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ABSTRACT

This paper develops a new class of algorithms for signal

recovery in the distributed compressive sensing (DCS) frame-

work. DCS exploits both intra-signal and inter-signal correla-

tions through the concept of joint sparsity to further reduce the

number of measurements required for recovery. DCS is well-

suited for sensor network applications due to its universal-

ity, computational asymmetry, tolerance to quantization and

noise, and robustness to measurement loss. In this paper we

propose recovery algorithms for the sparse common and in-

novation joint sparsity model. Our approach leads to a class

of efficient algorithms, the Texas Hold ’Em algorithms, which

are scalable both in terms of communication bandwidth and

computational complexity.

Index Terms— Signal reconstruction, multisensor sys-

tems, data compression

1. INTRODUCTION

Compressive sensing (CS) is an emerging framework for the

acquisition of signals x ∈ R
N that are exactly or approxi-

mately K-sparse in a known basis [1, 2]. In CS, we acquire

x via a length-M measurement vector y = Φx, where Φ is a

measurement matrix, usually sporting randomly drawn inde-

pendent entries . When K is sufficiently small, the number of

measurements M can be much less than the dimension of the

signal N . A compelling example of this type of applications

is sensor networks, where there has been significant interest

in CS [3–7]. In distributed compressive sensing (DCS) we

aim to recover the data acquired from a group of J sensors

from compressive measurements that are obtained either in-

dependently [3, 4] or collaboratively [5–7].

Most existing adaptations of CS to sensor networks re-

quire the collection of up toO(J) measurements per sensor at
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a centralized location. The resulting communication scheme

leads to congestion collapse when the network size becomes

significant. Furthermore, the computational complexity of

the algorithms used for signal recovery are typically at least

quadratic in the number of measurements, further diminishing

the scalability of CS to large sensor network sizes.

In this paper, we introduce a new algorithm, dubbed the

Texas Hold ’Em algorithm, tailored for the DCS scenario in

which each sensor observes the combination of a common

sparse component and a unique innovation component [3, 4].

The algorithm is the first practical recovery method proposed

for this setting. Our procedure separates the recovery of the

common and innovation components into two stages, which

in some cases allows us to significantly reduce the number

of measurements and improve on the lowest signal-to-noise

ratio (SNR) that still enables accurate recovery of the signal

ensemble. The measurements used to recover the common

component are obtained by either averaging or concatenat-

ing measurements from all the sensors in the network, which

makes the amount of communication per sensor independent

from the network size J . Furthermore, each innovation com-

ponent is recovered locally at the corresponding sensor, mak-

ing the recovery computational complexity only linear in J .

This paper is organized as follows. In Section 2 we pro-

vide the necessary background on CS and DCS, and in Sec-

tion 3 we describe the Texas Hold ’Em algorithms. In Sec-

tion 4 we provide some preliminary experimental results illus-

trating the performance of our algorithms. Finally, Section 5

concludes with a brief discussion.

2. BACKGROUND

2.1. Compressive sensing (CS)

We first provide a brief overview of the CS framework. To be-

gin, we acquire a signal x ∈ R
N via the linear measurements

y = Φx + e, (1)

where Φ is an M×N measurement matrix modeling the sam-

pling system, y ∈ R
M is the vector of samples acquired, and

e is an M × 1 vector that represents measurement errors. If
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x is K-sparse when represented in the sparsity basis Ψ, i.e.,

x = Ψα with ‖α‖0 := |supp(α)| ≤ K , then we need to ac-

quire only M = O(K log(N/K)) random measurements and

still recover the signal x [1, 2, 8]. In particular, for bounded

errors of the form ‖e‖2 ≤ ǫ, the convex program

α̂ = argminα ‖α‖1 s.t. ‖ΦΨα− y‖2 ≤ ǫ (2)

can recover a sparse or compressible signal. Theorem 1.2

from [9] makes this precise by bounding the recovery error

of α with respect to the measurement noise norm, denoted by

ǫ, and with respect the best approximation of α. In the case

where α is K-sparse, the bound reduces to

‖α̂− α‖2 ≤ Cǫ, (3)

where C is a constant that depends only on δ. Observe that if

K is small, then the number of measurements required can be

significantly smaller than the Shannon-Nyquist rate.

While convex optimization techniques like (2) are a pow-

erful method for CS signal recovery, there also exist a variety

of alternative algorithms that are commonly used in practice

and for which comparable performance guarantees can be es-

tablished. In particular, iterative algorithms such as CoSaMP

and iterative hard thresholding (IHT) are known to satisfy (3)

with different values for the constant C [10, 11].

2.2. Distributed compressive sensing (DCS)

DCS is an extension of CS for acquisition of multiple sig-

nals that exploits both intra- and inter-signal correlation struc-

tures [4]. In a typical DCS scenario, a number of sensors

measure signals (of any dimension) that are each individually

sparse in some basis and also correlated among sensors. Each

sensor independently encodes its signal by projecting it onto

just a few vectors of a second, incoherent basis (such as a

random one) and then transmits the resulting coefficients to a

collection point. Under the right conditions, a decoder at the

collection point can jointly reconstruct all of the signals.

