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Abstract—The theory of Compressive Sensing (CS) exploits a

well-known concept used in signal compression – sparsity – to
design new, efficient techniques for signal acquisition. CS theory

states that for a length-N signal x with sparsity level K , M =
O(K log(N/K)) random linear projections of x are sufficient to
robustly recover x in polynomial time. However, richer models

are often applicable in real-world settings that impose additional

structure on the sparse nonzero coefficients of x. Many such models

can be succinctly described as a union of K-dimensional subspaces.
In recent work, we have developed a general approach for the

design and analysis of robust, efficient CS recovery algorithms

that exploit such signal models with structured sparsity.
We apply our framework to a new signal model which is

motivated by neuronal spike trains. We model the firing process of

a single Poisson neuron with absolute refractoriness using a union

of subspaces. We then derive a bound on the number of random
projections M needed for stable embedding of this signal model,

and develop a algorithm that provably recovers any neuronal

spike train from M measurements. Numerical experimental results
demonstrate the benefits of our model-based approach compared

to conventional CS recovery techniques.

I. INTRODUCTION

Many methods for signal compression are commonly based

on the transform coding approach. In such methods, the

assumption is that a signal x ∈ R
N can be represented as

a sparse linear combination of elements from a fixed, known

basis Ψ ∈ R
N×N . In other words, x = Ψα, where the

number of nonzero elements K of the transform coefficient

vector α is much smaller than N . Sparsity is fundamental

to our understanding and processing of several real-world

signals; for instance, piecewise smooth signals and images

are compressible in the wavelet basis [1]. Thus a transform

coder operates on a signals of size N and obtains a condensed

representation at its “true” information rate K.

Compressive Sensing (CS) [2, 3] offers an intriguing alter-

native to this classical process of acquiring and compressing

signals. As opposed to uniform signal samples, a signal may

be sampled by measuring its inner product with M ≪ N
vectors. Therefore, y = Φx = ΦΨα where Φ ∈ R

M×N is

a non-invertible matrix. Interestingly, if α is K-sparse and

if the entries of the matrix Φ are chosen randomly from

certain types of probability distributions, CS theory dictates

that if M = O(K log(N/K)), the coefficient vector α, and

consequently, the signal x, can be exactly reconstructed from

the measurements y using efficient recovery algorithms, such

as convex programming techniques and greedy methods [4–7].

Sparsity is a popular model for compression and tractable

processing of several interesting classes of signals. Nonethe-

less, the sparse signal model can be termed as simplistic in

the sense that it assumes no additional structure about the

inter-relations between the transform coefficients α. On the

other hand, consider the class of one-dimensional piecewise

smooth signals; we not only know that such signals are sparse

in the wavelet basis, but also that the wavelet coefficients lie

approximately on a connected tree [1]. This has given rise

to the design and development of sophisticated compression

algorithms that operate on a given signal x according to

structured sparsity models.

In recent work [8], we have developed a comprehensive

framework that leverages additional structure in sparse models

to develop novel methods for CS recovery. Our framework

offers a systematic method for designing provably efficient

CS reconstruction algorithms for signals belonging to these

models. We have examined a number of instances of our

framework; in particular, we have shown that for the connected

wavelet tree model, our recovery algorithm requires merely

M = O(K) measurements for robust reconstruction.

In this paper, as a specific instance of our approach, we

study the compressive acquisition of neuronal spike trains [9];

particularly, we are interested in temporal point processes in

which consecutive spikes occur with a time delay no smaller

than a known quantity ∆. We introduce a empirically motivated

union-of-subspaces model for this class of signals. We compute

a bound on the minimum number of measurements required to

stably project this set into a lower dimensional subspace. Addi-

tionally, we develop a new algorithm for recovery of neuronal

signals from these measurements. An interesting consequence

of our analysis is that the number of measurements required

for robust recovery scales as M = O(K log(N/K−∆)), i.e.,

M decreases with increasing minimum inter-arrival time ∆.

The rest of the paper is organized as follows. Section II pro-

vides a brief review of the mathematical theory of compressive

sensing, and describes our new model-based framework for CS

recovery. In Section III, we provide an overview of neuronal

spike trains, model this class of signals as a union of subspaces

and use our framework to formulate a novel algorithm for

CS recovery with provable guarantees. Experimental results

that demonstrate the utility of our method are presented in

Section IV. Section V lists our conclusions.



