y = Px
(ill-posed inverse problem) find X

arg min ||x||2

y=>x

¢ /5 fast T
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CS Signal Recovery

e Reconstruction/decoding: given y = Px
(ill-posed inverse problem) find X

arg min ||x||2

y=>x

¢ /5 fast, wrong T
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CS Signal Recovery

e Reconstruction/decoding: given y = Px
T

(ill-posed inverse problem) find
o ﬁg fast, wrong v =arg y@lﬁ‘x ||:13||2
e /o correct, slow Z = arg min ||z|o

y=>x



CS Signal Recovery

e Reconstruction/decoding: given ¢y = Pg
(ill-posed inverse problem) find T
o /> fast, wrong T = arg min ||z||»
| y=>dx
e {o correct, slow Z = arg min ||z||o
y=>x
° {1 correct,

arg min ||z||1

mild oversampling =
y=>x

[Candes et al, Donoho]
linear program

e Greedy [Tropp, Gilbert, Strauss; Rice]

e Complexity-regularization [Haupt and Nowak]
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Distributed
Compressed Sensing

(DCS) . /

N

destination compressed

data

Sensors take CS measurements of each
signal and send to destination

DCS introduces concept of joint sparsity

— Fewer measurements necessary than
individual CS

Different models for different scenarios
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Common Sparse Supports Model

e Joint sparsity model:

— measure J signals, each K-sparse
— signals share sparse components, different coefficients
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Common Sparse Supports Model

Ex: Audio Signals
e sparse in Fourier Domain

e same frequencies received
by each node

o different attenuations and delays
(magnitudes and phases)




- Separate

Joint
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Real Data Example

e Dataset: Indoor Environmental Sensing
« J=49sensors, N =1024 samples each
e Compare compression using:
— transform coding approx K largest terms per sensor
- independent CS 4K measurements per sensor

— DCS: common sparse supports 4K measurements per sensor
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Temperature - Wavelets

(d) Distributed Compressed Sensing, SNR = 29.9518 dB




Temperature - Wavelets

(a) Original

/x\(t) w
K =20

b) Transform Coding, SNR = 25.9499 dB
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(d) Distributed Compressed Sensing, SNR =29.4149 dB




Model 2:
Common +
Innovations




Common + Innovations Model

e Motivation: sampling signals in a smooth field

e Joint sparsity model.
- length-N sequences x1 and x»

r1 = 2z T+ 21
o = z + 2o
common component innovation components
sparsity K sparsities K1, Ko.
e Measurements
y1 = Pix;
y2 = Poxo



Measurement Rate Region with
Separate Reconstruction
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Measurement Rate Region with
Joint Reconstruction
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DCS Benefits for Sensor Networks

e Hardware: Universality

- same random projections / hardware can be used for
any signal class with a sparse representation

- simplifies hardware and algorithm design (generic)
- random projections automatically encrypted

- very simple encoding

— robust to noise, quantization and measurement loss

e Processing: Information scalability

— random projections ~ sufficient statistics

- same random projections / hardware can be used for
a range of different signal processing tasks

= reconstruction, estimation, detection, recognition, ...

- many fewer measurements are required to
detect/classify/recognize than to reconstruct

= implications for power management



Conclusions

e Theme: Compressed Sensing for multiple signals

e Distributed Compressed Sensing
— exploits both intra- and inter-sensor correlation
— new models for joint sparsity
- many attractive features for sensor network applications

e More
— additional joint sparsity models
— theoretical bounds for compressible signals
— statistical signal processing from random projections
- analog Compressed Sensing RicE UNIVERSITY

~ faster reconstruction algorithms B?

dsp.rice.edu/cs