The DCS theory rests on a concept known as the joint

sparsity of a signal ensemble. A joint sparsity model (JSM)

specifies the correlations present between the values and loca-

tions of the nonzero coefficients for each of the signals being

acquired. Existing JSMs have been designed to capture the

properties of the physical event being measured; each JSM

comes with specially tailored recovery algorithms that lever-

age the correlations between the signals. These specialized

algorithms provide us with reduced bounds on the number

of measurements needed for successful recovery when com-

pared to standard CS applied on each signal independently.

While previous contributions have focused on the com-

mon sparse supports model [3, 4], we focus in this paper on

the sparse common and innovations model (labeled JSM-1

in [3, 4]). We use the following notation for signal ensembles.

Denote the signals in the ensemble by xj , j = 1, 2, . . . , J

where each xj ∈ R
N . We assume that there exists a known

sparse basis Ψ for R
N in which xj can be sparsely repre-

sented. JSM-1 assumes that all signals share a common sparse

component while each individual signal contains a sparse in-

novations component:

xj = zc + zj, j ∈ {1, 2, . . . , J}

with zc = Ψαc, ‖αc‖0 = Kc, and zj = Ψαj , ‖αj‖0 = Kj .

Thus, the signal zc is common to all of the xj and has sparsity

Kc in the basis Ψ. The signals zj are the unique portions of

the xj and have sparsity Kj in the basis Ψ.

A practical situation well-suited to this model is a group

of sensors measuring temperatures at a number of locations

throughout the day. The temperature readings xj have both

temporal (intra-signal) and spatial (inter-signal) correlations.

Global factors, such as the sun and prevailing winds, could

have an effect zc that is both common to all sensors and struc-

tured enough to permit sparse representation. More local fac-

tors – such as shade, water, or animals – could contribute

localized innovations zj that are also structured (and hence

sparse). A similar scenario could be imagined for a sen-

sor network recording light intensities, air pressure, or other

phenomena. All of these scenarios correspond to measuring

properties of physical processes that change smoothly in time

and in space and thus are highly correlated.

3. THE TEXAS HOLD ’EM ALGORITHM

3.1. Averaged Community Texas Hold ’Em

Before we state our proposed algorithm, we must first set

some notation. We begin by noting that our measurements are

obtained via yj = Φjxj . We then decompose each yj into two

components, [yc
j yh

j ]. We let Mc and Mh denote the length

of yc
j and yh

j , so that M = Mc + Mh. The measurements yc
j

are the community measurements. These measurements are

shared among all the sensors. The measurements yh
j are the

hold measurements, which are not transmitted but instead are

retained by each sensor. Similarly, we let Φc
j and Φh

j denote

the matrices obtained by selecting the appropriate rows of Φj .

The Texas Hold ’Em algorithm provides an approach for

recovering each xj . The algorithm proceeds by first fusing

the community measurements to obtain an estimate of zc so

that each sensor is then able to use its hold measurements

to recover zj . While we will describe a number of simple

variations on this algorithm below, the variant we analyze in

this work assumes that Φc
j is fixed for all j. We then define

ȳ =

J∑

j=1

yc
j

J
.

We also let Φ̄ = Φc
j . Observe that ȳ simply averages the

community measurements, and thus we dub this variation of

the algorithm Averaged Community.



Algorithm 1 Texas Hold ’Em – Averaged Community

input: Ψ, Φ̄, ȳ, Kc, Φj , yj , Kj

α̂c ← RECOVER(Φ̄Ψ, ȳ, Kc)
ỹj ← yj − ΦjΨα̂c

α̂j ← RECOVER(ΦjΨ, ỹj, Kj) + α̂c

output: x̂j = Ψα̂j

We describe how the Texas Hold ’Em algorithm recov-

ers a particular zj in Algorithm 1. First, we attempt to es-

timate the common component zc from ȳ. This is denoted

via the notation RECOVER(Φ, y, K), which simply denotes

any sparse recovery algorithm, taking as inputs a dictionary

Φ, a measurement vector y, and a sparsity K , and returning a

K-sparse signal estimate α̂ for which a guarantee such as (3)

holds. We then remove the contribution of the common com-

ponent to all available measurements by forming the updated

measurement vectors ỹj = y − ΦjΨα̂c. The algorithm then

attempts to recover the different innovation components from

the vectors ỹj .

Note that Algorithm 1 requires two phases of communica-

tion. First, we must compute ȳ; we can do this by collecting

all yc
j at a central location in a multicast network architecture

or by using more intelligent network protocols in a multihop

network architecture. Second, we relay the estimate α̂c to all

sensors either via a broadcast or multihop network.

3.2. Performance bounds

We now provide some intuition behind the estimation step for

zc featured in the Texas Hold ’Em algorithm.1 Observe that

ȳ = Φ̄(zc + z̄), (4)

where z̄ =
∑J

j=1
zj/J . For large values of J , provided that

the innovation components are not overly coherent, z̄ tends to

zero; thus, we can expect that ȳ preserves the common com-

ponent while cancelling out the contribution of the innova-

tions. This is made precise in the following theorem.

