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ABSTRACT

The theory of compressive sensing (CS) enables the reconstruction of a sparse or compressible
image or signal from a small set of linear, non-adaptive (even random) projections. However, in
many applications, including object and target recognition, we are ultimately interested in making
a decision about an image rather than computing a reconstruction. We propose here a framework
for compressive classification that operates directly on the compressive measurements without first
reconstructing the image. We dub the resulting dimensionally reduced matched filter the smashed
filter. The first part of the theory maps traditional maximum likelihood hypothesis testing into the
compressive domain; we find that the number of measurements required for a given classification
performance level does not depend on the sparsity or compressibility of the images but only on
the noise level. The second part of the theory applies the generalized maximum likelihood method
to deal with unknown transformations such as the translation, scale, or viewing angle of a target
object. We exploit the fact the set of transformed images forms a low-dimensional, nonlinear
manifold in the high-dimensional image space. We find that the number of measurements required
for a given classification performance level grows linearly in the dimensionality of the manifold but
only logarithmically in the number of pixels/samples and image classes. Using both simulations
and measurements from a new single-pixel compressive camera, we demonstrate the effectiveness
of the smashed filter for target classification using very few measurements.
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1. INTRODUCTION

The theory of compressive sensing (CS) enables a sparse or compressible signal to be reconstructed
from a small set of non-adaptive linear projections.1, 2 In some applications, this allows us to
directly acquire a compressed representation of a signal, effectively combining the steps of sampling
and compression. However, in many applications we are not interested in obtaining a precise
reconstruction of the scene under view, but rather are only interested in making some kind of
detection or classification decision. For instance, in target classification, we simply wish to identify
the class to which our image belongs out of several possibilities.
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In this paper, we propose an algorithm to support a new theory of compressive classification
that enjoys the same benefits as compressive sensing. Our approach, based on a generalized maxi-
mum likelihood classifier (GMLC), is applicable to a wide variety of signal classification problems.
Focusing on the problem of image classification, we use the fact that the set of images of a fixed
scene with different imaging parameters (translation, scale, view angle, illumination, etc.) forms a
low-dimensional, nonlinear manifold in the high-dimensional ambient image space. Exploiting re-
cent results on random projections of manifolds,3 we design a pseudo-random measurement scheme
and a new classification algorithm—the smashed filter—that can be viewed as a generalization of
the classical matched filter to more challenging manifold settings. The smashed filter achieves high
classification rates using only a small fraction of measurements compared to the dimensionality of
the original images. This work builds on preliminary investigations of compressive classification.4–7

This paper is organized as follows. Section 2 provides an overview of both the theoretical foun-
dation of CS as well as a brief description of our prototype compressive imaging architecture. Sec-
tion 3 provides background on conventional detection and estimation problems. Section 4 develops
compressive classification and the smashed filter, and Section 5 presents preliminary experimental
results using both simulations and real data from the single-pixel camera. Section 6 concludes with
a brief discussion of our results and directions for future work.

2. BACKGROUND ON COMPRESSIVE SENSING

Compressive sensing (CS) builds upon a core tenet of signal processing and information theory:
that signals, images, and other data often contain some type of structure that enables intelligent
representation and processing. As an example, many signals have a sparse representation in terms
of some basis Ψ. In particular, we say that a signal x ∈ R

N is K-sparse if it can be represented as
x = Ψθ where the vector θ ∈ R

N has only K ≪ N nonzero coefficients. We say that a signal is
compressible if it can be closely approximated as K-sparse. The surprising result of CS is that a
length-N signal that is K-sparse/compressible in some basis can be recovered exactly/approximately
from a nonadaptive linear projection of the signal onto a random O(K log(N/K))-dimensional
basis.1, 2

Thus we can directly acquire the signal in a compressed form.

