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ABSTRACT
This paper develops a new framework for distributed cod-
ing and compression in sensor networks based on distributed

compressed sensing (DCS). DCS exploits both intra-signal
and inter-signal correlations through the concept of joint
sparsity; just a few measurements of a jointly sparse sig-
nal ensemble contain enough information for reconstruction.
DCS is well-suited for sensor network applications, thanks to
its simplicity, universality, computational asymmetry, toler-
ance to quantization and noise, robustness to measurement
loss, and scalability. It also requires absolutely no inter-
sensor collaboration. We apply our framework to several
real world datasets to validate the framework.

Categories and Subject Descriptors: E.4 [Coding and
Information Theory]: Data compaction and compression;
J.2 [Physical Sciences and Engineering]: Engineering

General Terms: Algorithms, Design, Experimentation,
Measurement, Performance, Security, Theory.

Keywords: Sparsity, compressed sensing, linear program-
ming, greedy algorithms, correlation, sensor networks.

1. INTRODUCTION

1.1 Sensor networks and data representation
Recently, a vision has emerged of networks of battery-

powered wireless sensor nodes that can sense, process,
and communicate information about physical processes [1].
These small, low-cost devices contain sensors for the phys-
ical phenomena of interest, an embedded CPU, a radio
transceiver for communication with other nearby sensor
nodes, a small battery, and so on. When deployed across
an area of interest, the sensors self-organize into a network
that acquires, processes, and disseminates sensor data.

To realize this sensor network vision, we must surmount a
variety of technical challenges, including reducing the con-
sumption of scarce energy and communications bandwidth
resources; making the best of inexpensive hardware of lim-
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ited computational power; communicating over hostile chan-
nels with high loss rates; dealing with faulty sensors and
noisy measurements; keeping the data secure; etc.

Fortunately, the signals, images, and other data acquired
by sensor networks often contain some type of structure that
enables intelligent representation and processing. For in-
stance, consider the problem of representing and compress-
ing raw sensor network data in order to minimize com-
munication and bandwidth consumption. Current state-
of-the-art compression algorithms employ a decorrelating
transform such as an exact or approximate Karhunen-Loève
transform (KLT) to compact a correlated signal’s energy
into just a few essential coefficients. Such transform coders

exploit the fact that many signals have a sparse representa-
tion in terms of some basis, meaning that a small number
K of adaptively chosen transform coefficients can be trans-
mitted or stored rather than the N ≫ K signal samples.

1.2 Distributed source coding
While the theory and practice of compression have been

well developed for individual signals, sensor network appli-
cations involve multiple signals, for which there has been less
progress. Fortunately, since the sensors presumably observe
related phenomena, the ensemble of signals they acquire can
be expected to possess some joint structure, or inter-signal

correlation, in addition to the intra-signal correlation in each
individual sensor’s measurements. Distributed source coding

algorithms that exploit both types of correlation promise a
substantial savings on communication costs [2–4].

A number of distributed coding algorithms have been de-
veloped that involve collaboration amongst sensors [5, 6].
Any collaboration, however, involves inter-sensor commu-
nication overhead that can significantly affect the power
consumption of the participating nodes. The Slepian-

Wolf framework for lossless distributed coding [2] offers a
collaboration-free approach in which each sensor could com-
municate losslessly at its conditional entropy rate rather
than at its individual entropy rate. Most existing coding
algorithms [3, 4] exploit only inter-signal correlations (be-
tween samples in each signal) and not intra-signal correla-
tions (between samples across signals); furthermore, there
has been only limited progress on distributed coding of so-
called “sources with memory.” The direct implementation
for such sources would require huge lookup tables [7], and
approaches combining pre- or post-processing of the data
to remove intra-signal correlations combined with Slepian-
Wolf coding appear to have limited applicability or require
excessive computation [8].
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1.3 Compressed sensing (CS)
A new framework for single-signal sensing and compres-

sion has developed recently under the rubric of Compressed

Sensing (CS) [9, 10]. CS builds on the surprising revelation
that a signal having a sparse representation in one basis can
be recovered from a small number of projections onto a sec-
ond basis that is incoherent with the first.1 In fact, for an N-
sample signal that is K-sparse,2 roughly only cK projections
of the signal onto the incoherent basis are required to recon-
struct the signal with high probability (typically c ≈ 3 or 4).
This has promising implications for applications involving
sparse signal acquisition. Moreover, the cK measurements
need not be manipulated in any way before being transmit-
ted, except possibly for some quantization. Interestingly,
independent and identically distributed (i.i.d.) Gaussian or
Bernoulli/Rademacher (random ±1) vectors provide a use-
ful universal measurement basis that is incoherent with any

given basis with high probability; the corresponding mea-
surements will capture the relevant information of a com-
pressible signal, regardless of its structure.