Theorem 3.1. Let K = max(2Kc, 2Kj). Suppose that Φj

is fixed for all j to be an M × N random matrix with Mc =
O(K log(N/K)). Suppose also that ‖zc‖0 = Kc, ‖zj‖0 =
Kj and ‖zj‖2 = κ for each j, and the zj are pairwise orthog-

onal. Then with high probability

‖x̂j − xj‖2 ≤
C′κ√

J
,

where C′ depends only on the constant from (3).

Proof. We begin by noting that

‖x̂j − xj‖2 ≤ ‖ẑj − zj‖2 + ‖ẑc − zc‖2. (5)

1Note that Texas Hold ’Em’s recent popularity has led to a great deal

of research into optimal strategies. As a general guideline, it is typically

beneficial to play relatively few hands while betting and raising often during

the hands played [12].

From the orthogonality and norm assumptions on zj , we can

easily show that ‖z̄‖2 = κ/
√

J . From the assumptions on

M , we have that with high probability [8], Φ̄Ψ satisfies the

restricted isometry property (RIP) of order K with constant

δ, ΦjΨ satisfies the RIP of order K with constant δ, and

‖Φ̄z̄‖2 ≤
√

1 + δ‖z̄‖2 =
√

1 + δ/
√

J.

By assumption, we also have that the recovery algorithm used

to estimate ẑc satisfies (3), and thus from (4) we have that

‖ẑc − zc‖2 ≤ C
√

1 + δκ/
√

J. (6)

Furthermore, since ẑc − zc is 2Kc-sparse and ΦjΨ satisfies

the RIP of order at least 2Kc, we have

‖Φ(ẑc − zc)‖2 ≤ C(1 + δ)κ/
√

J.

From this we observe that since ỹj = Φjzj + Φ(zc − ẑc), we

may again apply (3) to obtain

‖ẑj − zj‖2 ≤ C2(1 + δ)κ/
√

J. (7)

The theorem follows by substituting (6) and (7) into (5).

3.3. Variations

Above we assumed that Φc
j was fixed for all j. This is not ac-

tually necessary. To modify the algorithm for the more gen-

eral case where each Φj can be selected independently, we

simply need to redefine ȳ and Φ̄ according to

ȳ =
[
(yc

1
)T , (yc

2
)T , · · · (yc

J)T
]T

,

Φ̄ =
[
(Φc

1
)T , (Φc

2
)T , · · · (Φc

J )T
]T

.

This method, which we call Combined Community Texas

Hold ‘Em to distinguish it from Algorithm 1, will require

increased computation and communication costs. However,

it may result in better performance as the estimate of the

common component should be more accurate. A second vari-

ation which we do not explore here replaces the cancellation

step with the compressive-domain interference cancellation

approach of [13]. Since the estimate ẑc is likely noisy, this

approach would completely remove the contribution of zc,

provided that we have correctly identified the support of αc.

4. EXPERIMENTS

We now present preliminary experimental results illustrating

the performance of the Texas Hold ’Em algorithm. In Fig-

ure 1 we show the normalized mean-squared error (MSE) for

Algorithm 1 as we increase the number of measurements per

sensor as a multiple of the total signal sparsity K = Kc +Kj .

In our example, we set N = 512, Kc = 10, and Kj = 30.

The common component nonzero coefficients are 4 times as

large as the innovative components, enough to ensure that the

innovative components can be averaged away. We perform
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Fig. 1. Normalized MSE versus M/K for fixed N = 512, Kc =

10, Kj = 30. Each line corresponds to a different percentage of

community measurements per sensor.

the experiment for several different percentages of commu-

nity measurements per sensor – 20%, 50%, or 75% – and

we compare against traditional reconstruction on each sen-

sor independently, i.e., 0% community. For lower values of

M sharing measurements results in lower error. For values

of M that provide feasible recovery (i.e at least M/K ≈ 2),

we see the expected decay in MSE; additionally, sharing a

larger fraction of measurements improves recovery perfor-

mance. For larger number of measurements M , the advantage

of sharing most measurements vanishes.

5. DISCUSSION

In a possible extension to our framework, one could consider

the case where the common component is no longer sparse in

a known basis; in mathematical terms,

xj = zc + zj , j ∈ {1, 2, . . . , J}

zj = Ψαj , ‖αj‖0 = Kj ,

but zc is not necessarily sparse in the basis Ψ. This model,

referred to as JSM-3 [4], is relevant in situations where sev-

eral sources are recorded by different sensors together with a

background signal that is not sparse in any basis. Consider,

for example, a computer vision-based verification system in a

device production plant. Cameras acquire snapshots of com-

ponents in the production line; a computer system then checks

for failures in the devices for quality control purposes. While

each image could be extremely complicated, the ensemble of

images will be highly correlated, since each camera observes

the same device with minor (sparse) variations.

Our approach can be immediately applied to this scenario

with only two main differences. First, the total number of

community measurements must be sufficiently large to en-

able recovery of zc, and second, we must have an alternative

method for recovery of zc. In the total absence of any prior

knowledge concerning zc, a reasonable approach is to require

at least N community measurements so that a least-squares

approach to estimating zc can be reasonably accurate.
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