Specifically, rather than sampling the signal, we encode M = O(K log(N/K)) inner products of
the signal with a set of random vectors. In matrix notation, we take the compressive measurements

y = Φx, (1)

where y is an M × 1 column vector, and Φ is an M × N random (but known) matrix. We will
assume that Φ is an orthoprojector, i.e., that it has orthonormal rows. Since M < N , recovery of
the signal x from the measurements y is ill-posed in general; however the additional assumption of
signal sparsity or compressibility makes recovery both possible and practical.

Imaging is a particularly compelling application of CS. Our single-pixel camera8 employs a Texas
Instruments digital micromirror device (DMD), which consists of an array of N electrostatically
actuated micromirrors. The camera focuses the light from the desired image onto the DMD with
the mirrors set in a pseudorandom binary (0,1) pattern; the light reflecting from the mirrors set to
1 is then focused onto a single photodiode. The voltage at the photodiode is thus the inner product
between the image and the random binary (0,1) pattern displayed on the DMD. Switching among



Figure 1. Single-pixel compressive imaging camera block diagram. Incident lightfield (corresponding to
the desired image x) is reflected off a digital micromirror device (DMD) array whose mirror orientations
are modulated in the pseudorandom pattern φm supplied by a random number generator. Each different
mirror pattern produces a voltage at the single photodiode that corresponds to one measurement ym.

M different pseudorandom patterns collects a sufficient amount of information to reconstruct or
approximate the N -pixel image.

This single-pixel camera enjoys a number of advantages over traditional imaging systems. It
is universal in the sense that the random measurements do not depend on the basis Ψ in which
the image is sparse or compressible. The measurement process is also progressive in that better
quality images can be obtained by simply taking more measurements. Compressive measurements
are democratic in that each measurement can be given equal priority and that the reconstruction
quality depends only on how many measurements are received, not on the particular subset re-
ceived; this is particularly useful in remote sensing and distributed sensing where communication
may be unreliable. Additionally, the use of a single detector enables imaging at new wavelengths
unaccessible or prohibitively expensive using current focal plane imaging arrays.

In many applications, however, image acquisition is performed for purposes other than compres-
sion and storage. For example, in vision and surveillance settings, images are processed to extract
different amounts of information from the scene observed, varying from the presence or absence
of a target object to a full parametrization of the articulations of the objects in view. It is now
known that compressive measurements can capture the necessary information from the image to
perform such tasks.5–7 Thus, hardware introduced for compressive imaging can also be used for
these applications without modification.

3. BACKGROUND ON CLASSIFICATION

In this section, we provide background on some conventional problems in statistical signal pro-
cessing. In Section 4 we translate these to the compressive domain. While much of our discussion
focuses on the specific case of image classification, our approach is applicable to general classification
settings.

3.1. Maximum Likelihood Classification

We begin by examining the problem of signal classification using a maximum likelihood classifier
(MLC). Suppose a signal x ∈ R

N belongs to one of P classes Ci, i = 1, . . . , P . We let hypothesis



Hi signify that the signal x belongs to class Ci, and for now we assume that class Ci contains a
single known signal si. We obtain noisy measurements of x, as in y = x + ω ∈ R

N , giving us a
distribution p(y|Hi) for the measured signal y under hypothesis Hi. The MLC classifies according
to which class has the maximum class-conditional likelihood

C(y) = argmax
i=1,...,P

p(y|Hi). (2)

Under an additive white Gaussian noise (AWGN) model for ω with variance σ, the probability
distribution for the measured signal y under hypothesis Hi becomes

p(y|Hi) =
1

(2πσ)
N

2

e−
1

2σ
‖y−si‖

2

2 .

In this case (2) reduces to a nearest-neighbor classifier among the available hypotheses. Note that in
the case of classification between two equally likely classes, the MLC reduces to the more common
likelihood ratio test.

