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ABSTRACT to generalizing the matched filter to compressive measure-

We propose a framework for exploiting dimension-reducingMents using the generalized likelihood ratio test (GLRTJ an
random projections in detection and classification prolslem the fact that the set of images of a fixed scene from different
Our approach is based on the generalized likelihood rattp te C@Mera positions forms a low-dimensional, nonlinear mani-
in the case ofimage classification, it exploits the facttnget ~ fold. Exploiting recent results on the multiscale struetof

of images of a fixed scene under varying articulation parameMage appearance manifolds (IAMs) and random projections
ters forms a low-dimensional, nonlinear manifold. Exptggt ~ ©f manifolds [4, 5], we design a multiscale pseudo-random
recent results showing that random projections stably embenéasurement scheme and a novel classification algorithm—
a smooth manifold in a lower-dimensional space, we develof!® multiscale smashed filterthat can be viewed as a gen-
the multiscale smashed filter as a compressive analog of tifdalization of the classical matched filter to more chalieng
familiar matched filter classifier. In a practical targetssia ~ Nd manifold settings. In certain situations, the smasHes fi
fication problem using a single-pixel camera that directly a achieves high classification accuracy using many fewer ran-
quires compressive image projections, we achieve high C|a§om measurements than would be needed to reconstruct the

sification rates using many fewer measurements than the d[age under view. This work builds on the preliminary inves-
mensionality of the images. tigations of the smashed filter in [6] and other algorithms fo

. , compressive classification in [7-9].
Index Terms— Data Compression, Image Coding, Image : : . . .
e : I This paper is organized as follows. Section 2 provides an
Classification, Object Recognition : . ;
overview of both the theoretical foundation of CS as well as
1. INTRODUCTION a brief description of the single-pixel camera. Section 3 de

&Iops compressive classification and the smashed filtdr, an

Compressive sensing (CS) systems acquire and reconstr% tion 4 : imi . al Its. iGebt
compressible signals from a small number of non-adaptiv ection 2 presents prefiminary experimentai resuts.|

linear random measurements by combining the steps of SaT(;)ncludes with a brief discussion of our results and dioesti

pling and compression [1,2]. CS enables the design of ne rfuture work.

kinds of compressive imaging systems, including a “single- 2 COMPRESSIVE SENSING
pixel” camera with some attractive features, including-sim
plicity, low power consumption, universality, robustnesssd

scalability [3]. Since it relies on a single photon detector

the single-pixel camera can be adapted to image in situatio o )
. : . ave asparserepresentation in terms of some badis We
where conventional CCD and CMOS imagers are blind. . N o
ay that a signat € R" is K-sparse if it can be represented

In many data acquisition/processing applications we arg )
y d b g app asx = Ua where the vectorr € RN has onlyK < N sig-

not interested in obtaining a precise reconstruction, dttar o . . :
gap nificant coefficients. The surprising core result of CS ig tha

are only interested in making some kind of detection or clas- . .
e o . . e a length#V signal that isK -sparse can be recovered exactly
sification decision. For instance, in target classificatiwa

. . . . . : from a nonadaptive linear projection of the signal onto a ran
simply wish to identify the class to which an image belongsdomO(K log(N/K))-dimensional basis [1, 2]. Thus we can

out of several possibilities. In this paper, we propose a neV&irectl acquire the signalin a compressed form using remdo
framework forcompressive classificatidior such situations asa/rerr?ents 9 P 9

that bypasses the reconstruction and makes a decision baégSSpecifically, we encoded = O(K log(N/K)) inner

solely on random measurements. We pay patrticular attention . )
y Payp products of the signal with a set of random vectors. In ma-
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{duarte, md, laska, kaka, kkelly, rich@rice.edu. ® an M x N random matrix. Sincé/ < N, recovery of

CS huilds upon the fact that signals, images, and other data
often contain some type of structure that enables inteitige
representation and processing. As an example, many signals




Scene data, which correspond to a sampling of points from each

Photodiode o manifold. 'I_'he manifold structure enables us both to reduce

[ Processing |—>mformation  the dimensionality of the training data through random mea-
surements and to limit the amount of training data requioed t
perform the classification.

Bitstream

i = 3.1. Generalized Likelihood Ratio Test

Fig. 1. Single-pixel compressive camera block diagram. Incidentfield Ve ﬁ_rSt reVieW_ Sta':‘dard GLRT ClaSSiﬁca_-tion framework._
(corresponding to the desired imagpis reflected off a digital micromirror ~ ConsiderP possible image classes and define the hypothesis

device (DMD) array whose mirror orientations are modulatetthe pseudo- H, to be that the observed im agec RN belongs to clas€;
random patter,, supplied by a random number generator. Each cliﬂ‘erentfor .

mirror pattern produces a voltage at the single photodibee dorresponds i=1,. T P. For ea(_:h Clas_éi’ an glemenk € C; can be
to one measurementm). parameterized by a uniqu€-dimensional parameter vector

0; € 0,,i.e.,x = fi(6;) for somef;; an example parame-
ter is the pose of the object in the scene (translation,iootat
etc.). If the mapping; is well-behaved, then the collection of
signals{ f;(0;) : 9, € ©,} forms aK-dimensional manifold
embedded in the ambient image sp&2e.