II. BACKGROUND

A. Sparsity as a union of subspaces

Given a signal x ∈ R
N and a basis Ψ ∈ R

N×N , we may

represent x in terms of its basis coefficients α, so that x =
Ψα. We say that x is K-sparse in Ψ if no more than K ≪
N coefficients of α are nonzero. In the rest of the paper, we

assume that the sparsity basis Ψ is the identity matrix (i.e.,

x = α), while noting that the results are conceptually valid for

general Ψ. The support of x is defined as the set of indices

corresponding to nonzero entries of x; this can alternately be

mapped to a binary vector s(x) of length N with no greater

than K entries being equal to 1.

Consider the set ΣK of all K-sparse signals. It is easy to

identify this set as the union of
`

N
K

´
K-dimensional subspaces

of R
N , with each subspace being equivalent to the linear span

of exactly K canonical unit vectors in R
N . The notion of

compressibility is based on this geometric intuition; we say

that a signal x is compressible if it lies close to this union of

subspaces ΣK . Given a compressible signal x, compression

techniques are interested in a K-sparse signal xK so that

‖x−xK‖2 is minimized, with ‖·‖2 being the ℓ2-norm. This is

achieved by a simple approximation procedure T(x, K), that

basically selects the K largest coefficients of x.

In many situations, we possess some additional information

about the support of a sparse signal x. For example, suppose

we are interested in K-sparse signals with only a few permitted

configurations of s(x). This defines a union of subspaces model

MK consisting of only mK canonical K-dimensional sub-

spaces of R
N , with mK <

`
N
K

´
. Let x|Ω represent the entries

of x corresponding to the set of indices Ω ⊆ {1, . . . , N}, and

let ΩC denote the complement of the set Ω. Then, MK is

defined as:

MK =

mK[

m=1

Xm, Xm := {x : x|Ωm
∈ R

K , x|ΩC
m

= 0}, (1)

where each subspace Xm contains all signals x with supp(x) ∈
Ωm. Thus, MK is characterized by the set of permitted

supports {Ω1, . . . , ΩmK
}.

In light of this definition, we view any such union of

subspaces as a structured sparsity model. As in the general

K-sparse case, given a signal x, we seek a signal x∗ such

that x∗ ∈ Mk, and ‖x − x∗‖2 is minimized. We define a

model-approximation algorithm as a procedure M(x,K) which

returns the best K-term approximation of a given signal under

the model MK , i.e., x∗ = M(x,K). In addition, we note the

set M2K := {x − y : x, y ∈ MK} forms a union of 2K-

dimensional subspaces. For reasons described in the sequel,

we also define an approximation procedure M2(x, 2K) as a

function that computes x∗
2, the best approximation of x in this

difference set M2K , i.e., x∗
2 = M2(x, 2K).

B. A brief review of Compressive Sensing

Compressive Sensing (CS) arguably represents a paradigm

shift in the way we sample and process signals [2, 3]. In

essence, CS exploits prior knowledge about the sparsity of the

signal of interest x to greatly reduce sampling rates, while

guaranteeing stable reconstruction of x from its samples. In

CS, we do not observe a K-sparse signal x directly; instead

we record M < N nonadaptive linear measurements y = Φx,

where Φ ∈ R
M×N is a measurement matrix. The central

premise in CS is that in specific circumstances, x can be

efficiently and accurately reconstructed from y even though Φ
possesses a nontrivial nullspace. In particular, this is possible

if Φ satisfies the restricted isometry property (RIP):

Definition 1: [2] An M×N matrix Φ has the K-RIP with

constant δK if, for all x ∈ ΣK ,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22. (2)

In other words, we only desire that all submatrices of size

M × K of Φ are approximate isometric transformations,

so that the norms of K-sparse signals are (approximately)

preserved. Practical CS recovery algorithms require Φ to satisfy

the slightly stronger bK-RIP, so that the norms of b-wise

differences of K-sparse signals are preserved as well; here,

b is a small integer (typically 2 or 3.)

