

Multiscale Random Projections for Compressive Classification

Marco F. Duarte

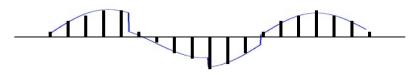
Joint work with

Mark Davenport, Michael Wakin, Jason Laska, Dharmpal Takhar, Kevin Kelly and Rich Baraniuk

dsp.rice.edu/cs

Data Explosion

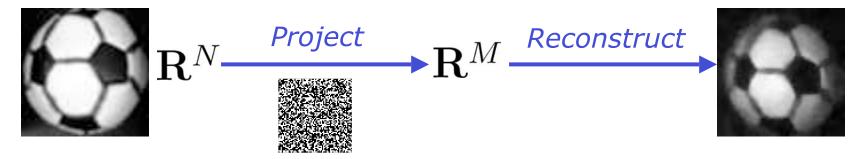
DSP revolution:
 sample first and ask questions later



- Increasing *pressure* on classification algorithms
 - ever faster training and classification rates
 - ever larger, higher-dimensional data
 - ever lower energy consumption
 - radically new sensing modalities
- How can we acquire and process high-dimensional data quickly and efficiently?

Compressive Classification

- **Random projections** preserve information
 - Compressive Sensing (CS) (Candès, Donoho 2004)
 - Johnson-Lindenstrauss Lemma (point clouds 1984)



- If we can reconstruct a signal from compressive measurements, we should be able to perform
 - detection
 - classification
 - estimation
 - ...

Matched Filter

- Signal x belongs to one of J classes
- Observed with some parameterized transformation
 - translation, rotation, scaling, lighting conditions, etc.
 - observation parameter unknown

$$\begin{aligned} \mathcal{H}_1 &\colon x = \mathcal{T}_{\theta_1} s_1 + n \\ \mathcal{H}_2 &\colon x = \mathcal{T}_{\theta_2} s_2 + n \\ &\vdots \\ \mathcal{H}_J &\colon x = \mathcal{T}_{\theta_J} s_J + n \end{aligned}$$

• *Maximum likelihood* classifier with AWGN

$$\min_{j,\widehat{\theta}_j} \|x - \mathcal{T}_{\widehat{\theta}_j} s_j\|_2$$

• Solve via convolution when parameter = translation

Manifold Models

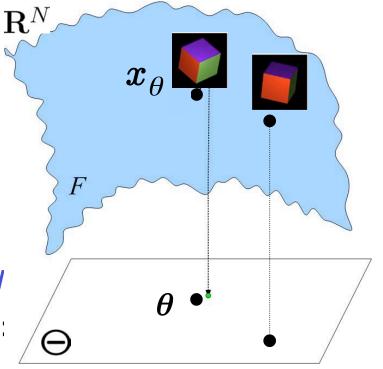
• *K*-dimensional *parameter* $\theta \in \Theta$

captures degrees of freedom in signal $x_{\scriptscriptstyle{ heta}} \in {I\!\!R}^N$

• Signal class $F = \{x_{\theta}: \theta \in \Theta\}$

forms a *K*-dimensional *manifold*

 Image appereance manifolds (IAM): shifts, rotations, etc.



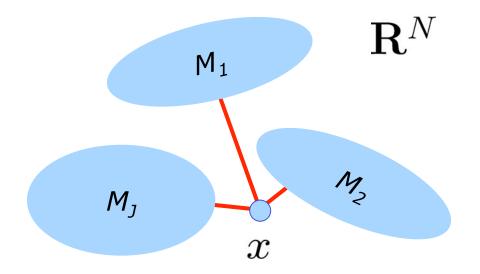
- Dimensionality reduction and manifold learning
 - embeddings [ISOMAP; LLE; HLLE; …]
 - harmonic analysis [Belkin; Coifman; ...]

Matched Filter

• *Maximum likelihood* classifier with AWGN

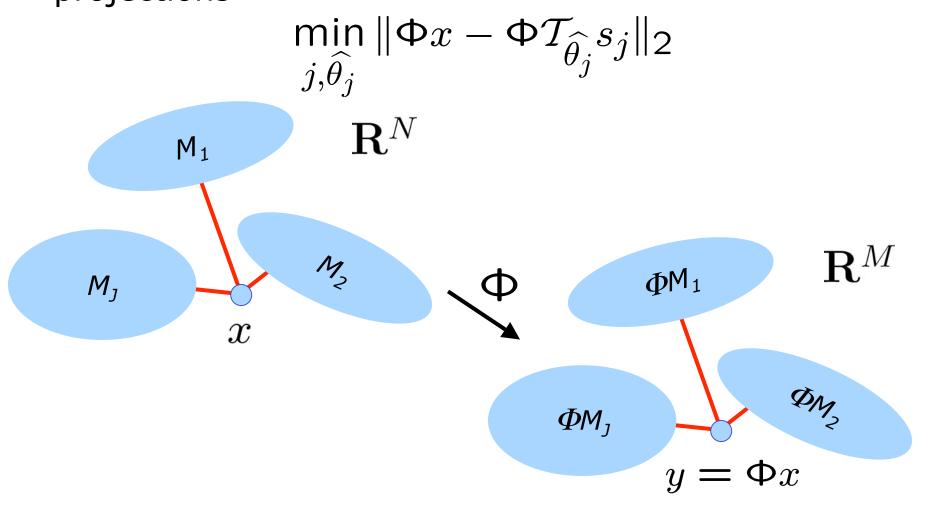
$$\min_{j,\widehat{\theta}_j} \|x - \mathcal{T}_{\widehat{\theta}_j} s_j\|_2$$

reduces to *nearest neighbor* classification when signal classes form manifolds



"Smashed Filter"

Solve "nearest manifold" problem using random projections



[M. Davenport et al., SPIE Electronic Imaging 07]

Stable Manifold Embedding

Theorem:

Let $F \subset \mathbb{R}^{N}$ be a compact <u>*K*-dimensional</u> manifold with

- condition number $1/\tau$ (curvature, self-avoiding)
- volume V

Let Φ be a random $M\!xN$ orthoprojector with

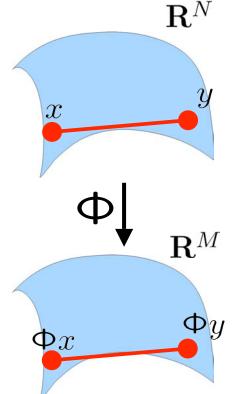
$$\underline{M} = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