First, assume that we take noisy measuremgntsx +w

the signalx from the measuremengsis ill-posed in general;
however the additional assumption of sigsphrsitymakes
recovery possible and practical [1, 2].

Imaging is a particularly compelling application of CS.
Our single-pixel camera [3] employs a Texas Instruments dig
ital micromirror device (DMD), which consists of an array of of x, giving us the distribution(y |6, H; ) for the measured

electrostatically actuated micromirrors. The camera $esu signaly under hypothesi(; and parameter@;. The GLRT
the desired image on the DMD plane; the light reflecting fromclassifier is given by ’ v

a random subset of the mirrors is then focused onto a single

photodiode, \_/vhich measures the valqe of the inner p.roduct C(y) = argmax p(y@’ H,), )
between the image and the random binfdyl} pattern dis- i=1,...,P

played on the DMD, thus yielding a measuremgfi) for

that pattern. By switching betwee! different random pat-  Where .

terns, we can collect the entire measurement vector 0; = ar(;gergfx p(y|6,Hi) 3)

This system directly acquires a reduced se¥bfandom . o .
projections of an-pixel imagex without ever acquiring denotes the maximum likelihood estimate (MLE) of the pa-

the N pixel values. Furthermore, the cameraisgressive rametersd; under hypothesig{;. Under an additive white

meaning that better quality images can be obtained by talg-aussian_ noise (AWGN) model far, the likelihood for each
ing more measurements. Other desirable features inclede tRYPOthesist; becomes

single detector (potentially enabling imaging at wavetasg R 1

too difficult or expensive to measure using sensor arraysl), a p(y]0i, Hi) o v 702 (4)

the availability of universal measurement bases (sincgaamn ly = fi(8:)ll2

matrices are incoherent with arbitrary sparsity bases). meaning that after estimates for the parameters are obltaine

In many applications, however, image acquisition is perfor each class, the GLRT reduces to nearest-neighbor classi
formed for purposes other than reconstruction. For examplgication among the available hypotheses.

in vision and surveillance settings images are processedto
tract different kinds of information from the observed seen 3.2. Manifold Parameter Estimation

varying from the presence or absence of a target object 108 order to implement the GLRT, we first need to obtain es-
parametrization of the articulation of objects in view. gt i imates of the parameter vectd®s from the noisy measure-

now known that randor_n CS measurements can also direct entsy under each of the hypotheses. A natural approach to
capture the necessary information from the image to perforrgel

) : is problem is through nonlinear least-squares, in whieh w
such.ta_\s_ks [6_9]' Thus, the Slng]e-plxel camera and oth.er C&ek the value af; that minimizes the objective function
acquisition devices can be applied to these problem without

modification. In the next section, we develop a framework D(6;) = |ly — fi(6:)]13. (5)
for target classification from compressive imaging measure
ments. For differentiableD(0), we can use Newton’s method to ob-

3. COMPRESSIVE CLASSIFICATION tain iterative estimates of the parameters as

In this section, we develop a new classification algorithat th o' =0 —[H(O ] tIer (6)
uses compressive multiscale measurements to exploitihe lo

dimensional manifold structures inherentin targetredtimm  for then'™ iteration, withJ (8) = V.D(8) (the gradient) and
applications. We learn this manifold structure from tragni H(0) the Hessian matrix oD; with a good starting point,



the algorithm converges to the correct estimate. Note lieatt y = &x + w, where® is an M x N measurement matrix

classical matched filter is an elegant method for minimizingwith independent, randomly distributed entries. Accogtiim

(5) on the manifold consisting of all possible shifts of asiy  we update the objective function (5) to

In essence, (6) generalizes it to a richer class of manifolds

while reducing the number of samples from the manifold re- DY(6:) = lly — @ £:(6,)l3- )

guired during the estimation process. When Gaussian random measurements are used, this is equiv-
A number of challenges remain, however. First, in gen-alent to employing different colored Gaussian random mea-

eral, implementing the estimator (6) requires completetno surements at each iteration; see [10] for more details. More

edge of the functiorf; or the ability to evaluatg; (@) for all ~ over, the dimensionality reduction affords savings in camp

possible values of. In some practical settings this may not tational complexity and storage requirements of the estima

be possible, but fortunately a dense sampling of the parantion and classification algorithms described earlier.