1.4 Distributed compressed sensing (DCS)
We have recently introduced new theory and algorithms

for Distributed Compressed Sensing (DCS) that exploit both
intra- and inter-signal correlation structures [12]. In a typ-
ical DCS scenario, a number of sensors measure signals (of
any dimension) that are each individually sparse in some
basis and also correlated among sensors. Each sensor inde-

pendently encodes its signal by projecting it onto just a few
vectors of a second, incoherent basis (such as a random one)
and then transmits the resulting coefficients to a collection
point. Under the right conditions, a decoder at the collec-
tion point can jointly reconstruct all of the signals precisely.

The DCS theory rests on a concept that we term the joint

sparsity of a signal ensemble. Below we discuss several mod-
els for jointly sparse signals (corresponding to a variety of
scenarios of signal correlation) and joint reconstruction al-
gorithms for each model. We have derived results on the
required measurement rates for signals that have sparse rep-
resentations under each of the models; while the sensors op-
erate entirely without collaboration, we see dramatic savings
relative to the number measurements required for separate
CS decoding [12].

1.5 From DCS to universal distributed sensing
In this paper we demonstrate the potential of DCS for

universal distributed sensing in networks. We develop algo-
rithms for several network signal processing and compression
tasks using random measurements and validate them on real
sensor network data. The properties of DCS directly address
the sensor network challenges outlined above. In particu-
lar, DCS algorithms: offer a universal encoding appropri-
ate for any jointly sparse signal ensemble; are completely
non-collaborative and involve no communication overhead;
can be implemented on the simplest computing hardware on
the sensor nodes since they shift nearly all computational
complexity to the decoder at the collection point; are in-
herently fault tolerant, robust to measurement and quan-

1Roughly speaking, incoherence means that no element of
one basis has a sparse representation in terms of the other
basis [9–11].
2By K-sparse, we mean that the signal can be written as a
sum of K basis functions.

tization noise, and secure; are robust to lossy communica-
tion links; offer progressively better, tunable reconstruction
as measurements stream in; and are applicable to a range
of sensor network signal processing tasks, from signal com-
pression to estimation and detection/classification. To coin
a term, DCS sensors are “omnescient”: they omnisciently
capture the relevant signal information despite being ne-
scient (ignorant) of the actual structure.

This paper is organized as follows: Section 2 presents re-
lated work. Section 3 provides background on CS. Section 4
outlines three of our models for joint sparsity. Section 5 de-
scribes the basic implementation of DCS in wireless sensor
networks, and Section 6 highlights the advantages of DCS
for sensor networks. Section 7 presents experiments show-
casing performance of DCS on real world sensor networks.
Finally, Section 8 concludes with directions for future work.

2. RELATED WORK
Several approaches have been proposed for data collec-

tion in sensor networks, most of which exploit the correla-
tion among the signals being recorded. DIMENSIONS [13]
enables distributed information storage and multiresolution
data retrieval; it achieves compression by assuming that the
signal at each sensor node features temporal correlation and
clustering sensors that observe correlated signals in a hier-
archical fashion. The compression of signal ensembles thus
requires high computation during clustering, and so the clus-
ter heads must be capable of performing such tasks within
their power and computational budgets. Fractional cascad-
ing [14] allows queries to be injected at any point in the net-
work. Information is redundantly stored at several sensors,
requiring again collaboration and computation to integrate
measurements from local groups of sensors.

Other algorithms that exploit correlations in sensor net-
works include signal compression [15], routing [16], and sig-
nal processing tasks [17–19]. The general approach con-
sists of clustering nodes that observe correlated signals and
then performing local processing, routing, or compression
at a node chosen as a cluster head; the process continues
iteratively until a single cluster is obtained. Unfortunately,
clustering techniques require collaboration amongst sensors,
which increases power consumption for the nodes due to
message passing inside clusters. Furthermore, not all sensor
network architectures can support the computational com-
plexity of the signal processing algorithms.

Algorithms for non-collaborative signal compression have
been proposed [3, 20], but they either have high complex-
ity or do not exploit inter-sensor correlations. One tech-
nique [21] exploits CS for joint measurement of a spatial
sensor field at a single time instant. This approach uses
matched source-channel communication [22] to significantly
reduce the required power. However, it neglects intra-sensor
correlations – those between the samples of each signal – and
it requires both the deployment of sensors on a regular grid
and a potentially complicated time and power synchroniza-
tion of wireless transmitters among the nodes.