CS is characterized by two hallmarks. The first hallmark

involves the design of desirable sampling operators Φ. The

design of a matrix Φ having the K-RIP with a prescribed

constant δK is NP-complete [2]; nevertheless, random matrices

whose entries are i.i.d. subgaussian random variables1 work

with high probability provided M = O(K log(N/K)). Thus,

the number of required samples scales linearly with signal

sparsity, and is only logarithmic in signal length.

The second hallmark addresses the issue of feasible, stable

recovery of a signal from its measurements. The development

of efficient algorithms for CS recovery has received consider-

able attention in the literature [4–6]. More recently, algorithms

based on the tenet of iterative sparse approximation [7, 10]

have been demonstrated to yield uniform, stable guarantees

for signal recovery while expending minimum computational

resources. In particular, given noisy measurements of any

signal x ∈ R
N so that y = Φx + n, if Φ is known to possess

RIP, then the signal estimate bx obtained by these algorithms [7,

10, 11] is given by:

‖x− bx‖2 ≤ C1‖x− xK‖2 +
C2√
K
‖x− xK‖1 + C3‖n‖2,

where xK is the best K-sparse approximation to x and

C1, C2 are constants. An important implication of this result

is that given noiseless measurements, a K-sparse signal can be

recovered perfectly using these algorithms.

C. Compressive sensing recovery using structured sparsity

CS principles exploit signal sparsity in order to develop

efficient signal sampling and reconstruction methods. A very

natural question to ask is this: is it possible to develop

analogous sampling methods as well as recovery algorithms

for structured sparsity models? Several approaches have been

1A random variable X is called subgaussian if there exists c >

0 such that E
`

eXt
´

≤ ec2t2/2 for all t ∈ R. Examples include
the Gaussian and Bernoulli random variables, as well as any bounded
random variable.
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adopted in the literature to address this issue [12–15]. However,

these approaches exhibit one or more of the following symp-

toms: (i) they are based on heuristics and lack mathematical

rigor; (ii) they do not provide uniform guarantees; (iii) they are

tailored to specific signal models.

For target signals x that belonging to a structured sparsity

model, we may impose a less stringent constraint on the CS

measurement matrix Φ and still achieve approximate isometry

in the compressive measurements y. This gives rise to the

notion of a model-based RIP which requires that (2) holds

only for signals x ∈ MK [14, 16]; we denote this new

property asMK -RIP to specify the dependence on the chosen

signal model. A recent result [14] quantifies the number of

measurements M necessary for a subgaussian CS matrix to

have the MK-RIP with constant δMK
and with probability

1− e−t to be

M ≥ 2

cδ2
MK

„
ln(2mK) + K ln

12

δMK

+ t

«
. (3)

This bound can be used to recover the conventional CS result

by substituting mK =
`

N
K

´
≈ (Ne/K)K .

In previous work [8], we have shown how this result could

be used to design a provably robust algorithm for CS recovery

of signals in MK . A quick description of our approach is as

follows. Consider CoSaMP [7], an efficient greedy algorithm

that provides state-of-the-art guarantees. CoSaMP possesses

an iterative structure that hinges on computing the best K-

term approximation to an intermediate signal estimate xj ; in

other words, the algorithm requires computing T(x, K). We

simply replace this sparse approximation step by a best model-

approximation step, i.e., we compute M(xj , K). Our recovery

method is detailed in pseudocode form in Algorithm 1.

In this way, given an efficient (polynomial time) algorithm

M(x,K) that performs pruning of a signal x according to a

given signal model MK , Algorithm 1 can perform efficient

reconstruction of a signal belonging to the model, given M
measurements as specified in Equation 3. In cases where

mK ≪
`

N
K

´
, our algorithm provides provable reconstruction

from measurements sampled proportional to the information

rate K of the signal, i.e., M = O(K). The sampling bound (3)

and the associated recovery algorithm are for signals exactly

lying on the union of subspacesMK ; in [8], we develop paral-

lel theorems that prove robustness to noise in the measurements

y as well as model mismatch.

Summarizing, we possess the recipe to develop a stable,

efficient algorithm for CS recovery of signals belonging to

any structured sparsity model, provided we have the following

ingredients:

Formulation of model: we need to establish the signal model

as a well-defined union of subspaces MK .

A sampling bound: we need to calculate the number of

subspaces in the model mK in order to obtain a requisite

number of random measurements M for stable embedding.