3.2. Generalized Maximum Likelihood Classification

We now consider a richer problem, where the formation of the signal x under each hypothesis de-
pends on specific parameters; this results in a combined detection and estimation problem. Specif-
ically, for each class Ci, an element x ∈ Ci can be parameterized by a unique K-dimensional
parameter vector θi ∈ Θi that controls the generation of the signal, i.e., x = fi(θi) for some fi.
Example parameters for image classification scenarios include the pose of the object in the scene,
translation, rotation, scale, etc.

In the case of two classes, where the optimal classifier is the likelihood ratio test, we can
accommodate these unknown parameters through the use of the generalized likelihood ratio test.
We will refer to the multi-class extension of this technique as the generalized maximum likelihood
classifier (GMLC). To derive the GMLC, we again consider the case where noisy measurements
of x are taken, y = x + ω, giving us a distribution p(y|θi,Hi) for the measured signal y under
hypothesis Hi and parameters θi. The GMLC is

C(y) = argmax
i=1,...,P

p(y|θ̂i,Hi), (3)

where
θ̂i = arg max

θ∈Θi

p(y|θ,Hi) (4)

denotes the maximum likelihood estimate (MLE) of the parameters θi under hypothesis Hi. Under
the same AWGN model for ω as above, we have

p(y|θ,Hi) =
1

(2πσ)
N

2

e−
1

2σ
‖y−fi(θ)‖2

2 , (5)

and so the MLE (4) can be posed as

θ̂i = arg min
θ∈Θi

‖y − fi(θ)‖2
2. (6)



3.3. GMLC and Smooth Manifolds

We can interpret the above situation geometrically. Consider the generation of the signal x under
hypothesis Hi, and recall that x = fi(θi) for some K-dimensional parameter θi ∈ Θi and some
function fi : Θi → R

N . If the mapping fi is well-behaved, then the collection of signals Mi =
{fi(θi) : θi ∈ Θi} forms a K-dimensional manifold3 embedded in the ambient signal space R

N .
Under this interpretation, the ML estimation (6) of the parameter θi under the AWGN model
corresponds to finding the closest point on the manifold Mi to the observed signal y. Subsequently,
the classifier in (3) can be interpreted as a “nearest-manifold” search from y to each of the Mi.

In settings where x is an image, the manifold Mi will have a degree of smoothness determined
roughly by the spatial smoothness of the image x.9 If the manifold is differentiable, then ML
estimation (6) can be performed using standard optimization techniques such as Newton’s method.
However, the manifolds generated by images having sharp edges are not differentiable, in general.
In these cases, a coarse-to-fine differential estimation procedure9 can be used for ML estimation
that involves applying Newton’s method to a multiscale sequence of smoothed versions of the image.

3.4. The Matched Filter

We conclude the discussion of traditional classification algorithms by recalling an important special
case of the GMLC—the matched filter. While it is not typically presented in this manner, the
matched filter is the optimal classifier when fi(t; θi) = si(t − θi), i.e., our observed signal is one
of a known set of possible signals si shifted by an unknown amount θi. The matched filter simply
computes

∫
x(t)si(t−θi)dt for all possible θi and selects the class with the highest peak correlation

value, which is equivalent to the GMLC when the signals si have equal norm for all i and additive
white Gaussian noise is assumed. This can be efficiently implemented through convolution. Due to
this simplicity, matched filtering techniques are frequently applied to classification problems even
when the assumptions do not necessarily hold. For instance, in some image classification settings,
the classifier must be accurate but also highly efficient since the classifier may function as part of
a more complex, real-time system. In these cases, despite the wide variety of more sophisticated
classification algorithms, it is common to use simple matched filters for image classification, where
the signals si are constructed from a set of training images and are designed so that 〈x, si〉 is large
when x ∈ Ci and small otherwise.10

4. COMPRESSIVE CLASSIFICATION

In this section, we formulate a classification algorithm that uses compressive measurements to
exploit the low-dimensional signal manifold structure that is present in many classification applica-
tions. In some cases we know the manifold structure explicitly, while in others we learn the manifold
structure from training data, which serves as a sampling of points from each of the manifolds. This
structure allows us to design efficient classification systems by reducing the dimension of the data
required to perform the classification.