In contrast to these approaches, our proposed framework
involves no collaboration among the sensors, has low com-
putational complexity, and facilitates easy measurement ag-
gregation. Section 6 elaborates on these and other benefits.



3. COMPRESSED SENSING
We briefly explain the Compressed Sensing (CS) frame-

work proposed in [9, 10]. Suppose that x ∈ R
N is a signal,

and let Ψ = {ψ1, ψ2, . . . ,ΨN} be a basis of vectors span-
ning R

N ; the theory can be extended to frames and dictio-
naries of vectors. When we say that x is sparse, we mean
that x is well approximated by a linear combination of a
small set of vectors from Ψ. That is, there exists a set of
indices {n1, . . . , nK} ⊂ {1, . . . , N} for small K ≪ N such

that x ≈
PK

i=1
θni

ψni
; we say that x is K-sparse in Ψ, and

we call Ψ the sparse basis. The CS theory states that it
is possible to construct an M × N measurement matrix Φ
where M ≪ N , yet the measurements y = Φx preserve the
essential information about the K-sparse signal x. For ex-
ample, let Φ be a cK×N random matrix with i.i.d. Gaussian
entries, where c = c(N,K) is an overmeasuring factor. Us-
ing such a matrix it is possible, with high probability, to
recover any signal that is K-sparse in the basis Ψ from its
image under Φ. Moreover, for signals that are not K-sparse
but compressible, meaning that their coefficient magnitudes
decay rapidly, there are tractable algorithms that achieve
not more than a multiple of the error of the best K-term
approximation of the signal. Most natural and man-made
signals are compressible in some basis, including audio, im-
ages, and video signals.

Several algorithms have been proposed for recovering x
from the measurements y, each requiring a slightly differ-
ent constant c. The canonical approach [9, 10] uses linear
programming to solve the ℓ1 minimization problem

bθ = arg min
θ

‖θ‖1 subject to ΦΨθ = y

and then sets bx = Ψbθ. This problem requires c ≈ log
2
(1 +

N/K) [12] but has somewhat high computational complex-
ity. Greedy pursuit methods have also been proposed for
CS reconstruction, including Orthogonal Matching Pursuit
(OMP), which tend to require fewer computations but at
the expense of slightly more measurements [11].

4. JOINT SPARSITY MODELS
In this section, we generalize the notion of a signal being

sparse in some basis to the notion of an ensemble of sig-
nals being jointly sparse. We consider three different Joint
Sparsity Models (JSMs) that are inspired by different real
world situations. In the first two models, each signal is it-
self sparse, and so we could use the CS framework from
above to encode and decode each one separately, yet there
also exists a framework wherein a joint representation for
the ensemble uses fewer total vectors. In the third model,
no signal is itself sparse, yet there still exists a joint spar-
sity among the signals that allows recovery with significantly
fewer measurements per sensor. We note that for different
real world settings, different models for sparsity-based signal
ensemble structure can be posed, together with appropriate
reconstruction algorithms.

We use the following notation for signal ensembles. De-
note the signals in the ensemble by xj , j = 1, 2, . . . , J where
each xj ∈ R

N . We assume that there exists a known sparse

basis Ψ for R
N in which xj can be sparsely represented.

4.1 JSM-1: Sparse common component
+ innovations

In this model, all signals share a common sparse compo-
nent while each individual signal contains a sparse innova-

tions component:

xj = z + zj , j ∈ {1, 2, . . . , J}

with z = Ψθz, ‖θz‖0 = K,

zj = Ψθj , ‖θj‖0 = Kj .

Thus, the signal z is common to all of the xj and has sparsity
K in basis Ψ.3 The signals zj are the unique portions of the
xj and have sparsity Kj in the same basis.

A practical situation well-modeled by JSM-1 is a group of
sensors measuring temperatures at a number of locations
throughout the day. The temperature readings xj have
both temporal (intra-signal) and spatial (inter-signal) cor-
relations. Global factors, such as the sun and prevailing
winds, could have an effect z that is both common to all sen-
sors and structured enough to permit sparse representation.
More local factors, such as shade, water, or animals, could
contribute localized innovations zj that are also structured
(and hence sparse). A similar scenario could be imagined for
a sensor network recording light intensities, air pressure, or
other phenomena. All of these scenarios correspond to mea-
suring properties of physical processes that change smoothly
in time and in space and thus are highly correlated.

4.2 JSM-2: Common sparse supports
In this model, all signals are constructed from the same

sparse index set of basis vectors, but with different coeffi-
cients:

xj = Ψθj , j ∈ {1, 2, . . . , J},

where each θj is supported only on the same Ω ⊂
{1, 2, . . . , N} with |Ω| = K. Hence, all signals are K-sparse,
and all are constructed from the same K elements of Ψ, but
with arbitrarily different coefficients. This model can be
viewed as a special case of JSM-1 (with K = 0 and Kj = K
for all j) but features additional correlation structure that
suggests distinct reconstruction algorithms.