An approximation algorithm: given an arbitrary x ∈ R
N , we

need feasible methods to compute the model approximations

M(x,K) and M2(x, 2K).
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Fig. 1. Interval distribution P0(s) for a Poisson process with

refractoriness ∆ = 5 ms and v = 0.2.

III. A MODEL FOR NEURONAL SPIKE TRAINS

As a practical example of our approach, we study a rep-

resentative structured sparsity model for spike trains emitted

by a single neuron; see [9] for a detailed statistical analysis

of such signals. We consider one-dimensional spike trains

generated by a stochastic neuronal firing process that can

be modeled as an input-dependent renewal system. A key

concept in the statistical description of such a process is the

inter-spike interval distribution P0(s), which is defined as the

probability density function of the inter-arrival time s between

consecutive spikes; for stationary processes, P0(s) contains

all the information required to describe the system. A related

quantity is the hazard function ρ0(s), which is related to P0(s)
as follows: for s > 0

ρ0(s) =
P0(s)

1−
R s

0
P0(t)dt

.

Suppose we observe a homogenous Poisson process with rate

ν. It is well known that the interval distribution of this process

is given by the exponential P0(s) = νe−νs, and the hazard

function is given by the constant function ρ(s) = ν. Notice that

the interval distribution is maximum at ν = 0, i.e., this model

dictates that spikes are very likely to be generated within a very

short interval of each other. In contrast, empirical studies [9]

have shown that real neurons indicate refractoriness, i.e., the in-

terval distribution vanishes as s→ 0, which implies that there

exists a minimum nonzero time delay between consecutive

spikes. Thus, a Poisson process with absolute refractoriness

∆ is defined as a process with interval distribution as follows:

P0(s) =

(
0 for s ≤ ∆,

νe−ν(s−∆) for s > ∆,

The associated hazard function remains zero for 0 ≤ s ≤ ∆
and then jumps to a constant ν for s > ∆. A plot of the interval

distribution for such a process is displayed in Figure 1.

A. Ingredient 1: the model

Consider the discrete time analogue of the above process,

so that we observe a length-N time signal with K spikes

(of unknown magnitude). If there were no restrictions on the

3



Algorithm 1 Model-based CoSaMP

Inputs: Projection matrix Φ, measurements y, model approximation algorithm MK

Output: K-sparse approximations bx to true signal x
bx0 = 0 , r = y; i = 0 {initialize}
while halting criterion false do

1. i← i + 1
2. e← ΦT r {form signal residual estimate}
3. Ω← supp(M2(e, 2K)) {prune merged signal residual estimate according to model}
4. T ← Ω ∪ supp(bxi−1) {merge supports}
5. b|T ← Φ†

T y, b|TC {form signal estimates}
8. bxi ← M(b,K) {prune signal estimate according to model}
10. r ← y − Φbxi {update measurement residual}

end while

return bx← bxi

locations of the spikes, it would correspond to the classical K-

sparse model. However, if we require that no two consecutive

spikes occur within a time interval ∆, we clearly obtain a

structured sparsity model as defined in (1). Mathematically,

we define the model as follows:

Definition 2: Suppose r/2 < ∆ < N/K. The (K, ∆, r)-

model is defined as the set of all K-sparse one-dimensional

signals x ∈ R
N such that no contiguous set of ∆ consecutive

locations contain greater than r spikes.

It is clear that the Poisson process with nonzero absolute

refractoriness corresponds to a (K, ∆, 1)-model.2 We also state

the following simple lemma without proof:

Lemma 1: If MK is a (K, ∆, r)-model, then the set of

pairwise differences M2K is a (2K, ∆, 2r)-model.

B. Ingredient 2: the sampling bound

The following theorem prescribes a number of random linear

measurements that suffice for the stable embedding of all

possible signals in a (K, ∆, 1)-model.

Theorem 1: Let MK be the (K, ∆, 1)-model as defined

above. Then, for any t > 0 and any

M ≥ O

 
1

δ2
MK

„
K log(N/K −∆) + K ln

1

δMK

+ t

«!
,

an M ×N i.i.d. subgaussian random matrix has the MK-RIP

with constant δMK
with probability at least 1− e−t.

