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Abstract. Two-photon calcium imaging is an emerging experimental technique
that enables the study of information processing within neural circuits in vivo.
While the spatial resolution of this technique permits the calcium activity of in-
dividual cells within the field of view to be monitored, inferring the precise times
at which a neuron emits a spike is challenging because spikes are hidden within
noisy observations of the neuron’s calcium activity. To tackle this problem, we
introduce the use of sparse approximation methods for recovering spikes from
the time-varying calcium activity of neurons. We derive sufficient conditions for
exact recovery of spikes with respect to (i) the decay rate of the spike-evoked cal-
cium event and (ii) the maximum firing rate of the cell under test. We find—both
in theory and in practice—that standard sparse recovery methods are not suffi-
cient to recover spikes from noisy calcium signals when the firing rate of the cell
is high, suggesting that in order to guarantee exact recovery of spike times, ad-
ditional constraints must be incorporated into the recovery procedure. Hence, we
introduce an iterative framework for structured sparse approximation that is ca-
pable of achieving superior performance over standard sparse recovery methods
by taking into account knowledge that spikes are non-negative and also separated
in time. We demonstrate the utility of our approach on simulated calcium sig-
nals in various amounts of additive Gaussian noise and under different degrees of
model mismatch.
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1 Introduction

Despite the tight link between chemical and electrical signaling in neural systems, ex-
perimental studies of neural information processing have mainly been limited to ob-
servations of the electrical activity of single neurons and small neural networks. Re-
cently however, a new experimental technique known as two-photon calcium imaging
has enabled the study of the concentration of calcium within the dendritic trees of single
neurons as well as the time-varying calcium activity of neural populations in vivo [1].
Studies of neuronal calcium activity have already confirmed the existence of functional
maps in the visual cortex [2]; however, in order to use this technique to study temporal
correlations between distinct neurons, calcium imaging must also be able to uncover
the precise times at which each cell emits a spike or action potential (AP). Fortunately,
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the calcium activity of the cell may be used to infer the times at which the neuron emits
a spike from its cell body due to the fact that immediately after a spike is emitted from
the cell, calcium rushes into the cell body and this results in a spike-evoked calcium
transient that has roughly exponential decay with a decay time of approximately 0.5–1
second. Due to the long time course of spike-evoked calcium transients and high lev-
els of photon shot noise incurred during the sensing process, the problem of inferring
spikes hidden within the calcium activity of a cell is extremely challenging. Further-
more, the question of whether precise spike timing information can be extracted from
noisy calcium signals is still open to debate, especially for fast-spiking interneurons.

In this paper, we introduce the use of sparse approximation methods for recovering
spike times from noisy observations of the time-varying calcium activity of an indi-
vidual neuron. By using sparse approximation techniques for spike inference, we are
afforded a great deal of theory that enables a principled study of the limits of spike re-
covery from calcium signals. We use these results to derive sufficient conditions that en-
sure exact recovery of spike times with respect to (i) the decay rate of the spike-evoked
calcium event and (ii) the maximum firing rate of the cell under test. This theoretical
study, coupled with our experimental findings, suggests that in order to guarantee exact
recovery of spikes from noisy calcium signals, additional constraints must be incor-
porated into the recovery procedure. Hence, we introduce the use of structured sparse
approximation for spike recovery and show that, when spikes are separated in time and
this knowledge is leveraged in the recovery procedure, spike times can be extracted
faithfully in higher levels of noise than when no constraint is imposed. We detail a
structured sparse recovery algorithm capable of exploiting this sort of knowledge and
study the utility of our approach to structured sparse recovery on simulated calcium
signals in various levels of noise.

Related Work. The problem of spike recovery from calcium imaging data was pre-
viously studied by Vogelstein et al., who develop sequential Monte Carlo methods [3]
and fast methods for non-negative deconvolution [4]. Both of these methods assume that
the spikes are distributed according to a Poisson distribution and that the spike-evoked
calcium transients have exponential decay. In contrast to both of these approaches, the
methods we develop here can be used to perform spike inference for arbitrary calcium
waveforms and do not leverage any model of the dynamical behavior of the spikes nor
do they assume a particular noise distribution. For this reason, our methods require
far fewer parameters than methods that rely on estimates of the distributions of the
noise and spiking dynamics. In addition, our work is the first to address the question of
whether spike timing information can be reliably extracted from calcium signals with
respect to parameters that govern the generation of spike-evoked calcium signals.