Then with probability at least $1-\rho$, the following statement holds:

For every pair $x, y \in F$,

$$(1-\epsilon) \|x-y\|_2 \le \|\Phi x - \Phi y\|_2 \le (1+\epsilon) \|x-y\|_2.$$

[R. Baraniuk, M. Wakin, FOCM, in press]



Multiple Manifold Embedding

 \mathbf{R}^N

U

 \mathbf{R}^{M}

 Φy

 \mathcal{X}

Corollary:

Let $M_1, \dots, M_P \subset {I\!\!R}^N$ be compact K-dimensional manifolds with

- condition number $1/\tau$ (curvature, self-avoiding)
- volume V
- min dist(M_j, M_k) > τ

Let Φ be a random $M\!xN$ orthoprojector with

$$M = O\left(\frac{K \log(NPV\tau^{-1}\epsilon^{-1}) \log(1/\rho)}{\epsilon^2}\right)$$

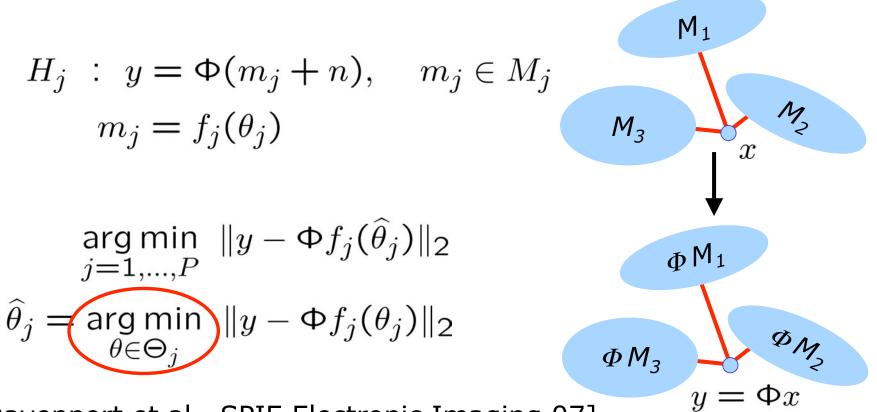
Then with probability at least 1- ρ , the following statement holds:

For every pair $x, y \in \bigcup M_j$,

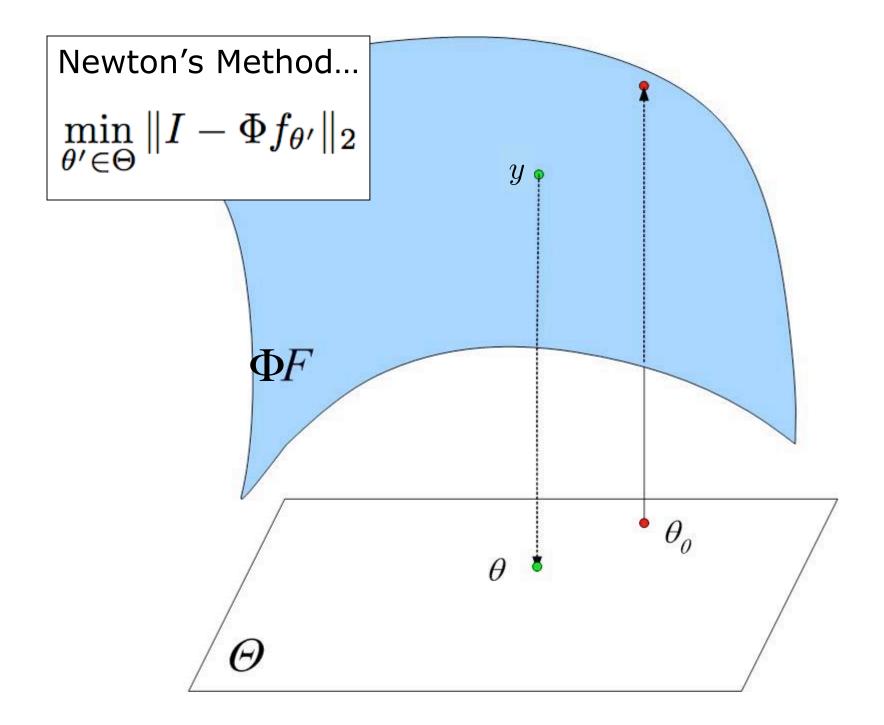
$$(1-\epsilon) \|x-y\|_2 \le \|\Phi x - \Phi y\|_2 \le (1+\epsilon) \|x-y\|_2.$$
[M. Davenport et al., SPIE Electronic Imaging 07]

