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Abstract

We study the compressed sensing (CS) signal estimation problem where an input signal is measured via a linear

matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the input

signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider

universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with

the signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a maximum a

posteriori (MAP) estimation framework that leverages universal priors to match the complexity of the source. Our

framework can also be applied to general linear inverse problems where more measurements than in CS might be

needed. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation using a

Markov chain Monte Carlo implementation, which is computationally challenging. We incorporate some techniques

to accelerate the algorithm while providing comparable and in many cases better reconstruction quality than existing

algorithms. Experimental results show the promise of universality in CS, particularly for low-complexity sources that

do not exhibit standard sparsity or compressibility.

Index Terms

Compressed sensing, MAP estimation, Markov chain Monte Carlo, universal algorithms.

I. INTRODUCTION

Since many systems in science and engineering are approximately linear, linear inverse problems have attracted

great attention in the signal processing community. An input signal x ∈ RN is recorded via a linear operator under

This paper was presented in part at the IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, June 2014 [1], the Allerton

Conference on Communications, Control, and Computing, Monticello, IL, September 2011 [2], and the Workshop on Information Theoretic

Methods in Science and Engineering, Helsinki, Finland, Aug. 2011 [3].

J. Zhu and D. Baron were partially supported by the National Science Foundation under Grant CCF-1217749 and the U.S. Army Research

Office under Grant W911NF-04-D-0003. M. F. Duarte was partially supported by NSF Supplemental Funding DMS-0439872 to UCLA-IPAM,

PI R. Caflisch.

J. Zhu and D. Baron are with the Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695.

E-mail: {jzhu9,barondror}@ncsu.edu

M. F. Duarte is with the Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003. E-mail:

mduarte@ecs.umass.edu



2

additive noise:

y = Φx+ z, (1)

where Φ is an M × N matrix and z ∈ RM denotes the noise. The goal is to estimate x from the measurements

y given knowledge of Φ and a model for the noise z. When M � N , the setup is known as compressed sensing

(CS) and the estimation problem is commonly referred to as recovery or reconstruction; by posing a sparsity or

compressibility requirement on the signal and using this requirement as a prior during recovery, it is indeed possible

to accurately estimate x from y [4, 5]. On the other hand, we might need more measurements than the signal length

when the signal is dense or the noise is substantial.

Wu and Verdú [6] have shown that independent and identically distributed (i.i.d.) Gaussian sensing matrices

achieve the same phase-transition threshold as optimal nonlinear encoding, for any discrete continuous mixture.

Hence, in CS the acquisition can be designed independently of the particular signal prior through the use of

randomized Gaussian matrices Φ. Nevertheless, the majority of (if not all) existing recovery algorithms require

knowledge of the sparsity structure of x, i.e., the choice of a sparsifying transform W that renders a sparse

coefficient vector θ = W−1x for the signal.

The large majority of recovery algorithms pose a sparsity prior on the signal x, e.g., [4, 5, 7]. A second, separate

class of Bayesian CS recovery algorithms poses a probabilistic prior for the coefficients of x in a known transform

domain [8–12]. Given a probabilistic model, some related message passing approaches learn the parameters of the

signal model and achieve the minimum mean squared error (MMSE) in some settings; examples include EM-GM-

AMP-MOS [13], turboGAMP [14], and AMP-MixD [15]. As a third alternative, complexity-penalized least square

methods [16–20] can use arbitrary prior information on the signal model and provide analytical guarantees, but are

only computationally efficient for specific signal models, such as the independent-entry Laplacian model [18]. For

example, Donoho et al. [17] relies on Kolmogorov complexity, which cannot be computed [21, 22]. As a fourth

alternative, there exist algorithms that can formulate dictionaries that yield sparse representations for the signals of

interest when a large amount of training data is available [23–25]. When the signal is non-i.i.d., existing algorithms

require either prior knowledge of the probabilistic model [14] or the use of training data [26].

In certain cases, one might not be certain about the structure or statistics of the source prior to recovery.