Paper Organization. We introduce sparse representations, nonlinear approximation
methods for sparse recovery, and metrics required to derive dictionary dependent con-
ditions for exact spike recovery in Section 2. Following this, we show how the problem
of spike recovery from neuronal calcium signals can be posed as a sparse approxima-
tion problem and derive conditions for exact spike recovery in coherent dictionaries in
Section 3. In Section 4, we introduce methods for structured sparse approximation, de-
tail our algorithmic approach to structured sparse signal recovery, and then present our
experimental results. We end with conclusions in Section 5.
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2 Background

Sparse Representation. In many applications, it is advantageous to transform a signal
into a new domain where it admits a compact or sparse representation. This idea lies at
the heart of transform coding-based compression algorithms such as JPEG, where or-
thonormal bases are typically employed. When the collection of elements used to repre-
sent the signal are redundant, the representation is no longer unique; however, redundant
systems often produce even sparser representations than orthonormal systems. To make
this precise, we will refer to a finite collection of M unit-norm atoms as a dictionary,
D = {ϕm}Mm=1, where ‖ϕm‖2 = 1, for all m. Upon stacking the atoms in D into the
columns of a dictionary matrix Φ ∈ RN×M , an exact reconstruction of the input signal
x ∈ RNcan be obtained by finding a linear combination of the atoms in the dictionary
weighted by the coefficient vector a ∈ RM , where x =

∑M
m=1 a(m)ϕm = Φa. The

dictionary is considered complete if it spans RN with M = N and overcomplete if it
spans RN with M > N .

When using an overcomplete dictionary, the simplest explanation of the data or
the sparsest representation may be found by finding an approximate solution to the
following non-convex problem,

min
a
‖a‖0 subject to x = Φa, (1)

where ‖a‖0, denoted as the “`0-norm” of a, counts the number of non-zeros in a. We
call a signal k-sparse if ‖a‖0 ≤ k and refer to the index set containing the indices
of atoms with non-zero coefficients as the support of the signal or supp(a) = Λ. We
denote the corresponding sub-dictionary as ΦΛ, the complement set of atoms as ΦΛc ,
and can express the entire dictionary matrix as, Φ = [ΦΛ ΦΛc ]. The `0-norm penalty
in (1) is non-convex; however, we can relax (1) by replacing the `0 term with the `1-
norm ‖a‖1 =

∑D
m=1 |am|, resulting in a method known as basis pursuit (BP) [5].

Alternatively, greedy methods such as orthogonal matching pursuit (OMP) [6] can be
employed which select atoms iteratively, subtracting the contribution of each selected
atom from the current signal residual.

Exact Recovery Conditions. In order to derive conditions that guarantee that sparse
approximation methods like BP and OMP will recover a unique representation of a
signal in a particular dictionary, two measures related to the similarity of atoms in the
dictionary can be used. For unit-norm atoms, the maximum coherence is defined as
µ ≡ maxi 6=j |〈ϕi, ϕj〉| and the cumulative coherence is

µ(k) ≡ max
|Λ|=k

max
m∈Λc

∑
n∈Λ
|〈ϕn, ϕm〉| ≤ kµ. (2)

When atoms are sufficiently incoherent, a signal synthesized from a collection of these
atoms is guaranteed to be unique and hence recoverable by standard sparse approxi-
mation methods like BP and OMP. In [7], Gribonval and Nielsen derive a sufficient
condition for exact recovery of a signal drawn from the sub-dictionary ΦΛ that depends
on what we call the intra-support coherence, µΛ, and the inter-support coherence, µΛc
of the dictionary.
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Proposition 1 (Neumann Exact Recovery Coefficient (ERC) [7]) Let a signal be
supported over the index set Λ. If the Neumann ERC of a dictionary D = {ϕm},

µΛ + µΛc = max
n∈Λ

∑
m∈Λ,m 6=n

|〈ϕm, ϕn〉|+ max
n∈Λc

∑
m∈Λ
|〈ϕm, ϕn〉| < 1, (3)

holds then OMP will recover the support set Λ exactly.