A practical situation well-modeled by JSM-2 is where mul-
tiple sensors acquire the same Fourier-sparse signal but with
phase shifts and attenuations caused by signal propagation.
In many cases it is critical to recover each one of the sensed
signals, such as in many acoustic localization and array pro-
cessing algorithms. Another application for JSM-2 is MIMO
communication [23]. Section 7 presents a series of experi-
ments applying JSM-2 to environmental and acoustic data.

4.3 JSM-3: Nonsparse common
+ sparse innovations

This model extends JSM-1 so that the common compo-
nent need no longer be sparse in any basis; that is,

xj = z + zj , j ∈ {1, 2, . . . , J}
with

z = Ψθz and zj = Ψθj , ‖θj‖0 = Kj ,

but z is not necessarily sparse in the basis Ψ. We also
consider the case where the supports of the innovations are
shared for all signals, which extends JSM-2.

A practical situation well-modeled by JSM-3 is where sev-
eral sources are recorded by different sensors together with a
background signal that is not sparse in any basis. Consider,
for example, a computer vision-based verification system in

3The ℓ0 norm ‖θ‖0 merely counts the number of nonzero
entries in the vector θ.



a device production plant. Cameras acquire snapshots of
components in the production line; a computer system then
checks for failures in the devices for quality control purposes.
While each image could be extremely complicated, the en-
semble of images will be highly correlated, since each camera
observes the same device with minor (sparse) variations.

5. DISTRIBUTED SENSING USING
RANDOM PROJECTIONS

In this section we describe the mechanics of implementing
DCS in a sensor network environment. In the next sec-
tion, we highlight the unique benefits afforded by such an
approach.

5.1 Incoherent measurements
We consider a collection of J synchronized sensor nodes

that observe signals obeying one of the JSMs or their ex-
tensions (as described in Sections 4 and 6). Each sensor
independently collects a set of incoherent measurements and
transmits them to a data sink. The signals are then re-
covered jointly using algorithms discussed in Section 5.3.
We emphasize that, thanks to the universal nature of ran-
dom measurements, the sensors need not be informed of the
sparsity-inducing basis for the signals; this information is
only required to perform reconstruction at the decoder.

We assume that sensor j acquires the N-sample signal xj

observed during a time interval [t0, t0 + T ] and computes a
given number of measurements Mj . (The period [t0, t0 + T ]
could be the complete duration of the signal of interest or
could correspond to a length-N block of a longer signal; the
above process can be repeated periodically.) We denote the
measurement vector by yj = Φjxj , where Φj is the mea-

surement matrix for sensor j; Φj is Mj ×N and, in general,
the entries of Φj are different for each j. We denote the
vector of measurements as yj = [yj,1, . . . , yj,Mj

]T and note
that yj,m corresponds to the inner product of xj with row m
of the matrix Φj . Since all measurements have the same rel-
evance for signal reconstruction, their values are quantized
using the same scheme for each index m; the distortion in
the reconstruction due to quantization is bounded [24].

The CS and DCS frameworks require knowledge during
reconstruction of the measurement matrix Φj for the dif-
ferent sensors j = 1, . . . , J . This can be accomplished by
constructing each measurement matrix using a pseudoran-
dom number generator, whose seed could be provided by the
data sink or computed as a function of the node ID. While
most of the existing theory for CS encoding applies specifi-
cally to random Gaussian or Bernoulli measurements, there
is active research into developing lower-complexity alterna-
tives [25, 26]. We have strong experimental evidence that
structured measurement matrices Φj (involving, for exam-
ple, an FIR filter with pseudorandom taps [25]) can provide
suitable incoherence with the sparse basis Ψ.

5.2 Communication to the data sink
Each quantized measurement byj,m is transmitted to the

sink together with its timestamp t0, index m, and node ID
j. This is the only information necessary from the sensors to
reconstruct the signals. Since the measurements can arrive
out of order, they can be sent individually over the network
or grouped into packets if desired. Many different options
exist for routing the measurements, including TreeCast [27]
and DIMENSIONS [13].

5.3 Joint reconstruction
As the measurements are received by the data sink, the

measurement matrices Φj for the different sensors are built
accordingly through the same procedure as in the sensors.
Once the data sink receives all Mj measurements from each
sensor — or alternatively, once it starts receiving measure-
ments for the next measurement period (beginning at t0+T )
— the data sink can begin reconstructing the signal ensem-
ble.