Uncertainty about such structure may result in a sub-optimal choice of the sparsifying transform W , yielding

a coefficient vector θ that requires more measurements to achieve reasonable estimation quality; uncertainty about

the statistics of the source will make it difficult to select a prior or model for Bayesian algorithms. Thus, it would be

desirable to formulate algorithms to estimate x that are agnostic to the particular statistics of the signal. Therefore,

we shift our focus from the standard sparsity or compressibility priors to universal priors [27, 28]. Such concepts

have been previously leveraged in the Kolmogorov sampler universal denoising algorithm [29], which minimizes

Kolmogorov complexity [2, 3, 22, 30–34]. Related approaches based on minimum description length (MDL) [35–37]

minimize the complexity of the estimated signal with respect to some class of parametric sources.

Unfortunately, MDL can provide a suitable algorithmic recovery framework primarily for parametric sources [38].

Alternative approaches for non-parametric sources based on Kolmogorov complexity are not computable in prac-
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tice [21, 22]. To address this computational problem, we confine our attention to stationary ergodic sources and

develop an algorithmic framework for universal signal estimation in CS systems, which can be applied to general

linear inverse problems where more measurements might be needed. Our framework leverages the fact that for sta-

tionary ergodic sources, both the per-symbol empirical entropy and Kolmogorov complexity converge asymptotically

almost surely to the entropy rate of the source [21]. We aim to minimize the empirical entropy; our minimization

is regularized by introducing a log likelihood for the noise model, which is equivalent to the standard least squares

under additive white Gaussian noise. Other noise distributions are readily supported.

We make several contributions toward our universal CS framework. First, we apply a specific quantization grid

to a maximum a posteriori (MAP) estimator driven by a universal prior, providing a finite-computation universal

estimation scheme; our scheme can also be applied to general linear inverse problems where more measurements

might be needed. Second, we propose a recovery algorithm based on Markov chain Monte Carlo (MCMC) [39]

to approximate this estimation procedure. Third, we prove that for a sufficiently large number of iterations the

output of our MCMC recovery algorithm converges to the correct MAP estimate. Fourth, we identify computational

bottlenecks in the implementation of our MCMC estimator and show approaches to reduce their complexity. Fifth,

we develop an adaptive quantization scheme that tailors a set of reproduction levels to minimize the quantization

error within the MCMC iterations and that provides an accelerated implementation. Sixth, we propose a framework

that adaptively adjusts the cardinality (or size for short) of the adaptive quantizer to match the complexity of the

input signal, in order to further reduce the quantization error and computation. We note in passing that averaging

over the outputs of different runs of the same signal with the same measurements will yield lower mean squared

error (MSE) for our proposed algorithm.

To showcase the potential of our universal estimation approach, Fig. 1 illustrates recovery results from Gaus-

sian measurement matrices for a four-state Markov source of length N = 10000 that generates the pattern

+1,+1,−1,−1,+1,+1,−1,−1 . . . with 3% errors in state transitions, resulting in the signal switching from

−1 to +1 or vice versa either too early or too late (see Section VI for details on the simulation setup). Note

that the reconstruction algorithm does not know that this source is a binary source. While it is well known

that sparsity-promoting recovery algorithms [7, 14, 40] can recover sparse sources from linear measurements, the

aforementioned switching source is not sparse in conventional sparsifying bases (e.g., Fourier, wavelet, and discrete

cosine transforms), rendering such sparsifying transforms not applicable. Signals generated by this Markov source

can be sparsified using an averaging analysis matrix [41] whose diagonal and first three lower sub-diagonals are

filled with +1, and all other entries are 0; this transform yields 6% non-zeros in the sparse coefficient vector.

However, even if this matrix is known a priori, existing algorithms based on analysis sparsity [41] do not perform

satisfactorily, yielding mean signal-to-distortion ratios below 5 dB (cf. Section VI). In contrast, our size- and level-

adaptive MCMC (SLA-MCMC, cf. Section V) algorithm estimates this source with high fidelity when a moderate

number of measurements M are available. We provide more experimental results in Section VI to show that the

performance of MCMC is comparable to and in many cases better than existing algorithms.