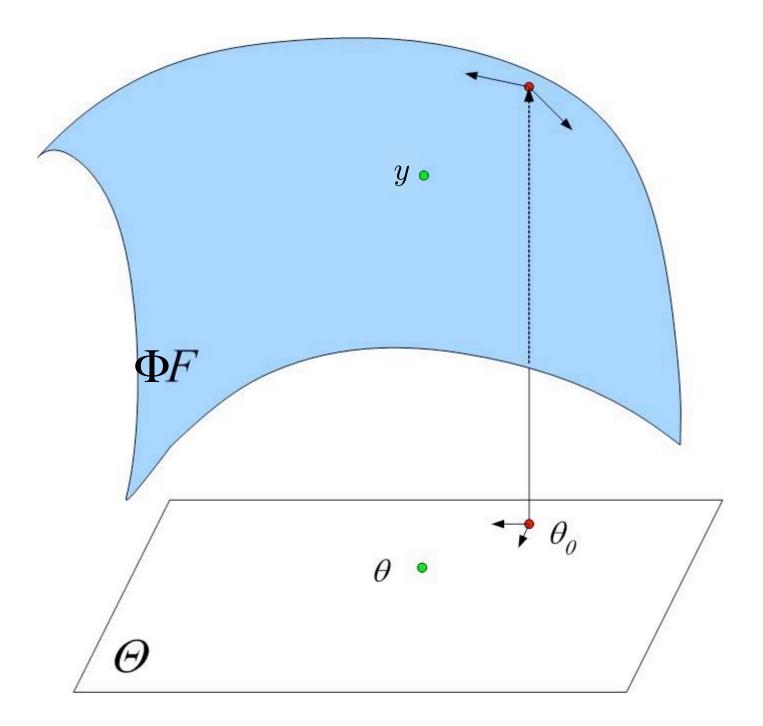
The Smashed Filter

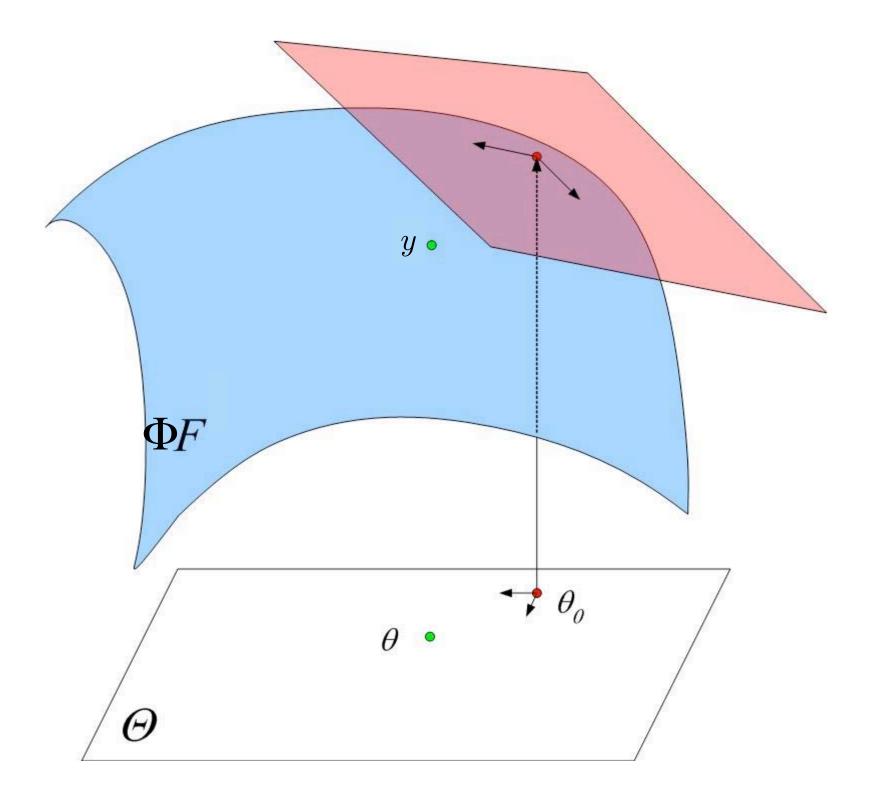
- Compressive manifold classification with GLRT
 - nearest-manifold classifier
 - manifolds classified are now $\Phi M_j = \{ \Phi f_j(\theta_j) : \theta_j \in \Theta_j \}$