4.1. Maximum Likelihood Classification

We now consider the same classification problem as in Section 3.1, where each class corresponds
to the presence of a known signal si ∈ R

N in noise, but instead of observing x + ω we observe



y = Φ(x + ω) where Φ ∈ R
M×N , M ≤ N . In this case, the MLC is essentially unchanged. In fact,

when Φ is an orthoprojector and ω is AWGN, the likelihood for each hypothesis Hi simply becomes

p(y|Hi) =
1

(2πσ)
M

2

e−
1

2σ
‖y−Φsi‖

2

2 . (7)

Thus, the MLC still reduces to nearest-neighbor classification among the available hypotheses,
except in this case we compute ‖y − Φsi‖2 (where y ∈ R

M ) for each class rather than ‖y − si‖2

(where y ∈ R
N).

Two remarks are in order. First, the performance of the compressive MLC does not depend
on any structure of the si such as sparsity or compressibility. Second, dimensionality reduction
through a random orthoprojector will, with high probability, reduce the distance between two
arbitrary points by a factor of approximately

√
M/N , while not affecting the variance of additive

white Gaussian noise. Thus, the SNR of the projected signal is reduced compared to that in the
ambient space by a factor of log(

√
M/N). Hence, using the compressive MLC with M ≪ N may

lead to an increase in the number of classification errors at high noise levels, and so M must be
chosen with care.6

4.2. Generalized Maximum Likelihood Classification

We are now ready to describe our GMLC-based framework for compressive classification. Assume
the parameterized, multiple hypothesis setting of Section 3.2, and suppose that we measure y =
Φ(x+ω). Again assuming that Φ is an orthoprojector, the likelihood for each hypothesis Hi simply
becomes

p(y|θ,Hi) =
1

(2πσ)
M

2

e−
1

2σ
‖y−Φfi(θ)‖2

2 , (8)

which in turn reduces the MLE to

θ̂i = arg min
θ∈Θi

‖y − Φfi(θ)‖2
2. (9)

Thus, our classifier again reduces to a “nearest-manifold” classifier; the only significant difference
is that the P classes now correspond to the manifolds ΦMi ⊂ R

M , i = 1, . . . , P .∗

As above, the performance of the GMLC does not depend on any structure of the signals si.
Rather, its performance depends on the stability of the dimensionality reduction of the manifold:
if the distances between the projected points of the manifold and the projected signal are not
preserved, then the estimator performance will suffer. This issue becomes critical during the nearest-
neighbor classification step.

4.3. Stable Embedding of Multiple Smooth Manifolds

Let us now more closely examine the random projection of one or more manifolds from a high-
dimensional ambient space R

N to a lower-dimensional subspace R
M . We have recently shown3 that

this process actually preserves the essential structure of a smooth manifold, provided that a sufficient
number M of random projections are taken (see Theorem 1 below). Just as the CS theory demands
a projection dimension M proportional to the sparsity K, the requisite M to ensure a satisfactory
embedding of a manifold depends on properties of that manifold. The primary dependence is

∗Linear projection by Φ of a manifold M ∈ R
N yields another manifold in ΦM ∈ R

M .



on the dimension K of the manifold, but additional factors such as the volume and curvature of
the manifold play a minor role. After stating the theorem, we continue our discussion of these
properties.

Theorem 1. [3] Let M be a compact K-dimensional submanifold of R
N having condition number

1/τ and volume V . Fix 0 < ǫ < 1 and 0 < ρ < 1. Let Φ be a random orthoprojector from R
N to

R
M with

M = O

(
K log(NV τ−1ǫ−1) log(1/ρ)

ǫ2

)
. (10)

If M ≤ N , then with probability at least 1−ρ the following statement holds: For every pair of points
x1, x2 ∈ M,

(1 − ǫ)

√
M

N
≤

‖Φx1 − Φx2‖2

‖x1 − x2‖2

≤ (1 + ǫ)

√
M

N
.