This paper is organized as follows. Section II provides background content. Section III overviews MAP estimation,

quantization, and introduces universal MAP estimation. Section IV formulates an initial MCMC algorithm for
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Fig. 1. SLA-MCMC estimation results for a four-state Markov switching source as a function of the number of Gaussian random
measurements M for different signal-to-noise ratio (SNR) values (N = 10000). Existing CS algorithms fail at reconstructing this
signal, because it is not sparse.

universal MAP estimation, Section V describes several improvements to this initial algorithm, and Section VI

presents experimental results. We conclude in Section VII. The proof of our main theoretical result appears in the

appendix.

II. BACKGROUND AND RELATED WORK

A. Compressed sensing

Consider the noisy measurement setup via a linear operator (1). The input signal x ∈ RN is generated by

a stationary ergodic source X , and must be estimated from y and Φ. The distribution fX that generates x is

unknown. The matrix Φ ∈ RM×N has i.i.d. Gaussian entries, Φ(m,n) ∼ N (0, 1
M ).1 These moments ensure that

the columns of the matrix have unit norm on average. For concrete analysis, we assume that the noise z ∈ RM is

i.i.d. Gaussian, with mean zero and known2 variance σ2
Z for simplicity.

We focus on the setting where M,N →∞ and the aspect ratio is positive:

R , lim
N→∞

M

N
> 0. (2)

Similar settings have been discussed in the literature [42, 43]. When M � N , this setup is known as CS; otherwise,

it is a general linear inverse problem setting. Since x is generated by an unknown source, we must search for an

estimation mechanism that is agnostic to the specific distribution fX .

B. Related work

For a scalar channel with a discrete-valued signal x, e.g., Φ is an identity matrix and y = x+z, Donoho proposed

the Kolmogorov sampler (KS) for denoising [29],

xKS , arg min
w
K(w) s.t. ‖w − y‖2 < τ, (3)

1In contrast to our analytical and numerical results, the algorithm presented in Section IV is not dependent on a particular choice for the

matrix Φ.
2We assume that the noise variance is known or can be estimated [8, 15].
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where K(x) denotes the Kolmogorov complexity of x, defined as the length of the shortest input to a Turing

machine [44] that generates the output x and then halts,3 and τ = Nσ2
Z controls for the presence of noise. It

can be shown that K(x) asymptotically captures the statistics of the stationary ergodic source X , and the per-

symbol complexity achieves the entropy rate H , H(X), i.e., limN→∞
1
NK(x) = H almost surely [21, p. 154,

Theorem 7.3.1]. Noting that universal lossless compression algorithms [27, 28] achieve the entropy rate for any

discrete-valued finite state machine source X , we see that these algorithms achieve the per-symbol Kolmogorov

complexity almost surely.

Donoho et al. expanded KS to the linear CS measurement setting y = Φx but did not consider measurement

noise [17]. Recent papers by Jalali and coauthors [33, 34], which appeared simultaneously with our work [2, 3],

provide an analysis of a modified KS suitable for measurements corrupted by noise of bounded magnitude. Inspired

by Donoho et al. [17], we estimate x from noisy measurements y using the empirical entropy as a proxy for the

Kolmogorov complexity (cf. Section IV-A).

Separate notions of complexity-penalized least squares have also been shown to be well suited for denoising and

CS recovery [16–20, 35–37]. For example, minimum description length (MDL) [20, 35–37] provides a framework

composed of classes of models for which the signal complexity can be defined sharply. In general, complexity-

penalized least square approaches can yield MDL-flavored CS recovery algorithms that are adaptive to parametric

classes of sources [16–19]. An alternative universal denoising approach computes the universal conditional expec-

tation of the signal [3, 15].

III. UNIVERSAL MAP ESTIMATION AND DISCRETIZATION

This section briefly reviews MAP estimation and then applies it over a quantization grid, where a universal prior

is used for the signal. Additionally, we provide a conjecture for the MSE achieved by our universal MAP scheme.

A. Discrete MAP estimation

In this subsection, we assume for exposition purposes that we know the signal statistics fX . Given the measure-

ments y, the MAP estimator for x has the form

xMAP , arg max
w

fX(w)fY |X(y|w). (4)

Because z is i.i.d. Gaussian with mean zero and known variance σ2
Z , fY |X(y|w) = c1e

−c2‖y−Φw‖2 , where c1 =

(2πσ2
Z)−M/2 and c2 = 1

2σ2
Z

are constants, and ‖ · ‖ denotes the Euclidean norm.4 Plugging into (4) and taking

log likelihoods, we obtain xMAP = arg min
w

ΨX(w), where ΨX(·) denotes the objective function (risk) ΨX(w) ,

− ln(fX(w)) + c2‖y − Φw‖2; our ideal risk would be ΨX(xMAP ).

