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ABSTRACT

We propose a framework for exploiting dimension-reducing
random projections in detection and classification problems.
Our approach is based on the generalized likelihood ratio test;
in the case of image classification, it exploits the fact thata set
of images of a fixed scene under varying articulation parame-
ters forms a low-dimensional, nonlinear manifold. Exploiting
recent results showing that random projections stably embed
a smooth manifold in a lower-dimensional space, we develop
the multiscale smashed filter as a compressive analog of the
familiar matched filter classifier. In a practical target classi-
fication problem using a single-pixel camera that directly ac-
quires compressive image projections, we achieve high clas-
sification rates using many fewer measurements than the di-
mensionality of the images.

Index Terms— Data Compression, Image Coding, Image
Classification, Object Recognition

1. INTRODUCTION

Compressive sensing (CS) systems acquire and reconstruct
compressible signals from a small number of non-adaptive
linear random measurements by combining the steps of sam-
pling and compression [1, 2]. CS enables the design of new
kinds of compressive imaging systems, including a “single-
pixel” camera with some attractive features, including sim-
plicity, low power consumption, universality, robustness, and
scalability [3]. Since it relies on a single photon detector,
the single-pixel camera can be adapted to image in situations
where conventional CCD and CMOS imagers are blind.

In many data acquisition/processing applications we are
not interested in obtaining a precise reconstruction, but rather
are only interested in making some kind of detection or clas-
sification decision. For instance, in target classification, we
simply wish to identify the class to which an image belongs
out of several possibilities. In this paper, we propose a new
framework forcompressive classificationfor such situations
that bypasses the reconstruction and makes a decision based
solely on random measurements. We pay particular attention
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to generalizing the matched filter to compressive measure-
ments using the generalized likelihood ratio test (GLRT) and
the fact that the set of images of a fixed scene from different
camera positions forms a low-dimensional, nonlinear mani-
fold. Exploiting recent results on the multiscale structure of
image appearance manifolds (IAMs) and random projections
of manifolds [4, 5], we design a multiscale pseudo-random
measurement scheme and a novel classification algorithm—
the multiscale smashed filter—that can be viewed as a gen-
eralization of the classical matched filter to more challeng-
ing manifold settings. In certain situations, the smashed filter
achieves high classification accuracy using many fewer ran-
dom measurements than would be needed to reconstruct the
image under view. This work builds on the preliminary inves-
tigations of the smashed filter in [6] and other algorithms for
compressive classification in [7–9].

This paper is organized as follows. Section 2 provides an
overview of both the theoretical foundation of CS as well as
a brief description of the single-pixel camera. Section 3 de-
velops compressive classification and the smashed filter, and
Section 4 presents preliminary experimental results. Section 5
concludes with a brief discussion of our results and directions
for future work.

2. COMPRESSIVE SENSING

CS builds upon the fact that signals, images, and other data
often contain some type of structure that enables intelligent
representation and processing. As an example, many signals
have asparserepresentation in terms of some basisΨ. We
say that a signalx ∈ R

N is K-sparse if it can be represented
asx = Ψα where the vectorα ∈ R

N has onlyK ≪ N sig-
nificant coefficients. The surprising core result of CS is that
a length-N signal that isK-sparse can be recovered exactly
from a nonadaptive linear projection of the signal onto a ran-
domO(K log(N/K))-dimensional basis [1, 2]. Thus we can
directly acquire the signal in a compressed form using random
measurements.

Specifically, we encodeM = O(K log(N/K)) inner
products of the signal with a set of random vectors. In ma-
trix notation, we measure

y = Φx, (1)

with y anM × 1 column vector and the measurement matrix
Φ an M × N random matrix. SinceM < N , recovery of



Fig. 1. Single-pixel compressive camera block diagram. Incident lightfield
(corresponding to the desired imagex) is reflected off a digital micromirror
device (DMD) array whose mirror orientations are modulatedin the pseudo-
random patternφm supplied by a random number generator. Each different
mirror pattern produces a voltage at the single photodiode that corresponds
to one measurementy(m).

the signalx from the measurementsy is ill-posed in general;
however the additional assumption of signalsparsitymakes
recovery possible and practical [1, 2].