eter spaced,; and a nearest neighbor (NN) estimation rule ) )

often yield acceptable performance, albeit with a potéigtia 5> 1€ Multiscale Smashed Filter

high computational cost. Second, the manifolds under core are now in a position to overcome the challenges from the

sideration may not be differentiable, in which case we canncend of Section 3.2. In [6] we introduced tenashed filter

directly apply (6) [4]. Third, it may be possible that randomas a classification algorithm for compressive measurements

projections of the data could alter the manifold structure oof signal classes that are low-dimensional manifolds. The

our signals. Fortunately, while the last two challenges arsmashed filter is inspired by the fact that random projestion

more challenging that the first, we can overcome them usingdo not disturb the structure of smooth manifolds, as desdrib

multiscalemeasurements. above. However, as we have just observed, in our setting the

) manifolds might not be smooth. To address this problem, we

3.3. Multiscale Measurements for Image Appearance eypjojt the multiscale structure of IAMs and combine mul-

Manifolds tiscale measurements with random projections by smoothing

In the case of interest—target classification—the clagses the target class IAMs so that their projections preservi the

are IAMs, with each manifold corresponding to a differentgeometry.

class of targets. The parameter vecfqrdenotes the ar- Themultiscale smashed filterses a measurement matrix

ticulation parameters for the target, such as rotatiomstra of the form

) . ) ) . .G
lation, angle of view, etc. The resulting parametric mani- 1=
folds arenonlinear—since linear combinations of manifold = : )
elements are in general not contained in the manifold—and dsGg

non-differentiable—due to sharp edges in the images CaUSG‘JvheretI’n is anM,, x N matrix with randomly distributed en-
by occlusions and to sharp features rotating in/out of view. ries and?,, is the regularization kernel for the" scale. The

Previous research [4] has identified a multiscale structurgssylting measurements can be partitioned into measutsmen
to such manifolds that can be exploited through regulddmat o1 each of the regularized versions, ig, = ®,GnX + wn,

to obtain differentiable manifolds at a nested set of scalegyhich are used in sequential iterations of Newton’s method
The regularization is achieved through the use of a nested sgy employing the corresponding objective functions
of regularization kernel&:|, G, . . ., with the kernels of de-

creasing support. Now, instead of minimizing (5) directby u DS (0:) = lyn — ®nGnfi(6:)]l5- 9)
ing Newton's method, we minimize a sequence of ObJeCtIVel’his classification algorithm employs the compact and mul-

functions 0.) — 012 2 tiscale nature of the target manifolds to estimate the $igna
Dn(6:) = [|Gny — Gnfi(0i)]2, @ parameters under each class hypothesis, together with the
that use the corresponding regularization kernels. GLRT/NN classification rule from Section 3.1.

3.4. Compressive Measurements for Smooth Manifolds  3.6. Hallmarks of Compressive Classification

It was recently shown that most of the structure aihaooth  In addition to the computational and storage savings aekiev
manifold is preserved under a random lower-dimensional praby compressive classification, our methods share many of the
jection [5]. That is, for aK-dimensional manifold embed- advantages of CS reconstruction. In particular, random pro
ded in N-dimensional space, with high probability a randomjections enableniversalestimation and classification, in the
M-dimensional projection is invertible—and thus preservesense that random projections preserve the structure of any
the manifold structure—provided that > C K log(N) for  low-dimensional signal class with high probability. Addit-
some constan® that depends on the smoothness of the manally, random projections are progressive in the sense that a
ifold. Thus, instead of performing parameter estimation dilarger number of projections translate into higher clasaifi
rectly on the signaly = x 4+ w, we can choose to ob- tion ratesthanks to increased noise tolerance. Finaligom
serve only a lower dimensional, randomly projected versiomprojects are scalable, since the number of projectionsnedju
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Fig. 2. Models for the classification experiments.
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4. EXPERIMENTAL RESULTS

We performed experiments to evaluate the multiscalé:ig- 3. Multiscale smashed filter performance results. (Top) Mehitas-

hed filter | ¢ tcl ificati ti . & d sification as a function of number of measurements for dffenumbers of
Smashe _' erin a arget classl |ca.|on S_e Ing 95'”9 e initial estimates. (Bottom) Average rotation estimateoeas a function of
from the single-pixel camera described in Section 2. We deéthe number of initial estimates.

fine three classes, each for a different vehicle model: a T-7

2 . . o .
tank, a school bus, and a truck. The unknown parameter iF?search include reducing the sensitivity of the algoritom

each vehicle class is the rotation angle. The models arershof'€ initial parameter estimate and further testing on raé d
in Figure 2. For each of the vehicles, multiscale measurg/®M the single-pixel camera and other CS data acquisition

ments were taken using five different resolutions — floms ~ SYStems.
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