3For real-valued x, Kolmogorov complexity (KC) can be approximated using a fine quantizer. Note that the algorithm developed in this paper

uses a coarse quantizer and does not rely on KC due to the absence of a feasible method for its computation [21, 22] (cf. Section V).
4Other noise distributions are readily supported, e.g., for i.i.d. Laplacian noise, we need to change the `2 norm to an `1 norm and adjust c1

and c2 accordingly.
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Instead of performing continuous-valued MAP estimation, we optimize for the MAP in the discretized domain

RN , with R being defined as follows. Adapting the approach of Baron and Weissman [45], we define the set of

data-independent reproduction levels for quantizing x as

R ,

{
. . . ,− 1

γ
, 0,

1

γ
, . . .

}
, (5)

where γ = dln(N)e. As N increases, R will quantize x to a greater resolution. These reproduction levels simplify

the estimation problem from continuous to discrete.

Having discussed our reproduction levels in the set R, we provide a technical condition on boundedness of the

signal.

Condition 1: We require that the probability density fX has bounded support, i.e., there exists Λ = [xmin, xmax]

such that fX(x) = 0 for x /∈ ΛN .

A limitation of the data-independent reproduction level set (5) is that R has infinite cardinality (or size for short).

Thanks to Condition 1, for each value of γ there exists a constant c3 > 0 such that a finite set of reproduction

levels

RF ,

{
−c3γ

2

γ
,−c3γ

2 − 1

γ
, . . . ,

c3γ
2

γ

}
(6)

will quantize the range of values Λ to the same accuracy as that of (5). We call RF the reproduction alphabet, and

each element in it a (reproduction) level. This finite quantizer reduces the complexity of the estimation problem

from infinite to combinatorial. In fact, xi ∈ [xmin, xmax] under Condition 1. Therefore, for all c3 > 0 and sufficiently

large N , this set of levels will cover the range [xmin, xmax]. The resulting reduction in complexity is due to the

structure in RF and independent of the particular statistics of the source X .

Now that we have set up a quantization grid (RF )N for x, we convert the distribution fX to a probability mass

function (PMF) PX over (RF )N . Let fRF ,
∑

w∈(RF )N

fX(w), and define the PMF PX(·) as PX(w) ,
fX(w)

fRF
.

Then xMAP (RF ) , arg min
w∈(RF )N

(
− ln(PX(w)) + c2‖y − Φw‖2

)
gives the MAP estimate of x over (RF )N . As

N increases, PX will approximate fX more closely under (6).

B. Universal MAP estimation

We now describe a universal estimator for CS over a quantized grid. Consider a prior PU that might involve Kol-

mogorov complexity [30–32], e.g., PU (w) = 2−K(w), or MDL complexity with respect to some class of parametric

sources [35–37]. We call PU a universal prior if it has the fortuitous property that for every stationary ergodic

source X and fixed ε > 0, there exists some minimum N0(X, ε) such that − ln(PU (w))/N < − ln(PX(w))/N + ε

for all w ∈ (RF )N and N > N0(X, ε) [27, 28]. We optimize over an objective function that incorporates PU and

the presence of additive white Gaussian noise in the measurements:

ΨU (w) , − ln(PU (w)) + c2‖y − Φw‖2, (7)

resulting in5 xUMAP , arg min
w∈(RF )N

ΨU (w). Our universal MAP estimator does not require M � N , and xUMAP

can be used in general linear inverse problems.

5This formulation of xU
MAP corresponds to a Lagrangian relaxation of the approach studied in [33, 34].
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C. Conjectured MSE performance

Donoho [29] showed for the scalar channel y = x+ z that: (i) the Kolmogorov sampler xKS (3) is drawn from

the posterior distribution PX|Y (x|y); and (ii) the MSE of this estimate EX,Z,Φ[‖y − xKS‖2] is no greater than

twice the MMSE. Based on this result, which requires a large reproduction alphabet, we now present a conjecture

on the quality of the estimation xUMAP . Our conjecture is based on observing that xUMAP also samples from the

posterior distribution; some experimental evidence to assess this conjecture is presented in Figs. 3 and 5.