Imaging is a particularly compelling application of CS.
Our single-pixel camera [3] employs a Texas Instruments dig-
ital micromirror device (DMD), which consists of an array of
electrostatically actuated micromirrors. The camera focuses
the desired image on the DMD plane; the light reflecting from
a random subset of the mirrors is then focused onto a single
photodiode, which measures the value of the inner product
between the image and the random binary{0, 1} pattern dis-
played on the DMD, thus yielding a measurementy(m) for
that pattern. By switching betweenM different random pat-
terns, we can collect the entire measurement vectory.

This system directly acquires a reduced set ofM random
projections of anN -pixel imagex without ever acquiring
theN pixel values. Furthermore, the camera isprogressive,
meaning that better quality images can be obtained by tak-
ing more measurements. Other desirable features include the
single detector (potentially enabling imaging at wavelengths
too difficult or expensive to measure using sensor arrays), and
the availability of universal measurement bases (since random
matrices are incoherent with arbitrary sparsity bases).

In many applications, however, image acquisition is per-
formed for purposes other than reconstruction. For example,
in vision and surveillance settings images are processed toex-
tract different kinds of information from the observed scene,
varying from the presence or absence of a target object to a
parametrization of the articulation of objects in view. It is
now known that random CS measurements can also directly
capture the necessary information from the image to perform
such tasks [6–9]. Thus, the single-pixel camera and other CS
acquisition devices can be applied to these problem without
modification. In the next section, we develop a framework
for target classification from compressive imaging measure-
ments.

3. COMPRESSIVE CLASSIFICATION
In this section, we develop a new classification algorithm that
uses compressive multiscale measurements to exploit the low-
dimensional manifold structures inherent in target recognition
applications. We learn this manifold structure from training

data, which correspond to a sampling of points from each
manifold. The manifold structure enables us both to reduce
the dimensionality of the training data through random mea-
surements and to limit the amount of training data required to
perform the classification.

3.1. Generalized Likelihood Ratio Test

We first review standard GLRT classification framework.
ConsiderP possible image classes and define the hypothesis
Hi to be that the observed imagex ∈ R

N belongs to classCi

for i = 1, . . . , P . For each classCi, an elementx ∈ Ci can be
parameterized by a uniqueK-dimensional parameter vector
θi ∈ Θi, i.e.,x = fi(θi) for somefi; an example parame-
ter is the pose of the object in the scene (translation, rotation,
etc.). If the mappingfi is well-behaved, then the collection of
signals{fi(θi) : θi ∈ Θi} forms aK-dimensional manifold
embedded in the ambient image spaceR

N .
First, assume that we take noisy measurementsy = x+ω

of x, giving us the distributionp(y|θi,Hi) for the measured
signaly under hypothesisHi and parametersθi. The GLRT
classifier is given by

C(y) = argmax
i=1,...,P

p(y|θ̂i,Hi), (2)

where
θ̂i = arg max

θ∈Θi

p(y|θ,Hi) (3)

denotes the maximum likelihood estimate (MLE) of the pa-
rametersθi under hypothesisHi. Under an additive white
Gaussian noise (AWGN) model forω, the likelihood for each
hypothesisHi becomes

p(y|θ̂i,Hi) ∝
1

‖y − fi(θ̂i)‖2
2

, (4)

meaning that after estimates for the parameters are obtained
for each class, the GLRT reduces to nearest-neighbor classi-
fication among the available hypotheses.

3.2. Manifold Parameter Estimation

In order to implement the GLRT, we first need to obtain es-
timates of the parameter vectorŝθi from the noisy measure-
mentsy under each of the hypotheses. A natural approach to
this problem is through nonlinear least-squares, in which we
seek the value ofθi that minimizes the objective function

D(θi) = ‖y − fi(θi)‖
2

2. (5)

For differentiableD(θ), we can use Newton’s method to ob-
tain iterative estimates of the parameters as

θ
n
i = θ

n−1

i − [H(θn−1

i )]−1J(θn−1

i ) (6)

for thenth iteration, withJ(θ) = ~∇D(θ) (the gradient) and
H(θ) the Hessian matrix ofD; with a good starting point,



the algorithm converges to the correct estimate. Note that the
classical matched filter is an elegant method for minimizing
(5) on the manifold consisting of all possible shifts of a signal.
In essence, (6) generalizes it to a richer class of manifolds,
while reducing the number of samples from the manifold re-
quired during the estimation process.