The algorithm used for joint signal reconstruction depends
on the relevant JSM for the signals observed by the network.
In this section we briefly overview our proposed reconstruc-
tion techniques for each JSM; more details on the algorithms
(and the theoretical requirements on the measurement rates
Mj) can be found in [12].

For JSM-1, we have developed an analytical framework
inspired by principles of information theory. This allows us
to characterize the measurement rates Mj required to jointly

reconstruct the signals xj . The measurement rates relate
directly to the signals’ conditional sparsities, in parallel with
the Slepian-Wolf theory. The reconstruction technique is
based on a single execution of a linear program that seeks
the sparsest components [z; z1; . . . zJ ] that account for the
observed measurements. Theoretical analysis and numerical
experiments confirm that the rates Mj required for joint CS
recovery are well below those required for independent CS
recovery of each signal xj [12].

For JSM-2, we have developed algorithms inspired by con-
ventional greedy pursuit algorithms (such as OMP [11]) that
can substantially reduce the number of measurements when
compared with independent recovery. In the single-signal
case, OMP iteratively constructs the sparse support set Ω;
decisions are based on inner products between the columns
of ΦΨ and a residual. In the multi-signal case, there are
more clues available for determining the elements of Ω. We
use a simple variant of Simultaneous Orthogonal Matching
Pursuit (SOMP) [12, 23]. We have proved that for large
J , close to K measurements per signal suffice for joint re-
construction (that is, c → 1 as J → ∞); see Figure 1 for
an example of improving performance as J increases. On
the contrary, with independent CS reconstruction, perfect
reconstruction of all signals requires increasing each Mj in
order to maintain the same probability of reconstruction of
the signal ensemble. This surprise is due to the fact that
each signal will experience an independent probability p ≤ 1
of successful reconstruction; therefore the overall probabil-
ity of complete success is pJ . Consequently, each sensor
must compensate by making additional measurements. We
also note that when the supports of the innovations of the
signals are small, signals that are well modeled by JSM-1
can also be modeled by JSM-2 by selecting a global support
that contains all of the individual supports. Such approxi-
mation allows for a simpler reconstruction algorithm, while
incurring a slight increase in the number of measurements
required for reconstruction.

For JSM-3, no individual signal xj is sparse, and so re-
covery of each signal separately would require a full N mea-
surements per signal. To approach the reconstruction prob-
lem, we note that the common component z is observed
by all sensors. Thus we propose an Alternating Common
and Innovation Estimation (ACIE) [12] that alternates be-
tween two steps: (1) Estimate the common component z by
combining all measurements and treating the innovations
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Figure 1: Joint reconstruction of synthetic JSM-2 signals hav-

ing length N = 128 and sparsity K = 10 using M = 11 random

measurements per sensor. Each measurement is quantized to ap-

proximately 5 bits of precision. The reconstruction is robust to

quantization and is progressive: as the number of sensors J in-

creases we see improved reconstruction performance.

zj as noise that can be averaged out; (2) Estimate the in-
novations zj from each sensor by subtracting the estimated
common component z and then applying standard CS recov-
ery techniques. We have proved that, asymptotically, each
sensor need only measure at the rate dictated by the spar-
sity Kj [12]. Thus, for large J , the impact of the common
nonsparse component z is eliminated.

6. ADVANTAGES OF DCS FOR
SENSOR NETWORKS

Our DCS implementation for sensor networks is robust
and widely applicable in sensor network scenarios. This sec-
tion describes in more detail several of the desirable features.

Simple, universal encoding: DCS coding is particu-
larly appealing when we employ random projections at the
sensors. Random projections are universal in the sense that
they are incoherent with any fixed sparsity basis Ψ [9]. In
fact, using the same set of random measurements the de-
coder can attempt to recover the signals using any supposed
sparse basis Ψ or JSM. In addition to being universally inco-
herent, the CS/DCS random measurements are also future-

proof: if a better sparsity-inducing basis is found (or a better
JSM is proposed), then the same random measurements can
be used to reconstruct an even more accurate view of the
environment without requiring any changes in the deployed
sensing hardware. Additionally, DCS can be applied to any
number of sensors J ≥ 2, and furthermore the sensors need
not know their physical locations (other than to network
their data).

The CS/DCS frameworks, in which measurements can be
obtained with low complexity and without collaboration,
also shifts the computational load of reconstruction from
the sensor network to the data sink or cluster head. Each
sensor only needs to compute its incoherent projections of
the signal it observes, while the data sink or cluster head
reconstructs all of the signals. This computational asymme-

try is desirable in many sensor networks since data sinks and
cluster heads have typically more computational power than
sensor nodes.