The condition number 1/τ in Theorem 1 is a measure of both the local curvature of the manifold
and its global self-avoidance. Essentially, τ defines the maximum radius of a sphere that, when
placed tangent to the manifold at any point, intersects the manifold only at that point; smaller τ
leads to a larger condition number, indicating a less regular manifold.3, 11

Theorem 1 states that, for sufficiently large M , all pairwise distances between points on a
manifold are well-preserved under projection to a random M -dimensional subspace. (It follows
also that geodesic distances are well-preserved in addition to the manifold’s dimension, volume,
topology, etc.3) By appropriate considerations of the properties 1/τ and V this theorem can be
extended to account for the simultaneous projection of multiple manifolds.

Corollary 1. Let {Mi}
P
i=1 be compact K-dimensional submanifolds of R

N having condition
numbers 1/τi and volumes Vi, respectively. Fix 0 < ǫ < 1 and 0 < ρ < 1 and let

V =
∑

i

Vi and τ = min

(
min

i
τi, min

i6=j
dist(Mi,Mj)

)
.

Let Φ be a random orthoprojector from R
N to R

M with

M = O

(
K log(NV τ−1ǫ−1) log(1/ρ)

ǫ2

)
. (11)

If M ≤ N , then with probability at least 1−ρ the following statement holds: For every pair of points
x1, x2 ∈ ∪iMi,

(1 − ǫ)

√
M

N
≤

‖Φx1 − Φx2‖2

‖x1 − x2‖2

≤ (1 + ǫ)

√
M

N
.

Corollary 1 ensures not only that distances between pairs of points on each manifold are well-
preserved, but also that the distances between the P manifolds themselves are all well-preserved.
The cost in terms of measurements is extremely modest; assuming similarly conditioned manifolds,
the difference between (11) and (10) is approximately O(K log(P )) additional measurements. In a
classification setting with a large number of possible classes, this sublinear growth in the required
number of measurements is particularly attractive.



Smashed Filter Algorithm

Hypotheses:

Hi: y = Φ(fi(θi) + ω).

Algorithm:

1. For each of the hypotheses H1, . . . ,HP , obtain the maximum likelihood estimate of the pa-
rameter vector

bθi = arg min
θ∈Θi

‖y − Φfi(θ)‖2

2.

If θi parameterizes a manifold Mi observed under AWGN, then bθi is the parameter value for
the closest point on Mi to y.

2. Perform maximum likelihood classification:

C(y) = arg max
i=1,...,P

p(y| bθi,Hi),

In the manifold setting with AWGN, this labels y with the hypothesis Hi for which the distance
from y to the closest point in the manifold Mi is smallest.

Figure 2. Smashed filter algorithm.

Note that here the structure of the signals–namely that they inhabit low-dimensional manifolds
in the high-dimensional ambient space–is critical to the performance of the GMLC. The individual
signals, however, still do not need to have any sparsity or compressiblility properties; rather it is
the manifolds that need to be compressible.

4.4. The Smashed Filter

In order to implement the GMLC described above, we first need to obtain estimates of the parameter
vectors θ̂i from the noisy compressive measurements y under each of the hypotheses, which are
used to classify the signal using the GMLC as described in Figure 2. We consider here some simple
approaches to obtaining these estimates. Recall from Section 3.4 that the matched filter is an
important special case of implementing the ML estimation step of the GMLC. To emphasize its
similarity to the traditional matched filter while also stressing its compressive nature, we dub our
approach the smashed filter.