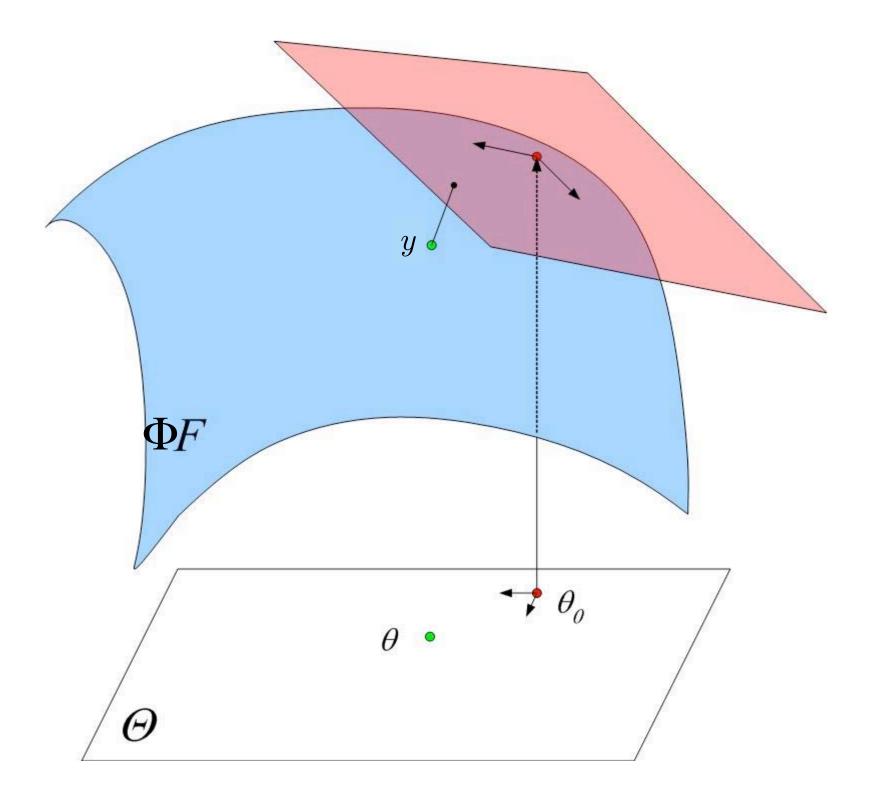


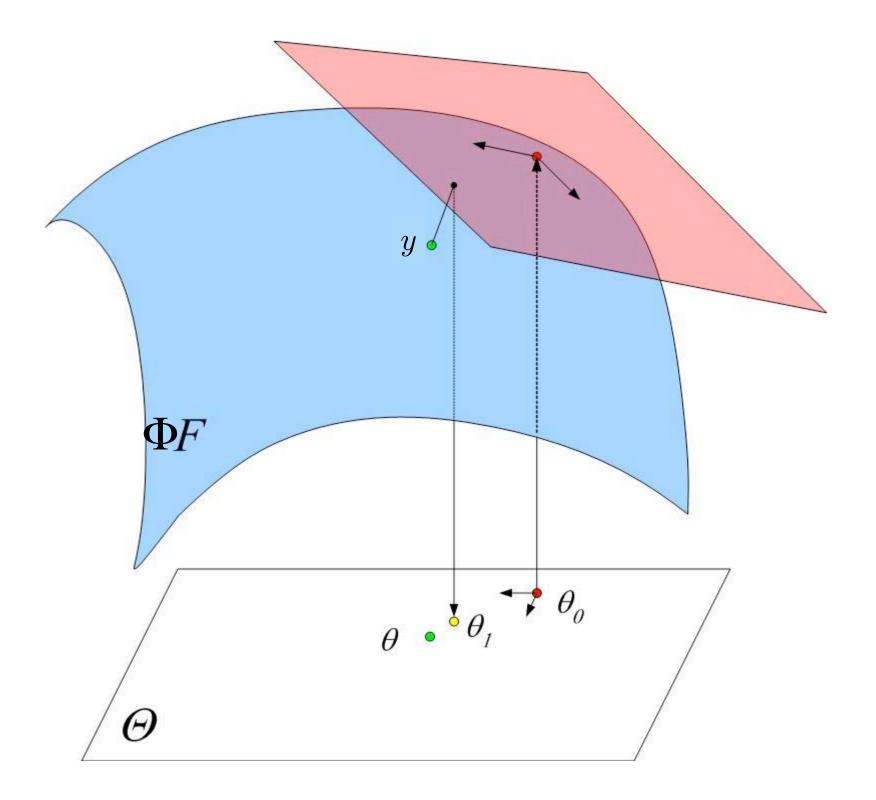
[M. Davenport et al., SPIE Electronic Imaging 07]

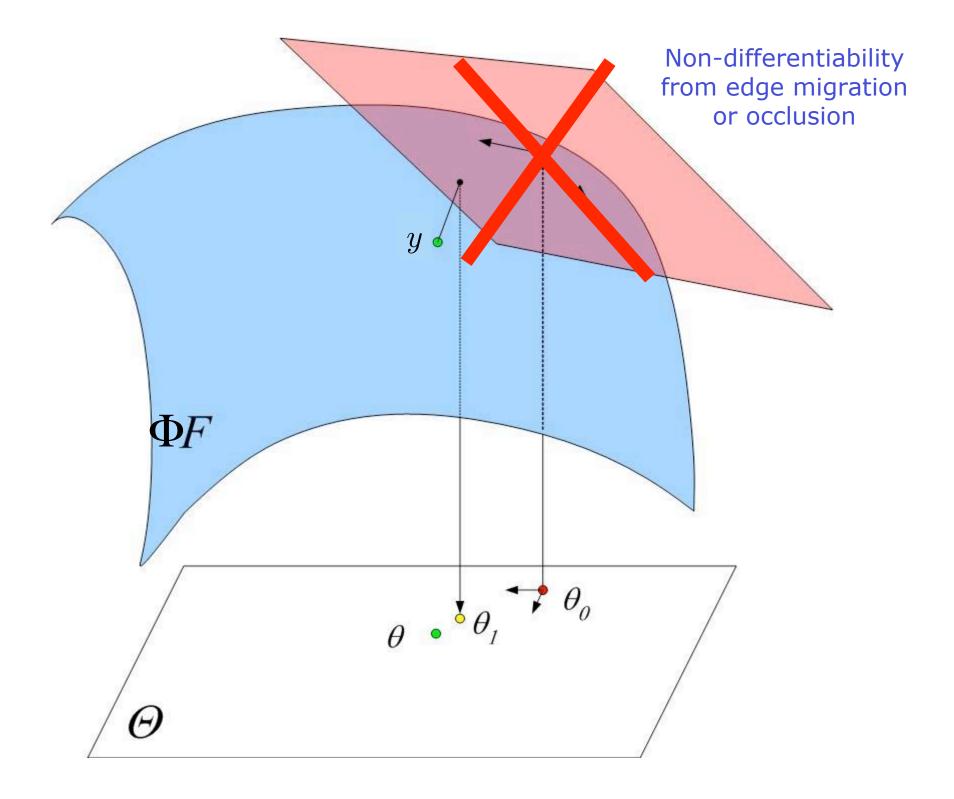












Multiscale Newton Algorithm

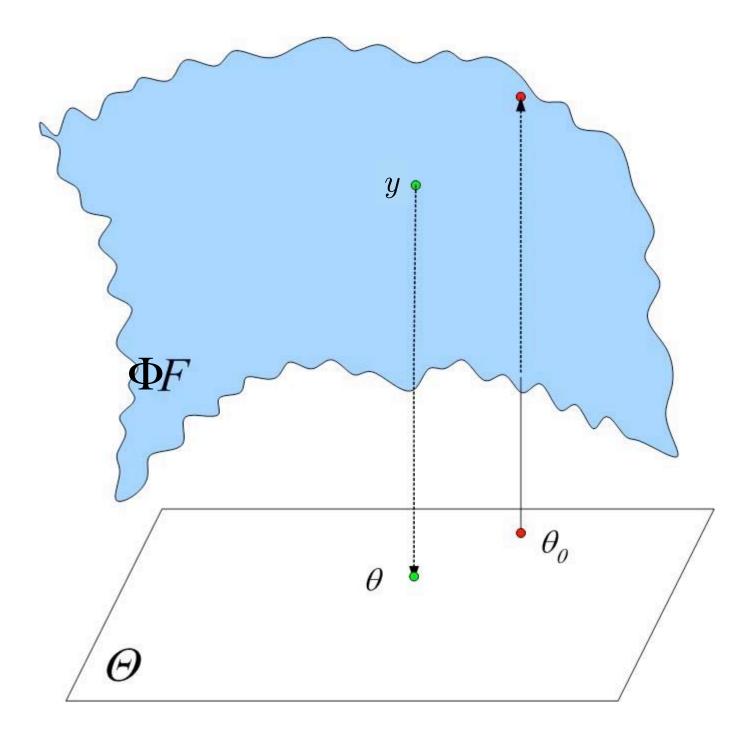
• Construct a coarse-to-fine sequence $\{F_s\}$ of manifolds that converge to F