Robustness, progressivity, and resiliency: DCS en-
joys remarkable robustness properties thanks to the robust-
ness of the CS framework. CS measurements have been
shown to be robust to quantization and noise [21,24], mak-
ing the framework applicable to real world settings. Ad-
ditionally, the incoherent measurements coming from each
sensor have equal priority, unlike transform coefficients in

current coders. Thus, the CS measurements can be trans-
mitted and received in any order. Signal reconstruction can
be attempted using any number of the received measure-
ments — as more measurements are received they allow a
progressively better reconstruction of the data [9].

In this sense, DCS is automatically robust to packet loss in
wireless sensor networks; any loss of measurements leads to a
graceful degradation in the reconstruction quality. This loss

resiliency is particularly useful, as errors in wireless sensor
network transmissions often cause as many as 10 − 30% of
the packets to be dropped [28]. This effect is exacerbated in
multi-hop networks.

One existing approach that is robust to packet drops is
multiple description coding [29,30]. These techniques enable
data reconstruction at varying levels of quality depending on
the number of packets that arrive. Unfortunately, multiple
description coding techniques for distributed source coding
have not been fully developed [31]. Another approach uses
layered coding for unequal bit error protection, where the
first layer is highly protected with strong channel coding and
is also used as side information when decoding the second
layer [32]. This layered approach also increases demands on
the system resources because the stronger channel code re-
quires substantial redundancy in terms of channel resources
and power consumption.

Security: Using a pseudorandom basis (with a random
seed) effectively implements encryption: the randomized
measurements will themselves resemble noise and be mean-
ingless to an observer who does not know the seed.

Fault tolerance and anomaly detection: DCS recon-
struction techniques can be extended to be fault tolerant.
In the case where a small number of signals may not obey
the overall JSM (due to a faulty sensor, for example), the
joint reconstruction techniques can be tailored to detect such
anomalies. In the case of JSM-2, for example, after running
SOMP to determine the common support set Ω, the data
sink could examine each sensor’s measurements to check for
agreement with Ω. Those signals that appear to disagree
can then be reconstructed separately from the remaining
(JSM-faithful) nodes.

Adaptivity to channel capacity: The DCS measure-
ment and transmission rates can be scaled to adapt to the
conditions of the wireless communication channel and the
nuances of the observed signals. If, for example, the commu-
nication channel capacity is below the required rate to send
Mj measurements, then the sensors can perform rate limita-
tion in a similar manner to congestion control algorithms for
communication networks. When the data sink detects con-
gestion in the communication channel, it can send a conges-
tion notification (using a trickle of feedback) to the nodes so
that the bit rate of the information sent is reduced in one of
two ways. First, the sensors could increase the quantization
stepsize of the measurements, since the CS/DCS reconstruc-
tion is robust to quantization. Second, the sensors could re-
duce the number of measurements taken for each signal: due
to the resiliency of CS measurements, the effect of having
few measurements on the reconstruction distortion is grad-
ual. Thus, the CS/DCS measurement process can easily
scale to match the transmission capacity of the communi-
cation channel, which is reminiscent of joint source-channel
coding.

Application to compressible and analog signals:
DCS can also be applied to signals that do not strictly



obey the JSMs outlined in Section 4. For example, our
JSM models can be generalized to compressible signals, for
which the transform coefficients decay quickly but strictly
to zero [9, 10]. The basic requirement is that certain small
sets of coefficients approximate the signals with low distor-
tion and that these sets are related among the different sen-
sors. Section 7 demonstrates numerical experiments on ac-
tual data sets that only approximately obey our JSMs.

The measurement rates required to capture compressible
signals depend on the level of compressibility of the signals,
that is, on the decay rate of the signal coefficient magni-
tudes in the sparse representation. Fortunately, as men-
tioned above, DCS enables adaptation of the measurement
rate for a given signal. Thus, the measurements can be in-
creased to obtain more accurate reconstructions and scaled
back to obtain coarser approximations. Several algorithms
for CS reconstruction [11, 33] also provide mechanisms to
verify the success of the reconstruction, and so the data sink
can be aware of when it has received enough measurements.

Finally, DCS can be extended to the acquisition of analog

signals directly at the physical sensor (bypassing the analog-
to-digital converter). We have introduced one technique for
CS analog sensing using a camera that directly acquires ran-
dom projections of the input light field [26]; other techniques
are currently under investigation. Transmission for the re-
sulting (digital) measurements would then proceed as in Sec-
tion 5.2, and reconstruction could be tailored to the mea-
surement structure given by the analog front end, perhaps
allowing for faster and/or simpler reconstruction.