First, suppose that we know the explicit structure of the manifold for each class, i.e., that we
know the functions fi. For example, each manifold might be parameterized by all possible shifts of
a known 1-D signal or all possible positions of a known object in a 2-D image. In this setting we can
explicitly search over the manifold using various approaches. In some cases we can use the same
approach as the matched filter and simply continuously vary the manifold parameter(s), applying
Φ to the resulting signals, and looking for the minimum distance between the output and the
observed data. In the case where the original manifolds are differentiable, Corollary 1 ensures that
the projected manifolds are also differentiable, and thus we can also use optimization techniques
such as Newton’s method to perform this optimization. In cases where the original manifolds are
not differentiable, it is possible to construct measurement matrices that simultaneously smooth the



(a) Tank (b) School Bus (c) Truck

Figure 3. Models used for classification experiments.

data (at various resolutions) and apply a random projection.12 This is beyond the scope of this
paper but remains an interesting topic for further research.

We can also discretize an explicit search over the manifold using a grid-search procedure that,
while not exhaustive, will yield a close approximation to the MLE. For example, consider the case
where each class consists of a known 1-D signal si(t − θi) with an unknown shift θi. In this case
we can simply try a grid of possible values of θi under each hypothesis assumption. This serves as
a dense sampling of the manifold. Our ML estimate for θi for each class is simply the value that
minimizes ‖y − Φŝi‖2, where ŝi denotes a sampled version of si(t − θ̂i). The classification is then
based on a nearest neighbor test among the points on each manifold selected as the MLE for that
class. A similar approach could be taken in any case where we know the functions fi.

In the case where we do not explicitly know the functions fi for each class, but rather have
training data from each class, the problem simplifies even further. We can simply assume that the
training data points are drawn at random from the class-appropriate manifolds. Since our classifier
ultimately depends on fi(θ̂i), we do not need to know the mapping fi. We can simply estimate

fi(θ̂i) as the nearest-neighbor from each class in the training set. We then proceed exactly as above.

4.5. Advantages of Compressive Classification

In addition to the computational and storage savings afforded by compressive classification, our
proposed method shares many advantages previously shown for CS reconstruction. In particular,
random projections enable universal estimation and classification in the sense that random pro-
jections preserve the structure of any low-dimensional signal class with high probability. In our
context this means that we do not need to know what the classes are or what the classification
algorithm will be prior to acquiring the measurements. Additionally, compressive measurements
are progressive in the sense that larger numbers of projections translate into higher classification
rates due to increased noise tolerance and democratic in that each measurement can be given equal
priority because classification rates depend only on how many measurements are received, not on
the particular subset received.

5. EXPERIMENTAL RESULTS

We now present results from a number of experiments that evaluate the smashed filter in a image
target classification setting. We consider three classes, each for a different vehicle model: a tank, a
school bus, and a truck (see Figure 3). All images are of size 128×128 pixels, hence N = 16384, and
all measurement matrices are binary orthoprojectors obtained from a random number generator.

The first experiment is synthetic and concerns unknown shifts of a known image. In this case,
K = 2 and we know the explicit structure of the three manifolds: each can be constructed by



translating a reference image in the 2-D image plane. The shifted versions of each image, as well
as their corresponding compressive measurements, were obtained synthetically using software. The
first step in implementing the smashed filter is thus to find the ML estimate of the shift for each
class. This can be accomplished by simply calculating the distance between the observed y and
projections of all possible shifts of the image. For simplicity, we assume that the set of possible shifts
is limited by a maximum shift of 16 pixels in any direction. After the shift estimate is obtained for
each class, the GMLC selects the class whose estimate is closest to the observed image.

We performed classification experiments for different numbers of compressive measurements,
varying from M = 2 to 60, and for different levels of additive Gaussian noise, with standard
deviations σ = 0.001, 0.005, 0.01 and 0.02. For each setting, we executed 10000 iterations of the
experiment, where we selected a testing point at random with a different noise realization at each
iteration. The plots of the average and minimum distances between manifolds in Figure 4(a) show
that the distance is proportional roughly to the square root of the number of measurements M .
In noisy measurement settings, a noise level similar to the average distance affects estimation and
classification performance.

