Universal Distributed Sensing via Random Projections

Michael Wakin

Dror Baron

Richard Baraniuk

The Need for Compression

—

Correlation

- Can we exploit
 intra-sensor and
 inter-sensor correlation to *jointly compress?*
 - signals are *compressible* and *correlated*
- Distributed source coding problem

Collaborative Compression

Compressed Sensing

Sensing by Sampling

• Sparse/compressible signals:

 $x = \Psi \alpha$

- Ψ : compression basis (Fourier, wavelets...)
- α : coefficient vector (few large, many small)
- Compress = transform, sort coefficients, encode largest
- Most computation at *sensor*
- Lots of work to throw away >80% of the coefficients

Compressed Sensing (CS)

- Measure linear projections onto incoherent basis Φ where data is not sparse
 - random sequences are *universally incoherent*
 - mild over-measuring $M \thickapprox {\rm 4}K \ll N$

Computational complexity *shifted* from sensor to receiver

See also Rabbat, Haupt, Singh and Nowak; Bajwa, Haupt, Sayeed and Nowak.

From Samples to Measurements

- Replace samples by more general encoder based on a few *linear projections* (inner products)
 - assume WLOG that x itself is sparse
 - extendable to compressible signals

From Samples to Measurements

• Random projections

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

•
$$\ell_2$$
 fast

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

•
$$\ell_2$$
 fast, wrong

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\mathcal{X}$$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

• ℓ_2 fast, wrong

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

• ℓ_0 correct, slow

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$

- Reconstruction/decoding: given find (ill-posed inverse problem)
- l2 fast, wrong
- ℓ_0 correct, slow

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$

 $y = \Phi x$

 \mathcal{X}

- $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$
- l1 correct, mild oversampling [Candes et al, Donoho]
- $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$

linear program

• Greedy

[Tropp, Gilbert, Strauss; Rice]

• Complexity-regularization [Haupt and Nowak]

Distributed Compressed Sensing

Model 1: Common Sparse Supports

Common Sparse Supports Model

- Joint sparsity model:
 - measure *J* signals, each *K*-sparse
 - signals share sparse components, different coefficients

Common Sparse Supports Model

Ex: Audio Signals

- sparse in Fourier Domain
- same frequencies received by each node
- different attenuations and delays (magnitudes and phases)

Real Data Example

- Dataset: Indoor Environmental Sensing
- J = 49 sensors, N = 1024 samples each
- Compare compression using:
 - transform coding approx
 - independent CS

- K largest terms per sensor
- 4K measurements per sensor
- DCS: common sparse supports 4K measurements per sensor

Model 2: **Common + Innovations**

Common + Innovations Model

- Motivation: sampling signals in a smooth field
- Joint sparsity model:
 - length-N sequences x_1 and x_2

$$x_1 = z + z_1$$
$$x_2 = z + z_2$$

 $\begin{array}{c} \text{common component} \\ \text{sparsity} \ K \end{array}$

innovation components sparsities K_1 , K_2 .

• Measurements

$$y_1 = \Phi_1 x_1$$
$$y_2 = \Phi_2 x_2$$

Measurement Rate Region with Separate Reconstruction

Measurement pair region

Measurement Rate Region with Joint Reconstruction

DCS Benefits for Sensor Networks

• Hardware: Universality

- same random projections / hardware can be used for any signal class with a sparse representation
- simplifies hardware and algorithm design (generic)
- random projections automatically encrypted
- very simple encoding
- robust to noise, quantization and measurement loss

• Processing: Information scalability

- random projections ~ sufficient statistics
- same random projections / hardware can be used for a range of different signal processing tasks
 - reconstruction, estimation, detection, recognition, ...
- many fewer measurements are required to detect/classify/recognize than to reconstruct
 - implications for power management

Conclusions

- <u>Theme:</u> Compressed Sensing for multiple signals
- Distributed Compressed Sensing
 - exploits *both* intra- and inter-sensor correlation
 - new models for *joint sparsity*
 - many attractive features for sensor network applications
- More
 - additional joint sparsity *models*
 - theoretical bounds for compressible signals
 - *statistical signal processing* from random projections
 - analog Compressed Sensing
 - *faster* reconstruction algorithms