Information scalability: Incoherent measurements ob-
tained via DCS can be used to recover different levels of in-

formation about the sensed signals. It has been shown [34]
that the CS framework is information scalable beyond sig-
nal reconstruction to a much wider range of statistical in-
ference tasks, including estimation, detection, and classifi-
cation. Depending on the situation, the lower levels of in-
formation about the signals can often be extracted using
lower computational complexity or fewer incoherent mea-
surements than would be required to reconstruct the sig-
nals. For example, statistical detection and classification do
not require reconstruction of the signal, but only require an
estimate of the relevant sufficient statistics. Consequently,
it is possible to directly extract such statistics from a small
number of random projections without ever reconstructing
the signal. As a result, significantly fewer measurements
are required for signal detection than for signal reconstruc-
tion [34]. Furthermore, as in reconstruction, random mea-
surements are again universal, in the sense that with high
probability the sufficient statistics can be extracted from
them regardless of the signal structure.

As a first example, we consider sensor networks for surveil-
lance applications [17]. Typically, a detection algorithm is
executed continuously on the sensed data; when the algo-
rithm returns an event detection, other algorithms such as
classification, localization, and tracking are executed. These
algorithms require a larger amount of information from the
signals than that of detection. In our DCS scheme, we can
adapt the measurement rate of the sensor nodes according
to the tasks being performed. We apply a low measurement
rate for detection; once the detection returns an event, the
measurement rate is increased to that required by the other
tasks.

As another example, one may be interested in estimating

(a) Original

(b) Wavelet Thresholding, SNR = 26.48 dB

(c) Compressed sensing, SNR = 21.64 dB

(d) Distributed compressed sensing, SNR = 27.19 dB

Figure 2: Reconstruction of light intensity signals from 48 sen-

sors with length N = 1024. (a) Original signals; (b) wavelet

thresholding using 100 coefficients per sensor, average SNR =

26.48dB; (c) separate reconstruction of each signal using CS from

M = 400 random projections per sensor, average SNR = 21.64dB;

(c) joint reconstruction of the signal ensemble using DCS from

M = 400 random projections per sensor, average SNR = 27.19dB.

linear functions of the sensed signals

v =
X

j

ωjxj ;

examples include averages and linear interpolations. Thanks
to the linearity of the CS/DCS measurement process, we can
extract such information from the incoherent measurements
without first reconstructing the signals xj . More specifically,
assuming we use the same measurement process Φj = Φ at
each sensor, we can write

Φv =
X

j

ωjΦxj =
X

j

ωjyj .

Assuming that v is sparse, it can be recovered from Φv using
standard CS techniques. Thus, by aggregating the measure-
ments yj using the desired linear function we can directly

obtain incoherent measurements of v without reconstruct-
ing the xj . We also note that the measurement vectors
can be aggregated using matched source-channel commu-
nication [22], in which the wireless nodes collaborate to co-
herently send their measurements so that a receiver directly
obtains the weighted sum ωjyj . This could enable a signifi-
cant reduction in power. Such aggregation can also be imple-
mented hierarchically in frameworks such as TreeCast [27]
or DIMENSIONS [13].

7. EXPERIMENTS
In this section, we consider four different sensor network

datasets. Although the signals we consider are not strictly
sparse, we see that the JSM models provide a good approx-
imation for the joint sparsity structure and that DCS offers
a promising approach for such sensing environments.

Environmental sensing: The first three datasets [35]
contain temperature, humidity, and light readings from a
group of 48 nodes deployed at the offices of Intel Research
Labs in Berkeley, CA.4 The signals in Figures 2(a), 3(a) and

4For the purposes of our experiments, we select signals of



(a) Original

(b) Wavelet Thresholding, SNR = 28.84 dB

(c) Compressed sensing, SNR = 19.39 dB

(d) Distributed compressed sensing, SNR = 29.66 dB

Figure 3: Reconstruction of humidity signals from 48 sensors

with length N = 1024. (a) Original signals; (b) wavelet threshold-

ing using 20 coefficients per sensor, average SNR = 28.84dB; (c)

separate reconstruction if each signal using CS from M = 80 ran-

dom projections per sensor, average SNR = 19.39dB; (d) joint

reconstruction of the signal ensemble using DCS from M = 80

random projections per sensor, average SNR = 29.66dB.

4(a) were recorded in an office environment and therefore
exhibit periodic behavior caused by the activity levels during
day and night. Furthermore, there are small fluctuations at
each one of these states; thus we expect the signals to be
compressible both in the Fourier and wavelet domains. Since
the signals are observations of physical processes, they are
smoothly varying in time and space; this causes the sensor
readings to be close in value to each other, a situation well
captured by the JSM-1 and JSM-2 models.