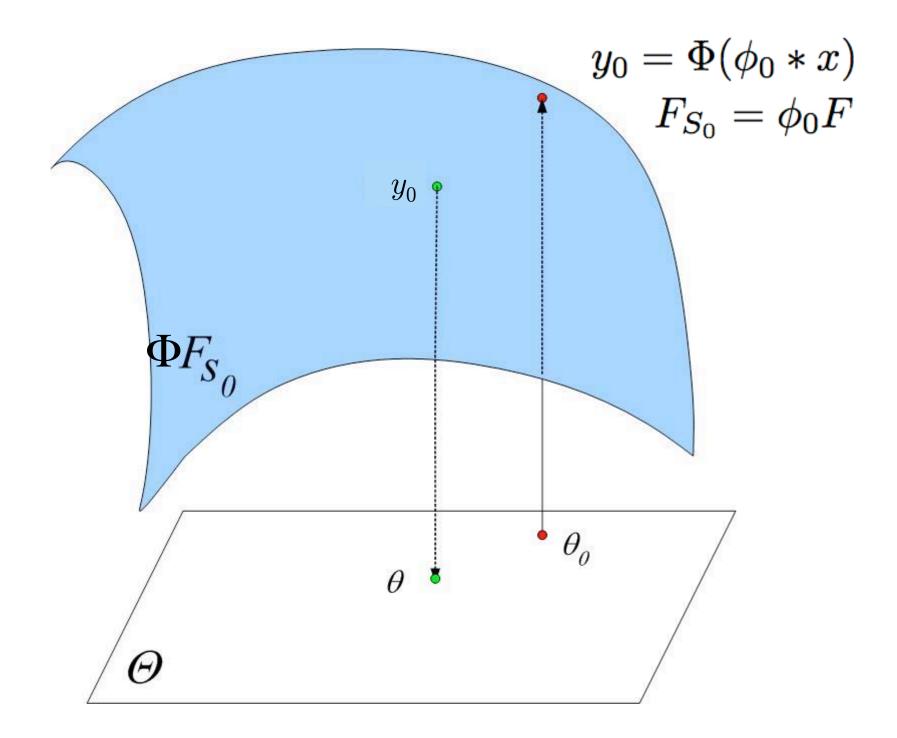
$$\phi_s * f_\theta \to f_\theta, \quad s \to 0$$