A number of challenges remain, however. First, in gen-
eral, implementing the estimator (6) requires complete knowl-
edge of the functionfi or the ability to evaluatefi(θ) for all
possible values ofθ. In some practical settings this may not
be possible, but fortunately a dense sampling of the param-
eter spaceΘi and a nearest neighbor (NN) estimation rule
often yield acceptable performance, albeit with a potentially
high computational cost. Second, the manifolds under con-
sideration may not be differentiable, in which case we cannot
directly apply (6) [4]. Third, it may be possible that random
projections of the data could alter the manifold structure of
our signals. Fortunately, while the last two challenges are
more challenging that the first, we can overcome them using
multiscalemeasurements.

3.3. Multiscale Measurements for Image Appearance
Manifolds

In the case of interest—target classification—the classesCi

are IAMs, with each manifold corresponding to a different
class of targets. The parameter vectorθi denotes the ar-
ticulation parameters for the target, such as rotation, trans-
lation, angle of view, etc. The resulting parametric mani-
folds arenonlinear—since linear combinations of manifold
elements are in general not contained in the manifold—and
non-differentiable—due to sharp edges in the images caused
by occlusions and to sharp features rotating in/out of view.

Previous research [4] has identified a multiscale structure
to such manifolds that can be exploited through regularization
to obtain differentiable manifolds at a nested set of scales.
The regularization is achieved through the use of a nested set
of regularization kernelsG1, G2, . . ., with the kernels of de-
creasing support. Now, instead of minimizing (5) directly us-
ing Newton’s method, we minimize a sequence of objective
functions

Dn(θi) = ‖Gny − Gnfi(θi)‖
2

2, (7)

that use the corresponding regularization kernels.

3.4. Compressive Measurements for Smooth Manifolds

It was recently shown that most of the structure of asmooth
manifold is preserved under a random lower-dimensional pro-
jection [5]. That is, for aK-dimensional manifold embed-
ded inN -dimensional space, with high probability a random
M -dimensional projection is invertible—and thus preserves
the manifold structure—provided thatM > CK log(N) for
some constantC that depends on the smoothness of the man-
ifold. Thus, instead of performing parameter estimation di-
rectly on the signaly = x + ω, we can choose to ob-
serve only a lower dimensional, randomly projected version

y = Φx + ω, whereΦ is anM × N measurement matrix
with independent, randomly distributed entries. Accordingly,
we update the objective function (5) to

DC(θi) = ‖y − Φfi(θi)‖
2

2. (8)

When Gaussian random measurements are used, this is equiv-
alent to employing different colored Gaussian random mea-
surements at each iteration; see [10] for more details. More-
over, the dimensionality reduction affords savings in compu-
tational complexity and storage requirements of the estima-
tion and classification algorithms described earlier.

3.5. The Multiscale Smashed Filter

We are now in a position to overcome the challenges from the
end of Section 3.2. In [6] we introduced thesmashed filter
as a classification algorithm for compressive measurements
of signal classes that are low-dimensional manifolds. The
smashed filter is inspired by the fact that random projections
do not disturb the structure of smooth manifolds, as described
above. However, as we have just observed, in our setting the
manifolds might not be smooth. To address this problem, we
exploit the multiscale structure of IAMs and combine mul-
tiscale measurements with random projections by smoothing
the target class IAMs so that their projections preserve their
geometry.

Themultiscale smashed filteruses a measurement matrix
of the form

Φ =




Φ1G1

...
ΦSGS



 ,

whereΦn is anMn×N matrix with randomly distributed en-
tries andGn is the regularization kernel for thenth scale. The
resulting measurements can be partitioned into measurements
for each of the regularized versions, i.e.,yn = ΦnGnx+ωn,
which are used in sequential iterations of Newton’s method
by employing the corresponding objective functions

DC
n (θi) = ‖yn − ΦnGnfi(θi)‖

2

2. (9)

This classification algorithm employs the compact and mul-
tiscale nature of the target manifolds to estimate the signal
parameters under each class hypothesis, together with the
GLRT/NN classification rule from Section 3.1.

3.6. Hallmarks of Compressive Classification

In addition to the computational and storage savings achieved
by compressive classification, our methods share many of the
advantages of CS reconstruction. In particular, random pro-
jections enableuniversalestimation and classification, in the
sense that random projections preserve the structure of any
low-dimensional signal class with high probability. Addition-
ally, random projections are progressive in the sense that a
larger number of projections translate into higher classifica-
tion rates thanks to increased noise tolerance. Finally, random
projects are scalable, since the number of projections required



(a) Tank (b) School Bus (c) Truck

Fig. 2. Models for the classification experiments.

for accurate classification depends only logarithmically on the
image size and the number of classes [6].