We now confirm the joint sparsity of the signals under
the JSM-2 model. The top panel in Figure 5 shows the dis-
tortion of the best K-term wavelet approximation5 for each
signal in the light dataset as K increases. The figure shows
that a modest value of K = 100 gives low distortion for all
signals. However, the union over all signals of the K best
wavelet vectors has size greater than K. The bottom panel
in Figure 5 shows the size of this union (the “joint sup-
port” for the signals under JSM-2) as K increases. We see
that approximately |Ω| = 200 vectors are required to include
the K = 100 most significant vectors for each signal, which
makes the JSM-2 model feasible due to the shared compact-
ness of the representation. Similar results are observed for
the other datasets, which are compressible in the wavelet
domain as well. Thus, we expect that such datasets can be
recovered from incoherent projections using DCS with the
appropriate sparsity inducing bases.

We now consider a hypothetical implementation of DCS
for these signals. For the light intensity signal we take
M = 400 random Gaussian measurements per sensor and
compare DCS reconstruction (via SOMP using wavelets as
the sparsity basis) with separable OMP reconstruction. For
comparison, we also compare to wavelet thresholding at each
signal using 100 terms. Figure 2 shows the reconstruction

length N = 1024 and interpolate small amounts of missing
data.
5We use Daubechies-8 wavelets throughout this section.

(a) Original

(b) Wavelet Thresholding, SNR = 28.59 dB

(c) Compressed sensing, SNR = 18.78 dB

(d) Distributed compressed sensing, SNR = 29.95 dB

Figure 4: Reconstruction of temperature signals from 48 sen-

sors with length N = 1024. (a) Original signals; (b) wavelet

thresholding using 20 coefficients per sensor, average SNR =

28.59dB; (c) separate reconstruction of each signal using CS from

M = 80 random projections per sensor, average SNR = 18.78dB;

(c) joint reconstruction of the signal ensemble using DCS from

M = 80 random projections per sensor, average SNR = 29.95dB.

of the light intensity signal ensemble. We see average SNRs
of 26.48dB, 21.64dB, and 27.19dB for wavelet thresholding,
separate CS, and DCS reconstruction, respectively. The
DCS reconstruction algorithm identifies the common struc-
ture emphasized by JSM-2, recovering salient common fea-
tures for all signals in the ensemble in addition to many of
the distinct features in each signal. Similar results are seen
for the humidity and temperature datasets in Figures 3, 4,
and 6. To illustrate progressivity, Figure 7 also plots the CS
(OMP) and DCS (SOMP) reconstruction errors for the tem-
perature signal ensemble at a variety of measurement rates
M . SOMP reconstruction is superior at low and moderate
rates, yet it is surpassed by OMP at high rates. This illus-
trates the applicability of the JSM-2 model, which becomes
less valid as the very fine features of each signal (which vary
between sensors) are incorporated. A joint reconstruction
algorithm tailored to this fact would likely outperform both
approaches.

Acoustic sensing: Our fourth dataset [18] contains au-
dio recordings of military vehicles from a 16-microphone
sensor network array from the University of Wisconsin-
Madison. The audio signals are compressible in the Fourier
domain and follow the JSM-2 model (see Figure 8). Fig-
ure 9 shows an example DCS reconstruction (using SOMP
with the Fourier sparse basis); the results are similar to those
seen in the previous datasets.

8. CONCLUSIONS AND FURTHER WORK
In this paper we have demonstrated the potential of DCS

for universal distributed sensing in networks. Specifically,
our DCS framework provides such attractive properties as
universality, resiliency, scalability, adaptability, and reduced
computational complexity at the sensors. DCS enables om-

nescient sensor networks, in the sense that the nodes acquire
accurate information about the signal regardless of its spe-
cific structure; the only requirement is that the signals be
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Figure 5: Top: Quality of approximation of light intensity sig-

nals as a function of the number K of wavelet coefficients used

per sensor. When K ≥ 100, the approximations yield low dis-

tortion; thus the signals are compressible. Bottom: Number of

wavelet vectors required to include the K largest wavelet coeffi-

cients for each signal. The slope of the curve is small, meaning

that the supports of the compressible signals overlap, and that

the ensemble is well represented by the JSM-2 model.

sparse or compressible in some representation, which holds
true for many signals of interest.

In ongoing work, we are studying additional joint spar-
sity models that will allow for the DCS framework to be
applied to a broader class of sensor network settings, as well
as the effect of quantization in distributed sensing settings.
We are also developing fast acquisition and reconstruction
algorithms for signals that are jointly sparse. Finally, we are
considering new sensing devices and sensor network archi-
tectures that apply the CS/DCS principles at the hardware
level.
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