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Data Explosion

e DSP revolution:
sample first and ask questions later
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e Increasing pressure on classification algorithms
— ever faster training and classification rates
— ever larger, higher-dimensional data
— ever lower energy consumption
— radically new sensing modalities

e How can we acquire and process high-dimensional
data quickly and efficiently?



Compressive Classification

e Random projections preserve information
— Compressive Sensing (CS) (Candes, Donoho — 2004)
— Johnson-Lindenstrauss Lemma (point clouds — 1984)

e If we can reconstruct a signal from compressive
measurements, we should be able to perform
— detection
— classification
— estimation



Matched Filter

e Signal = belongs to one of J classes

e Observed with some parameterized transformation
- translation, rotation, scaling, lighting conditions, etc.
— observation parameter unknown

Hi: z="1y,s1+n

Ho: x="7g,80 +n

Hy: x="Tg,s7+n

e Maximum likelihood classifier with AWGN
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e Solve via convolution when parameter = translation



Manifold Models

e K-dimensional parameter 6 ¢ ©

captures degrees of freedom RV
in signal z, ¢ RN
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e Signal class F'= {x,: 6 € B}

forms a K-dimensional manifold 5

6 *
- Image appereance manifolds (IAM); /@
shifts, rotations, etc.

e Dimensionality reduction and manifold learning
- embeddings [ISOMAP; LLE; HLLE; ...]
— harmonic analysis [Belkin; Coifman; ...]




Matched Filter

e Maximum likelihood classifier with AWGN
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reduces to nearest neighbor classification when
signal classes form manifolds
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“Smashed Filter”

e Solve “"nearest manifold” problem using random
projections
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[M. Davenport et al., SPIE Electronic Imaging 07]



Stable Manifold Embedding

Theorem:
Let ' c RN be a compact K-dimensional manifold with

N
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- volume V
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statement holds:
For every pair z,y € F,
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[R. Baraniuk, M. Wakin, FOCM, in press]



Multiple Manifold Embedding

Corollary:
Let M,,....M, C RN be compact K-dimensional manifolds with
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[M. Davenport et al., SPIE Electronic Imaging 07]



The Smashed Filter

e Compressive manifold classification with GLRT
— nearest-manifold classifier
— manifolds classified are now ®M; = {®f;(0;) : 0, € ©,}
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[M. Davenport et al., SPIE Electronic Imaging 07]



Newton’s Method...

min [ — @ for||2
















Non-differentiability
from edge migration
or occlusion




Multiscale Newton Algorithm

e Construct a coarse-to-fine sequence {F } of
manifolds that converge to F

¢s * fo — fo, s— 0

Fs —F, s—0

e Take one Newton step at each scale

[M. Wakin, D. Donoho, H. Choi, and R. Baraniuk,
The Multiscale Structure of Non-Differentiable Image Manifolds, SPIE Wavelets XI, 2005.]
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Multiscale Smashed Filter

y1 = Por1x
Yo = Qoo

yp = Popr



Multiscale Smashed Filter

y1 = P12
Yo = Pox
yp = Ppx

O, = Doy



Multiscale Smashed Filter




Multiscale Smashed Filter

If @ has binary random entries,
xr can be regularized using pixelation




Rice Single-Pixel Camera
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Experiments

e 3 image classes imaged using single-pixel camera
— rotations 29, 4°, ..., 360°
— binary random measurements
— 5 reqularization kernels through pixelation(16, 8, 4, ...)
e Training set for each class: CS measurements
— estimate rotation using multiscale projections
- identify most likely class using nearest-neighbor test
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Classification Rate, %

Avg. est. error, degrees

Classification results
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Tolerance to added noise
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e 8 initial estimates

e Higher noise requires more measurements for accurate
parameter estimation

e Accurate classification requires reliable parameter estimation



Conclusions

e Multiscale Smashed Filter
— efficiently exploits compressive measurements
— Reduced computational burden
— broadly applicable

— effective for image classification when combined with single-
pixel camera

e Current work:
— extension to support vector machines, other algorithms
— noise analysis (signal dependent noise)
— collaborative compressive classification
— compressive signal processing
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