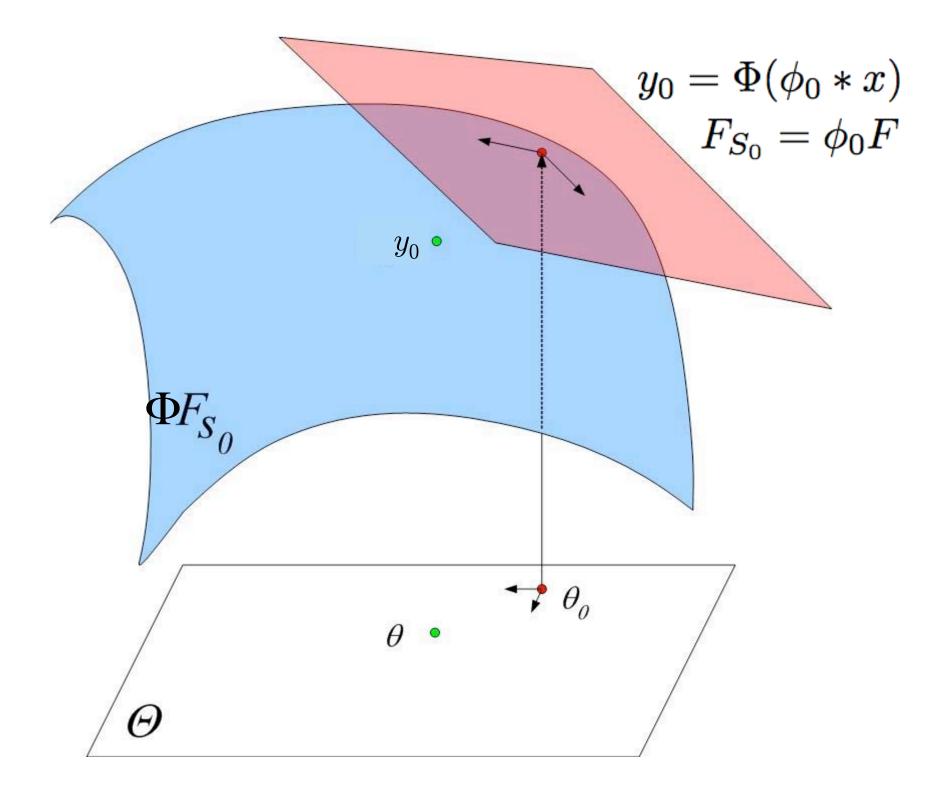
 $F_s \to F, \quad s \to 0$

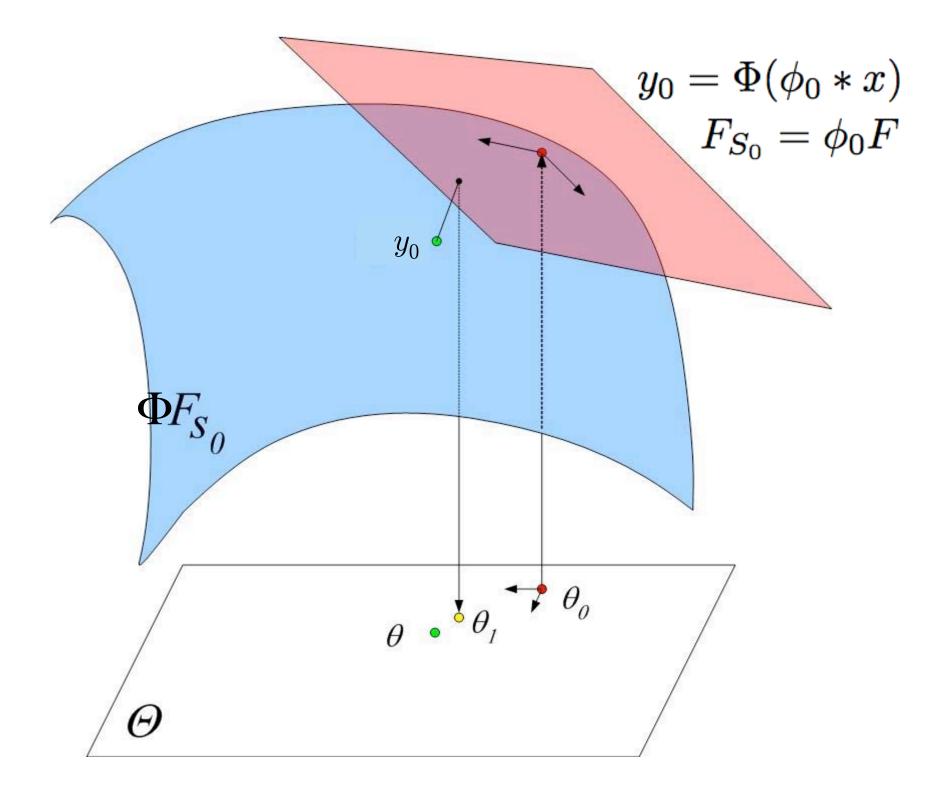
• Take one Newton step at each scale

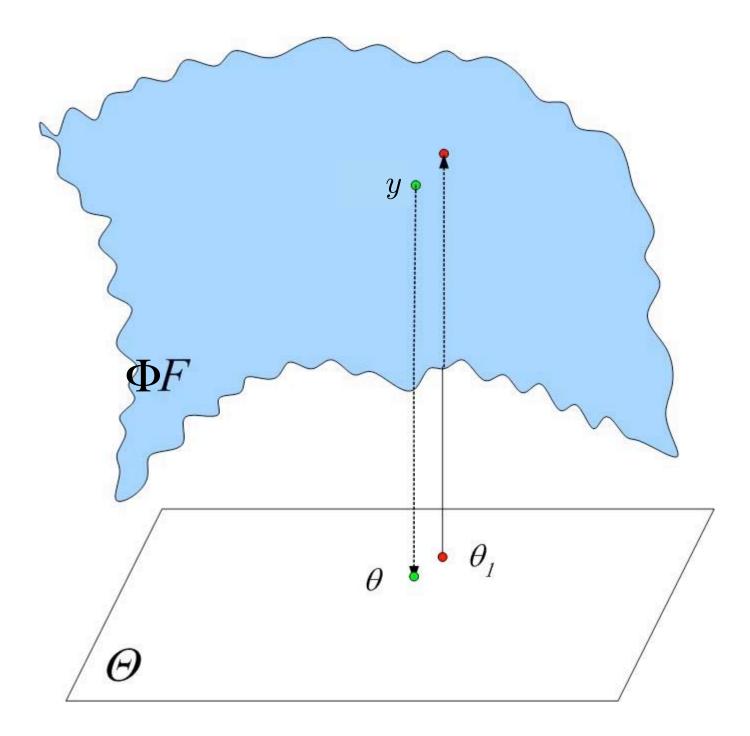
[M. Wakin, D. Donoho, H. Choi, and R. Baraniuk, The Multiscale Structure of Non-Differentiable Image Manifolds, SPIE Wavelets XI, 2005.]