This result implies a slightly weaker condition stated below in (4) that is also sufficient
to guarantee exact recovery of k-sparse signals. In [8], Tropp demonstrates that this
condition guarantees that a quantity related to the Neumann ERC is positive, which is
sufficient for exact recovery of all k-sparse signals via BP as well.

µ(k) + µ(k − 1) < 1. (4)

3 Exact Recovery of Spikes from Neuronal Calcium Signals

Before delving into conditions that ensure exact recovery of spikes from calcium sig-
nals, we briefly introduce a model for spike-evoked calcium signals that is a generaliza-
tion of the linear model introduced in [3].

Signal Model. When a spike is emitted from a neuron, voltage-gated calcium chan-
nels across the cell’s membrane cause an influx of calcium into the cell. The calcium
transients that emerge are marked by a quick rise time and roughly exponential decay
on the order of 0.5–1 second. Thus, the detected fluorescence signal y ∈ RN can be
modeled as

y =
∑
m∈Λ

amϕm + η = Φa + η = x + η, (5)

where ϕm is a N -dimensional vector of zeros with a spike-evoked waveform placed at
the mth sample, x ∈ RN is a linear combination of calcium waveforms drawn from
the dictionary Φ weighted by the coefficient vector a ∈ RM , and η is a vector con-
taining additive noise. With this linear model, sparse approximation techniques such as
those described in section 2 can be used to recover the index set Λ and corresponding
non-zero coefficients aΛ ∈ R|Λ| for arbitrary calcium waveforms. We note that because
the coefficients in a correspond to the amplitude of each spike, the coefficients are all
non-negative but are not necessarily equal due to slight variations in spike generation
process. If we wish to enforce knowledge that coefficients used in the representation
must be non-negative, a non-negative version of OMP and BP can easily be obtained.
In the case of greedy algorithms like OMP and CoSaMP [9], non-negativity can be
imposed by simply selecting atoms with large non-negative coefficients (instead of co-
efficients that are large in absolute magnitude) and replacing the least-squares step at
each iteration with a non-negative least-squares step.

Sufficient Conditions for Exact Spike Recovery. We will now study conditions that
allow for exact recovery of spike times from neuronal calcium signals. We say that ex-
act recovery is obtained when the index set Λ used to synthesize a signal can be recov-
ered without any errors. Although one of the advantages of using sparse approximation
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methods is that they can be used to recover spikes from dictionaries consisting of shifted
versions of arbitrary spike-evoked calcium signals, to simplify our subsequent analysis,
we will assume that each spike-evoked calcium signal has exponential decay and a finite
window of length L over which it is non-vanishing. Hence, each atom ϕm ∈ RN can be
written as ϕm(n) = βn−m, for all n = {m, . . . ,m+(L−1)} and 0 otherwise, where L
is chosen so that βL negligible. Thus, the maximum coherence between any two atoms
is simply the normalized inner product between atoms at neighboring points in time,
µ ≈ β, where the approximation is due to the fact that the waveforms are truncated to
L samples. Likewise, the cumulative coherence is defined over k calcium waveforms
placed at neighboring samples: µ(k) ≈

∑min(k,L)
n=1 βn = β(βk−1)

β−1 = µ(µk−1)
µ−1 ≤ µ(L).

By simply plugging this definition into the condition (4), we obtain the following suf-
ficient condition for exact support recovery from shift-invariant dictionaries of spike-
evoked calcium transients with exponential decay.

Proposition 2 (Exact Spike Recovery from Calcium Signals) For any k-sparse sig-
nal synthesized from a dictionary with cumulative coherence µ(k) = µ(µk− 1)/µ− 1,
where µ is the maximum coherence, if 3µ − µk(µ − 1) > 1, then this condition is
sufficient to guarantee exact recovery via OMP and BP.