The classification rates in Figure 4(b) show a clear dependence between the number of mea-
surements and the classification rate. Furthermore, performance for a given M degrades as the
noise level increases; as expected the classifier becomes unreliable when the noise level becomes
comparable to the minimum distance between the projected manifolds. In Figure 4(c), we see a
similar relationship between the noise level and the error in the parameter estimate. These results
verify that increasing the number of measurements improves the quality of the estimates; and the
performance of the classifier is clearly dependent on the performance of the parameter estimator
for the appropriate class.

The second experiment uses real data from the single-pixel camera described in Section 2 and
concerns unknown rotations of the three targets in the z-axis in R

3. In this case K = 1, and we
assume that we do not know the explicit structure of the three manifolds; hence we use training
data to provide an estimate of the manifold structure. We acquired a training set of compressive
measurements for each vehicle for rotation angles that are multiples of 10◦ (10◦, 20◦, . . . , 360◦). We
first estimated the most likely rotation angle for each class by computing the nearest neighbor from
each class and then performed nearest neighbor classification.

We evaluate the performance of the smashed filter classifier using leave-one-out testing. The
measurements for each rotation/class combination were classified using a smashed filter trained
on all other available data points. We performed classification experiments for different numbers
of compressive measurements, varying from M = 2 to 60. Table 1 provides confusion matrices
for M = 2, 4, and 6. The confusion matrices summarize the distributions for elements belonging
to a given class (one per row: tank, school bus, or truck) being assigned a given class label (one
per column: tank, school bus, or truck). The diagonal elements show the probabilities of correct
classification for each of the classes. The matrices show that performance improves as M increases.
Specifically, for M ≥ 6, the classification rate remains at 100%. Figure 4(d) plots the average
rotation estimate error as a function of the number of measurements, with behavior similar to that
of Figure 4(b).

6. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated that, thanks to the pronounced structure present in many
signal classes, small numbers of nonadaptive compressive measurements can suffice to capture the
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Figure 4. Results for image classification experiments. (a) Minimum and mean distances between projected
manifolds of shifted images; (b) classification rates and (c) average estimation error for varying number of
measurements M and noise levels σ for the image shift experiments; (d) average estimate error for varying
number of measurements M for the object rotation experiments. As M increases, the distances between the
manifolds increase as well, thus increasing the noise tolerance and enabling more accurate estimation and
classification. Thus, the classification and estimation performances improve as σ decreases and M increases
in all cases.

relevant information required for accurate classification. Our work rests on two key facts: (1)
that simple parametric models impose a low-dimensional manifold structure on the signal classes
within the high-dimensional image space, and (2) that the geometric structure of these manifolds
is preserved under their projection to a random lower-dimensional subspace. The number of mea-
surements required for a given classification performance level does not depend on the sparsity
or compressibility of the images but only on the noise level and the structure of the manifolds,
growing linearly in the dimensionality of the manifolds but only logarithmically in the number of
pixels/samples and image classes. Our GMLC-based smashed filter is readily implementable with
CS hardware such as the single-pixel compressive imaging camera and shares many of the attractive



Table 1. Confusion matrices for rotation experiments for tank, school bus, and truck with varying number
of measurements M .

M = 2 M = 4 M ≥ 6
86.1% 0.0% 13.9% 94.4% 0.0% 5.6% 100% 0.0% 0.0%
0.0% 97.2% 2.8% 0.0% 100% 0.0% 0.0% 100% 0.0%
13.9% 0.0% 86.1% 16.7% 0.0% 83.3% 0.0% 0.0% 100%

features of CS in general, including simplicity, universality, robustness, democracy, and scalability,
which should enable it to impact a variety of different applications.

In the future we hope to develop more sophisticated algorithms to exploit the manifold structure
to more efficiently obtain the ML estimates required by the smashed filter. For example, rather
than an exhaustive nearest-neighbor search, which could be computationally prohibitive for a large
training set, a greedy approach might offer similar performance at significant computational savings;
other approaches that exploit the smoothness of the manifolds could also be beneficial.
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