4. EXPERIMENTAL RESULTS

We performed experiments to evaluate the multiscale
smashed filter in a target classification setting using real data
from the single-pixel camera described in Section 2. We de-
fine three classes, each for a different vehicle model: a T-72
tank, a school bus, and a truck. The unknown parameter in
each vehicle class is the rotation angle. The models are shown
in Figure 2. For each of the vehicles, multiscale measure-
ments were taken using five different resolutions – from8×8
to 128×128 pixels – with the same number of measurements
taken at each resolution. Measurements were taken each2◦

of rotation (180 angles total).
The measurements for each rotation/class combination

were classified using a multiscale smashed filter. For each of
the target classes, one of the sampled rotations was chosen at
random as an initial estimate; this selection was repeated mul-
tiple times to overcome local minima in the objective func-
tion. The gradient of the manifoldfi(θi) was estimated using
consecutive points in the manifold sampling, including that
of the current estimate. We then executed Newton’s method
using measurements at different resolutions at each iteration,
proceeding from the coarsest to the finest scale. After the
rotation was estimated under each hypothesis, NN classifica-
tion was performed. We repeated the experiment 10,000 times
for each testing point, with randomly selected starting points
each time, and we varied the number of measurements taken
from 5 to 60. The results are shown in Figure 3 and indicate
that thanks to the low-dimensional structure of the underlying
IAM, very few measurements are necessary to achieve high
classification rates. Additionally, the use of multiple initial
estimates enables the algorithm to overcome issues with lo-
cal minima and achieve lower average error for the rotation
estimates.

5. CONCLUSIONS

We have developed a new framework for compressive classi-
fication based on random measurements that is designed for
signals, images, and other data that lie on low-dimensional
manifolds. The multiscale smashed filter significantly re-
duces the amount of data that must be acquired or stored for
attaining a given classifier performance. Avenues for future
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Fig. 3. Multiscale smashed filter performance results. (Top) Vehicle clas-
sification as a function of number of measurements for different numbers of
initial estimates. (Bottom) Average rotation estimate error as a function of
the number of initial estimates.

research include reducing the sensitivity of the algorithmto
the initial parameter estimate and further testing on real data
from the single-pixel camera and other CS data acquisition
systems.

6. REFERENCES

[1] E. J. Candès and T. Tao, “Near optimal signal recovery from random
projections: Universal encoding strategies?,”IEEE Trans. Info. Theory,
vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[2] D. L. Donoho, “Compressed sensing,”IEEE Trans. Info. Theory, vol.
52, no. 4, pp. 1289–1306, September 2006.

[3] D. Takhar, J. N. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham,
K. K. Kelly, and R. G. Baraniuk, “A new compressive imaging camera
architecture using optical-domain compression,” inProc. IS&T/SPIE
Symposium on Electronic Imaging: Computational Imaging, San Jose,
CA, Jan. 2006, vol. 6065, pp. 43–52.

[4] M. B. Wakin and R. G. Baraniuk, “High-resolution navigation on
non-differentiable image manifolds,” inIEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), Philadelphia, PA, 2005,
vol. 5, pp. V–1073–1076.

[5] R. G. Baraniuk and M. B. Wakin, “Random projections of smooth
manifolds,” 2006, Preprint.

[6] M. A. Davenport, M. F. Duarte, D. Takhar, J. N. Laska, K. K.Kelly,
and R. G. Baraniuk, “The smashed filter for compressive classification
and target recognition,” inProc. IS&T/SPIE Symposium on Electronic
Imaging: Computational Imaging, San Jose, CA, Jan. 2007.

[7] M. F. Duarte, M. A. Davenport, M. B. Wakin, and R. G. Baraniuk,
“Sparse signal detection from incoherent projections,” inIEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), Toulouse,
France, May 2006, vol. III, pp. 305–308.

[8] M. A. Davenport, M. B. Wakin, and R. G. Baraniuk, “Detection and
estimation with compressive measurements,” Tech. Rep. TREE0610,
Rice University ECE Department, 2006.

[9] J. Haupt, R. Castro, R. Nowak, G. Fudge, and A. Yeh, “Compressive
sampling for signal classification,” inProc. 40th Asilomar Conf. Sig-
nals, Systems and Computers, Pacific Grove, CA, Oct. 2006.

[10] Z. Wang, G. R. Arce, and J. L. Paredes, “Colored projections for com-
pressed sensing,” inIEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), Honolulu, HI, 2007.