This implies that to guarantee that two spikes can be recovered faithfully, we need
µ2 + 2µ − 1 < 0, and for µ ∈ (0, 1) this implies that µ <

√
2 − 1 or that µ < 0.414.

We show the relationship between this condition for exact recovery for different values
of k in Figure 1(b).

4 Structured Sparse Approximation for Spike Recovery

In the previous section, we found that in order to guarantee that two spikes that occur
at subsequent samples can be reliably separated, µ < 0.414. In practice, we find that
this condition is overly pessimistic and that sparse approximation are quite robust to
high levels of coherence. However, when noise is introduced into observations, standard
sparse approximation methods begin to fail when the noise exceeds 20% of the spike
amplitude. Hence, to ensure exact recovery of spike times in the levels of noise present
in real calcium imaging data, we must go “beyond sparsity” and incorporate additional
constraints into our recovery procedure.

Drawing upon inspiration from recent results in structured sparse signal recovery
[10], we introduce the use of a flexible iterative framework for structured sparse ap-
proximation that can be used to incorporate a number of different model-driven con-
straints into our recovery procedure. We find that if we leverage the fact that spikes
are non-negative as we described in the previous section, this in turn leads to improved
recovery; however, if we also assume that spikes are separated in time, we can obtain
even better recovery performance in noisy settings. Although this type of separation
constraint may not be applicable in all settings, e.g, when the cell under test is a fast-
spiking cell, there are many settings where there exist physical constraints on the spike
rate, either due to the refractory period or the maximum firing rate of the cell. Hence,
when these assumptions are satisfied, it is advantageous to leverage knowledge about
the maximum spiking rate into the recovery procedure.



6 Spike Recovery via Structured Sparse Approximation

Algorithm 1 Non-Negative Separated Support Model CoSaMP (SSM-CoSaMP)
Inputs: Dictionary Φ, observations y, K, ∆, model approximation algorithm M(·,K,∆)
Output: K-sparse approximation bx to true signal xbx0 = 0 , r = y; b = 0; i = 0 {initialize}
while halting criterion false do

1. i← i+ 1

2. e← Φ†r {form signal residual estimate}
3. Ω ← supp(M(e, 2K,∆)) {prune signal residual estimate according to model}
4. Λ← Ω ∪ supp(bxi−1) {merge supports}
5. b|Λ ← N(y,ΦΛ) {compute non-negative least-squares signal estimate}
6. bxi ← M(b,K,∆) {prune signal estimate according to model}
7. r← y −Φbxi {update measurement residual}

end while
return bx← bxi

To provide insight into why the introduction of a constraint on the firing rate of
the cell leads to improved recovery, we examine the two terms in the Neumann ERC,
µΛ + µΛc . For a signal drawn from a collection of atoms in Λ that are all separated by
at least ∆ samples, the intra-support coherence is bounded by µΛ ≤

∑min(k,L)
n=1 β∆n =

µ∆((µ∆)k−1)
µ∆−1 , where the maximum coherence µ∆ = β∆(see Fig. 1(a) for a demon-

stration of how ∆ and β contribute to the maximum coherence between atoms in the
representation). Although signals generated under this model exhibit reduced intra-
support coherence for all ∆ > 1, when we compute the inter-support coherence µΛc =
maxn∈Λc

∑
m∈Λ |〈ϕm, ϕn〉|, an atom that lies in between any of the spikes in the sup-

port will be selected to maximize this term. This means that even when spikes are sep-
arated in time, when our dictionary is not modified to reflect this constraint, the inter-
support coherence term remains large. Hence, when our recovery algorithm is agnostic
to the model that generated our observations, we do not observe improved recovery
performance. In contrast, when we employ a structured sparse recovery method that
leverages knowledge that there is some separation between atoms in the support, we
effectively reduce the total coherence of our representation and this leads to better esti-
mates of spike times in noisy settings. To enforce this knowledge within an algorithmic
framework, we introduce an iterative method for structured sparse approximation that
is detailed in Algorithm 1. We denote the minimizer of the non-negative least-squares
problem N(s,ΦΛ) = arg mina≥0 ‖Φa − s‖22 and the model-based pruning algorithm
described in [10] as M(s,K,∆) which finds the closest `2 approximation to a signal s
that has exactly K coefficients that are at least ∆ samples apart from one another.