Proof: Given x belonging to the model, we first observe that

there are K + 1 contiguous blocks of zeros; blocks at either

tail of the one-dimensional signal may be of zero size, while

blocks in the interior must be at least of size ∆−1. We rewrite

the binary support vector s(x) in a run-length coding fashion;

in other words, s(x) maps to a length-N vector X such that

X = (X1,1, X2, . . . ,1, XK+1), where Xk denotes the length

of the corresponding block of zeros and 1 denotes a spike. The

2We ignore further probabilistic dependencies among the locations
of the spikes (such as expressed by the hazard parameter ν) and assume
that every subspace belonging to this model is equally likely.

following relations hold:

K+1X

k=1

Xk = N −K, (4)

X1, XK+1 ≥ 0,

Xj ≥ ∆− 1, j 6= {1, K + 1}.

Let Y1 = X1, YK+1 = XK+1 and Yj = Xj − (∆ − 1) for

j 6= {1, K + 1}. Rewriting (4) in terms of Yi, we observe

that our answer mK is nothing but the number of nonnegative

integer solutions to the equation:

K+1X

k=1

Yk = N −K∆ + ∆− 1.

From elementary combinatorics, this number is easily calcu-

lated as:

mK =

 
N − (K − 1)(∆− 1)

K

!
.

Substituting this value in (3) while ignoring constant factors,

we derive the desired on M . �

The sampling bound for the (2K, ∆, 2) model can be

similarly derived, and can be shown to be no more than twice

the number of measurements prescribed in Theorem 1. We

observe that as ∆ → 0, we approach the bound proffered

by conventional CS (i.e., M = O(K log(N/K))). Significant

advantages are achieved when ∆ is large; hence, M decreases

with increasing minimum interval time. Note that ∆ > N/K
is not possible, since we cannot have K spikes packed within

a space of N locations under this condition.

C. Ingredient 3: the approximation algorithm

We now turn to the final step in the development of our CS

recovery algorithm. Given an arbitrary signal x ∈ R
N , we

need to solve for the best (K, ∆, 1)-approximation to x. Let

x = (x1, . . . , xN )⊤. If s = (s1, . . . , sN ) is any binary support

vector of length N , let:

x|s := (s1x1, s2x2, . . . , sNxN),

4



so that x|s is the portion of the signal x lying within the

support. Our aim is to solve for that choice of support s so that

s belongs to the (K, ∆, 1)-model, and ‖x−x|s‖2 is minimized.

The following constraints on s follow from the definition of

(K, ∆, 1)-signals:

s1 + s2 + . . . + sN ≤ K,

s1 + . . . + s∆ ≤ 1,

s2 + . . . + s∆+1 ≤ 1,

. . .

sN−∆+1 + . . . + sN ≤ 1.

Further, it is easy to see that minimizing ‖x − x|s‖2 is

equivalent to maximizing c⊤s where c = (x2
1, x

2
2, . . . , x

2
N ),

i.e., we maximize that portion of the signal energy that lies

within s. The above optimization can be posed as an integer

program as follows: let W ∈ (N −∆ + 2)×N such that

W1j = 1, j = {1, . . . , N}, W2j = 1, j = {1, . . . , ∆},
W3j = 1, j = {2, . . . , ∆ + 1} and so on; this represents the

matrix inequality constraints. Next, define u ∈ R
N−∆+2 =

(K, 1, 1, . . . , 1); this represents the RHS of the constraints. If

we denote c to be the vector formed by the absolute values of

the entries in x, we obtain the following integer program:

s∗ = arg min c⊤s, (5)

Ws ≤ u.

and s is binary. To solve the integer program, we make use of

the following theorem.

Theorem 2: The solution to the binary integer program (5)

is identical to the solution of the linear program obtained by

relaxing the integer constraints.

Proof: First, we note that the binary matrix W is totally

unimodular (TU), i.e., the determinant of every square subma-

trix of W is equal to 0, 1 or −1. This follows from the fact

that W is a binary matrix with the 1’s in every row occurring

in consecutive blocks, i.e., W is a so-called “interval matrix”;

interval matrices are well-known to be totally unimodular [17].

