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The Need for Compression

• Transmitting raw data
typically inefficient
– reduced power consumption
– limited communication resources
– large amount of structure in sensed

signals



• Can we exploit
intra-sensor and
inter-sensor

correlation to jointly compress?
– signals are compressible and correlated

• Distributed source coding problem

Correlation
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Collaborative Compression

• Collaboration introduces
– inter-sensor

communication overhead
– complexity at sensors
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Benefits:
• exploit both intra- and inter-

sensor correlations
• zero inter-sensor

communication overhead

Distributed
Compressed Sensing 
(DCS)

destination
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Sensing by Sampling
• Sparse/compressible signals:

–    : compression basis (Fourier, wavelets…)
–    : coefficient vector (few large, many small)

• Compress = transform, sort coefficients, encode largest
• Most computation at sensor
• Lots of work to throw away >80% of the coefficients

sample compress transmit

receive decompress



• Measure linear projections onto incoherent basis
where data is not sparse
– random sequences are universally incoherent
– mild over-measuring

• Computational complexity shifted from sensor to
receiver

See also Rabbat, Haupt, Singh and Nowak; Bajwa, Haupt, Sayeed and Nowak.
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From Samples to Measurements

• Replace samples by more general encoder
based on a few linear projections (inner products)
– assume WLOG that     itself is sparse
– extendable to compressible signals

projection values sparse
signal

non-zero
coefficients



From Samples to Measurements

• Random projections

sparse
signal

non-zero
coefficients

projection values



• Reconstruction/decoding: given
(ill-posed inverse problem) find

CS Signal Recovery
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• Reconstruction/decoding: given
(ill-posed inverse problem) find

• L2 fast, wrong

• L0 correct, slow

• L1 correct,
mild oversampling
[Candes et al, Donoho]

• Greedy [Tropp, Gilbert, Strauss; Rice]

• Complexity-regularization [Haupt and Nowak]

CS Signal Recovery

linear program
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• Sensors take CS measurements of each
signal and send to destination

• DCS introduces concept of joint sparsity
⇒ Fewer measurements necessary than

individual CS

• Different models for different scenarios

Distributed
Compressed Sensing 
(DCS)
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Common Sparse Supports Model

• Joint sparsity model:
– measure J signals, each K-sparse
– signals share sparse components, different coefficients

…



Ex: Audio Signals
• sparse in Fourier Domain
• same frequencies received

by each node
• different attenuations and delays

(magnitudes and phases)

Common Sparse Supports Model



Common Sparse Support ResultsK=5
N=50
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Real Data Example
• Dataset: Indoor Environmental Sensing
• J = 49 sensors, N =1024 samples each
• Compare compression using:

– transform coding approx K largest terms per sensor

– independent CS     4K measurements per sensor

– DCS: common sparse supports 4K measurements per sensor
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Model 2:
Common +
Innovations



Common + Innovations Model

• Motivation: sampling signals in a smooth field

• Joint sparsity model:
– length-N sequences       and

• Measurements

common component 
sparsity     

innovation components
sparsities      ,     .
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DCS Benefits for Sensor Networks

• Hardware: Universality

– same random projections / hardware can be used for
any signal class with a sparse representation

– simplifies hardware and algorithm design (generic)
– random projections automatically encrypted
– very simple encoding
– robust to noise, quantization and measurement loss

• Processing: Information scalability

– random projections ~ sufficient statistics
– same random projections / hardware can be used for

a range of different signal processing tasks
 reconstruction, estimation, detection, recognition, …

– many fewer measurements are required to
detect/classify/recognize than to reconstruct
 implications for power management



Conclusions
• Theme: Compressed Sensing for multiple signals

• Distributed Compressed Sensing
– exploits both intra- and inter-sensor correlation
– new models for joint sparsity
– many attractive features for sensor network applications

• More
– additional joint sparsity models
– theoretical bounds for compressible signals
– statistical signal processing from random projections
– analog Compressed Sensing
– faster reconstruction algorithms
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