Results. To generate the data used for our simulations, we generate a sequence of
spikes according to a Poisson distribution with rate λ and then pass the spikes through
the model pruning algorithm M(·,K,∆) to ensure that all spikes are at least ∆ sam-
ples apart. We note that we never assume knowledge of the dynamical behavior of the
spikes and only use a Poisson distribution to simulate realistic spiking behavior. Af-
terwards, the spikes are passed through a first-order IIR filter with difference equation,
x(n) = βx(n− 1), and i.i.d. Gaussian noise with zero mean and variance σ2 is added.
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Fig. 1. (a) Maximum coherence µ∆ for different values of ∆ and β; (b) comparison of µ∆ with
µ∆(k)+µ∆(k−1) and different sparsity levels (exact recovery is guaranteed when curve lies be-
low one); (c) Probability of exact recovery of a spike train with ∆? = 3 and β = {0.7, 0.95} for
different values of σ; (d) Synthetic calcium signals generated with K = 25, ∆? = 5, β = 0.95,
σ = 0.3. On top, we show the actual spike train (black) and recovered spikes using Algorithm
(1) with ∆ = {5, 3, 1} (blue, green, and red) and for OMP and COSAMP (cyan and magenta).

In Fig. 1(d) we show an example of a calcium signal in red, the noisy fluorescence sig-
nal in blue, and the corresponding spike trains recovered via Algorithm (1) and compare
these results with those obtained via CoSaMP [9] and OMP. For this example, we set
∆? = 5 samples (for a sampling rate of 100 Hz, ∆ = 5 = 50 ms) and employ Algo-
rithm (1) for ∆ = {1, 3, 5}, where ∆ = 1 corresponds to the case where no separation
constraint is imposed but the non-negativity constraint is in effect. We show improved
recovery over conventional methods such as CoSaMP and OMP when a non-negativity
constraint is imposed but even further improvement when we assume ∆ = {3, 5}. In
Fig. 1(c) we show the probability of exact recovery for various amounts of additive
noise after averaging over 10 trials. We find that near-perfect recovery is obtained until
the standard deviation of the noise is equal to 20% of the amplitude of the spikes. In
contrast, OMP fails to recover the correct support even in small amounts of noise due
to the high levels of coherence in the dictionary.

5 Discussion

In this paper, we have introduced sparse approximation for spike recovery and studied
the limits of spike recovery from noisy observations of neuronal calcium activity. This
study marks the first effort of its kind to explore the limits of using calcium imaging
data for extracting precise spike timing information from single neurons. After studying
the performance of these methods in noise, we introduced the use of structured sparse
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approximation for improved spike recovery and show that by enforcing knowledge that
spikes are separated in time in conjunction with the fact that the spikes are non-negative,
we obtain significantly better estimates of the spiking activity that when standard sparse
approximation methods are used. Our study suggests that although spikes may not be
reliably extracted from calcium imaging data collected from fast-spiking cells, for cells
that exhibit slower spiking rates, structured sparse approximation methods may be used
to reliably recover spike timing information, even from very noisy data.

Furthermore, there are many settings where exact spike times are not essential for
the study a particular phenomenon of interest. In this case, structured sparse approxima-
tion methods like those we introduce here can also be used to obtain reliable estimates of
spike counts over windows where bursts of spikes occur in addition to being able to re-
liably estimate individual spike times when sparser firing occurs. In this way, structured
sparse approximation can be used to compute histograms of spike counts with more
accuracy than when non-overlapping bins of a particular width are used. Due to the fact
that the our framework for structured sparse approximation can be used to enforce a
number of model-driven constraints, this framework can also be extended to incorpo-
rate a number of different constraints into the recovery of spikes and in the analysis
and/or denoising of calcium signals collected from diverse cell types, e.g., astrocytes
and interneurons. Our future efforts include a large-scale study of spike recovery meth-
ods for in vivo data and extending our analysis to study conditions for exact recovery
when structured sparse approximation methods are employed.
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