We next show that the polytope formed by the system of

inequalities in the relaxed linear program has integer basic

feasible solutions. Since W is TU, every basic feasible so-

lution is determined by a nonsingular r × r submatrix of W ,

r = N − ∆ + 2. Since the determinant of this submatrix is

±1 and the RHS of the linear system is integer, by Cramer’s

rule we get that all components of every basic feasible solution

are integers. The desired result follows from this observation,

since the optimum of the linear program has to occur in a basic

feasible solution. Indeed, the solution has to be binary, since

every si is positive and constrained to be lesser than 1. �

Thus, the approximation step M(x,K) in the neuronal spike

model can efficiently be performed by solving a linear program

(LP). The approximation M2(x, 2K) can similarly be solved

by a linear system similar to (5), with u being replaced

by 2u on the right hand side. The number of variables in

the linear program is equal to the dimension of the signal

N ; thus the model-approximation step can be performed in

O(N3.5) operations using state-of-the-art interior-point LP

methods [17]. For very large N , this could be computationally

expensive; however, it is possible that faster approximation

algorithms can be developed to exploit the special Toeplitz-

like structure of W .

D. Model-based recovery

Having developed all the ingredients of the algorithm, we

insert the appropriate model approximation steps into Algo-

rithm 1 to obtain a robust recovery algorithm for CS recovery

of signals belonging to the (K, ∆, 1)-model. Thus, we obtain

the following theorem characterizing our derived algorithm.

Theorem 3: [8] Let x be a signal from the (K, ∆, 1)-

model and Φ ∈ R
M×N . Let y = Φx + n be a set of noisy

CS measurements. If M is at least as great as specified by

Theorem (1) with δM4K
≤ 0.1, the estimate bx obtained from

iteration i of Algorithm 1 satisfies:

‖x− bxi‖2 ≤ 2−i‖x‖2 + 15‖n‖2 .

While we have presented results only for signals exactly lying

on the given union-of-subspaces model, an analogous theorem

can be developed for model-compressible signals using the

theory described in [8]; we defer a full study of such signals

to future work.

IV. EXPERIMENTS

In this section, we present numerical results demonstrating

the utility of our new algorithm. We generate spike trains

of length N , and perform a model-approximation step to

obtain a test signal which belongs to the (K, ∆, 1)-model. The

signal is measured via M random projections and reconstructed

using Algorithm 1. For a baseline comparison, we use the

reconstruction obtained by standard CoSaMP; the parameters

K and ∆ are assumed to be known.

Figure 2 indicates the potential performance gains of our

algorithm. We measure a length-1024 neuronal signal with

K = 50 spikes and minimum inter-arrival time ∆ = 15 using

150 random Gaussian measurements, and plot the error signal

obtained by either recovery algorithm. Clearly, our method

requires fewer measurements for accurate recovery compared

to conventional sparse approximation.

Figure 3 illustrates the results of a Monte Carlo study on the

effect of the number of measurements M on the conventional

and model-based approaches. Each data point was generated

using 300 sample trials. Successful recovery is defined as an

instance when the solution is within an ℓ2-distance of 1%

relative to the original signal. We observe that our approach

We observe that our method achieves successful recovery with

probability over 95% with only 3.5K measurements, while

CoSaMP can only achieve this with M = 5K.

V. DISCUSSION

In this paper, we have described a general tool for developing

algorithms for CS recovery when the signal of interest lies on

a union of low-dimensional subspaces. The flexibility of our

approach potentially enables to extend this general outline for
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Fig. 2. Performance of model-based neuronal spike train recovery.
(top) Example spike train with parameters N = 1024, K = 50, ∆ =
10; (middle) CoSAMP recovery from M = 150 measurements.
Distortion = 1.76 dB. (bottom) Model-based recovery from the same
M = 150 measurements. Distortion = 25.53 dB.

algorithm design to several diverse applications such as image

processing, sensor networks and computer vision.

As an instantiation of our model-based framework, we study

the class of neuronal spike trains with nonzero refractory period

∆. We systematically construct a suitable model, a sampling

bound and a provably accurate algorithm which are specifically

tailored to the model describing this class of signals. The

improvement in the number of measurements M is captured

by the parameter ∆; as ∆ grows larger (i.e., consecutive spikes

occur further apart), we may expect to see considerable gains

in CS recovery performance.
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Fig. 3. Probability of signal recovery for varying measurement ratios.
N = 1024, K = 40, ∆ = 20.
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