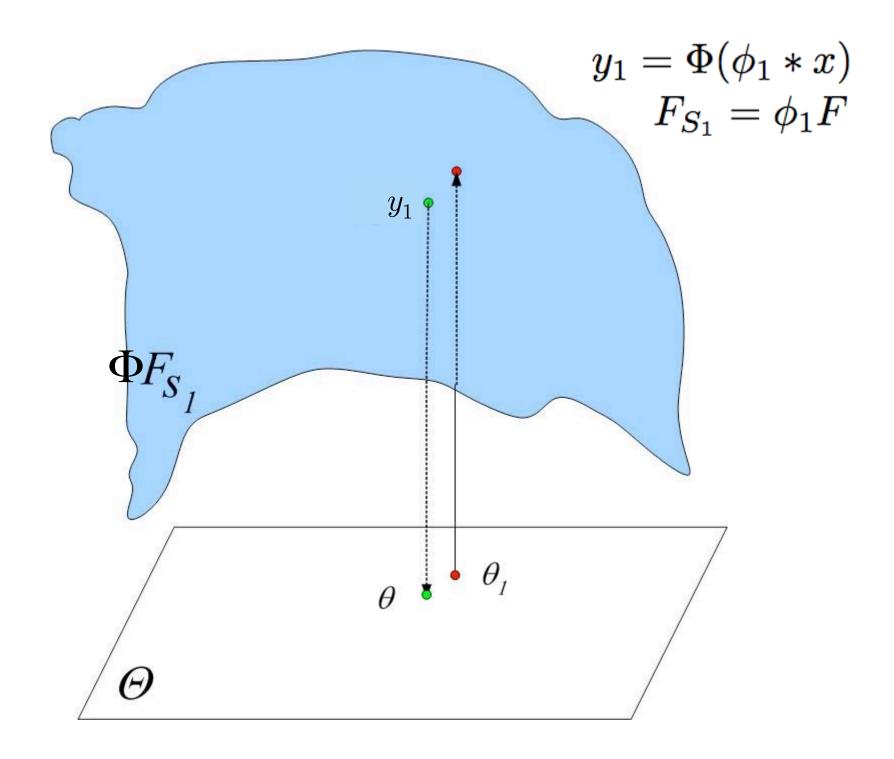


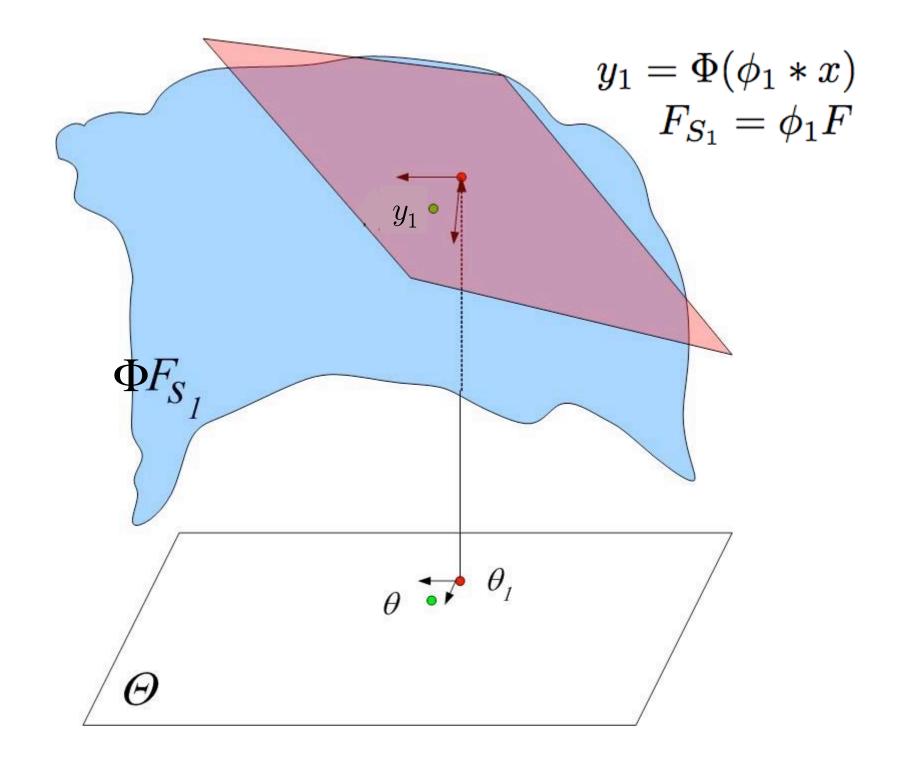


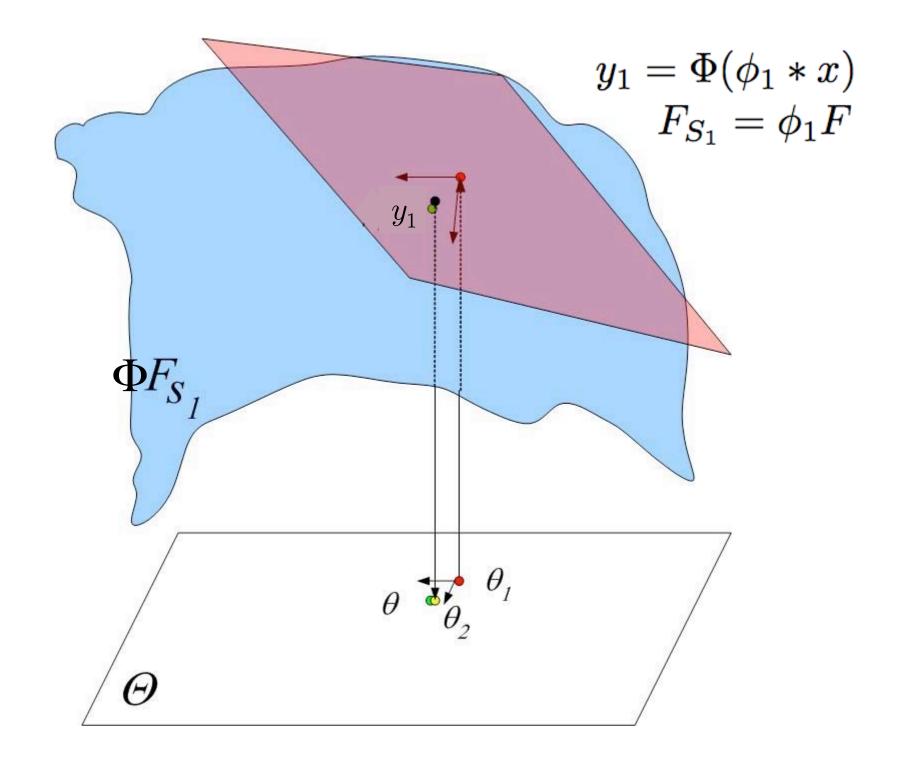


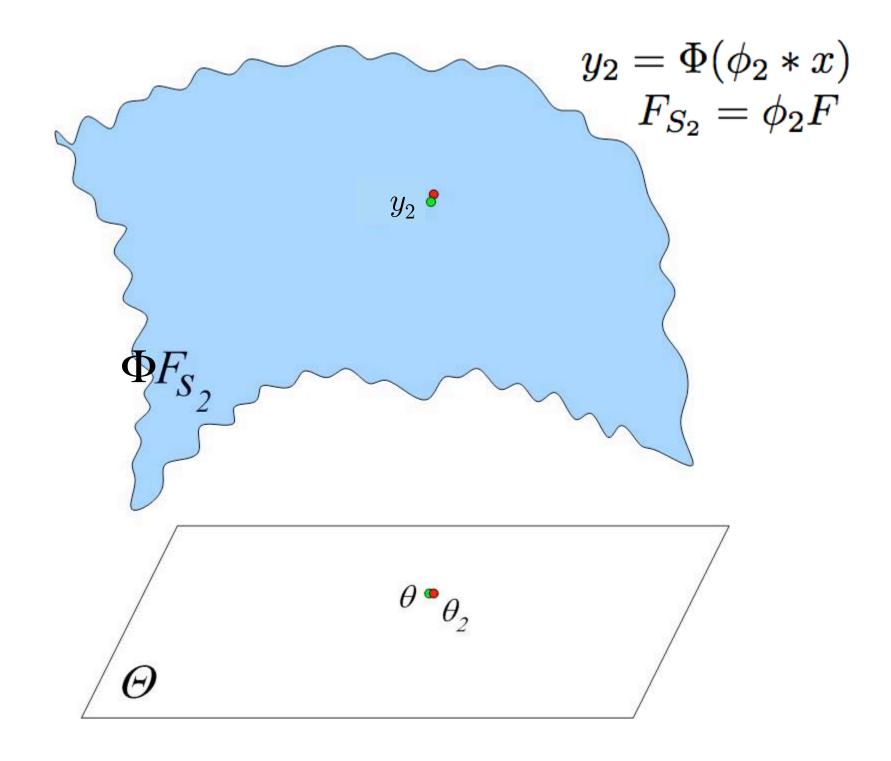


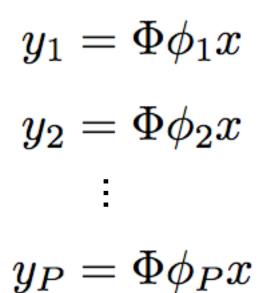










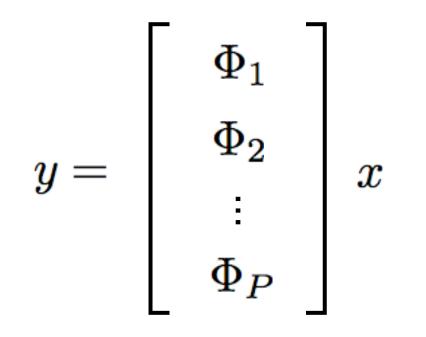




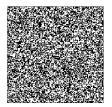
$$\Phi_i = \Phi \phi_i$$

$$y = egin{array}{ccc} \Phi_1 & & & \ \Phi_2 & & x & \ & & & & \ \Phi_P & & & \end{array}$$

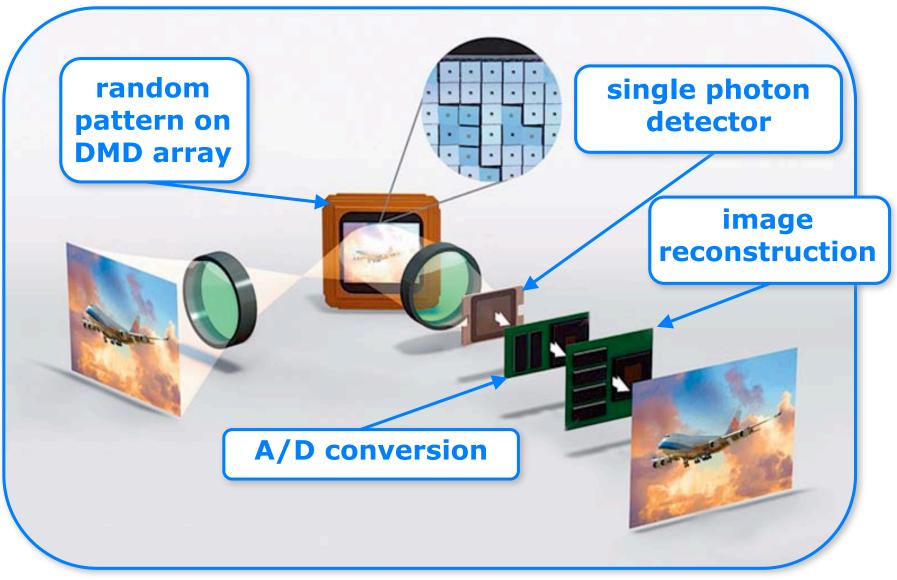
$$\Phi_i = \Phi \phi_i$$



If Φ has binary random entries, x can be regularized using pixelation



Rice Single-Pixel Camera



© MIT Technology Review 2007

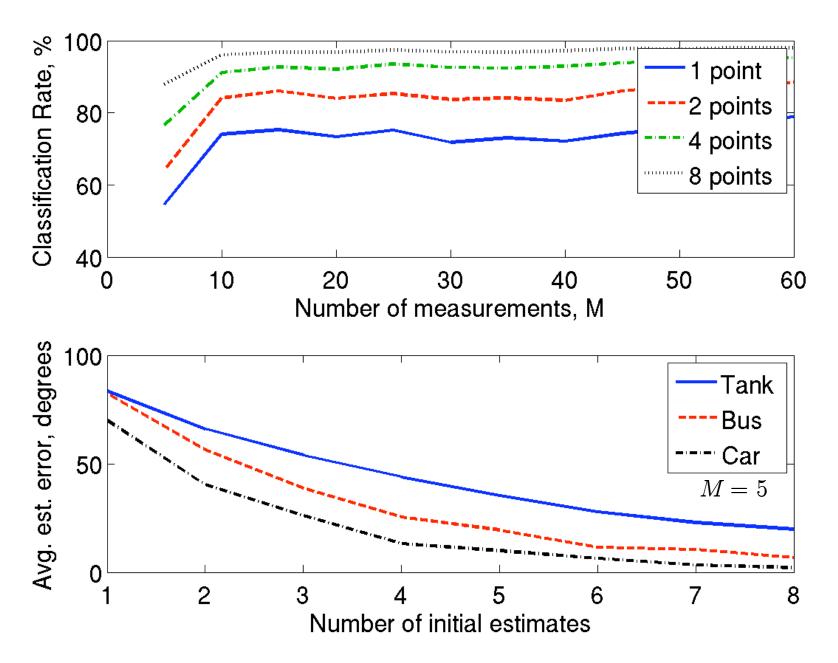
Experiments

- 3 image classes imaged using single-pixel camera
 - rotations 2°, 4°, ..., 360°
 - binary random measurements
 - 5 regularization kernels through pixelation(16, 8, 4, ...)
- Training set for each class: CS measurements
 - estimate rotation using multiscale projections
 - identify most likely class using nearest-neighbor test

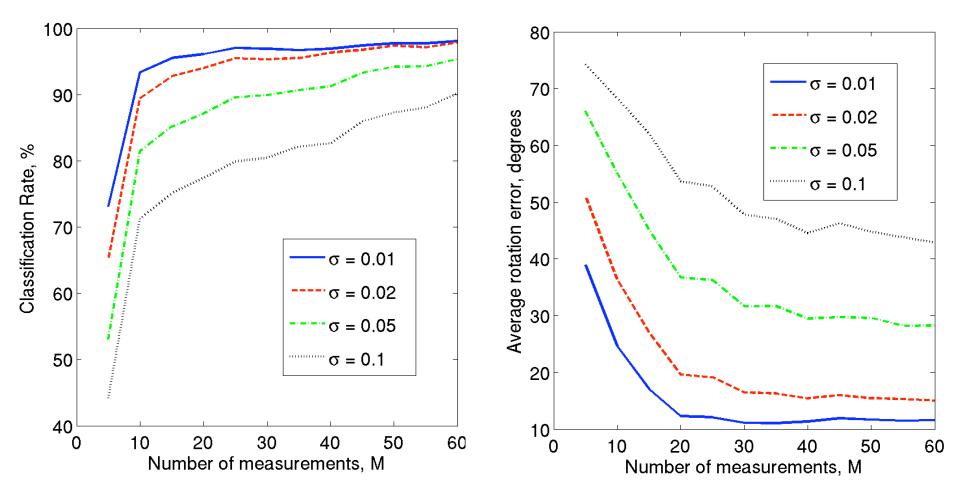
Tank

SUV

Classification results



Tolerance to added noise



- 8 initial estimates
- Higher noise requires more measurements for accurate parameter estimation
- Accurate classification requires reliable parameter estimation

Conclusions

- Multiscale Smashed Filter
 - efficiently exploits compressive measurements
 - Reduced computational burden
 - broadly applicable
 - effective for image classification when combined with singlepixel camera
- Current work:
 - extension to support vector machines, other algorithms
 - noise analysis (signal dependent noise)
 - collaborative compressive classification
 - compressive signal processing