Conjecture 1: Assume that Φ ∈ RM×N is an i.i.d. Gaussian measurement matrix where each entry has mean

zero and variance 1/M . Suppose that Condition 1 holds, the aspect ratio R > 0 in (2), and the noise z ∈ RM is

i.i.d. zero-mean Gaussian with finite variance. Then for all ε > 0, the mean squared error of the universal MAP

estimator xUMAP satisfies

EX,Z,Φ
[
‖x− xUMAP ‖2

]
N

<
2EX,Z,Φ

[
‖x− EX [x|y,Φ]‖2

]
N

+ ε

for sufficiently large N .

IV. FIXED REPRODUCTION ALPHABET ALGORITHM

Although the results of the previous section are theoretically appealing, a brute force optimization of xUMAP

is computationally intractable. Instead, we propose an algorithmic approach based on MCMC methods [39]. Our

approach is reminiscent of the framework for lossy data compression [45–48].

A. Universal compressor

We propose a universal lossless compression formulation following the conventions of Weissman and coau-

thors [45–47]. We refer to the estimate as w in our algorithm. Our goal is to characterize − ln(PU (w)), cf. (7).

Although we are inspired by the Kolmogorov sampler approach [29], KC cannot be computed [21, 22], and we

instead use empirical entropy. For stationary ergodic sources, the empirical entropy converges to the per-symbol

entropy rate almost surely [21].

To define the empirical entropy, we first define the empirical symbol counts:

nq(w,α)[β] , |{i ∈ [q + 1, N ] : wi−1
i−q = α,wi = β}|, (8)

where q is the context depth [28, 49], β ∈ RF , α ∈ (RF )q , wi is the ith symbol of w, and wji is the string

comprising symbols i through j within w. We now define the order q conditional empirical probability for the

context α as

Pq(w,α)[β] ,
nq(w,α)[β]∑

β′∈RF nq(w,α)[β′]
, (9)

and the order q conditional empirical entropy,

Hq(w) , − 1

N

∑
α∈(RF )q,β∈RF

nq(w,α)[β] log2 (Pq(w,α)[β]) , (10)

where the sum is only over non-zero counts and probabilities.
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Allowing the context depth q , qN = o(log(N)) to grow slowly with N , various universal compression

algorithms can achieve the empirical entropy Hq(·) asymptotically [27, 28, 49]. On the other hand, no compressor

can outperform the entropy rate. Additionally, for large N , the empirical symbol counts with context depth q provide

a sufficiently precise characterization of the source statistics. Therefore, Hq provides a concise approximation to

the per-symbol coding length of a universal compressor.

B. Markov chain Monte Carlo

Having approximated the coding length, we now describe how to optimize our objective function. We define the

energy ΨHq (w) in an analogous manner to ΨU (w) (7), using Hq(w) as our universal coding length:

ΨHq (w) , NHq(w) + c4‖y − Φw‖2, (11)

where c4 = c2 log2(e). The minimization of this energy is analogous to minimizing ΨU (w).

Ideally, our goal is to compute the globally minimum energy solution xHqMAP , arg min
w∈(RF )N

ΨHq (w). We use a

stochastic MCMC relaxation [39] to achieve the globally minimum solution in the limit of infinite computation. To

assist the reader in appreciating how MCMC is used to compute xHqMAP , we include pseudocode for our approach

in Algorithm 1. The algorithm, called basic MCMC (B-MCMC), will be used as a building block for our latter

Algorithms 2 and 3 in Section V. The initial estimate w is obtained by quantizing the initial point x∗ ∈ RN

to (RF )N . The initial point x∗ could be the output of any signal reconstruction algorithm, and because x∗ is a

preliminary estimate of the signal that does not require high fidelity, we let x∗ = ΦT y for simplicity, where (·)T

denotes transpose. We refer to the processing of a single entry of w as an iteration and group the processing of all

entries of w, randomly permuted, into super-iterations.

The Boltzmann PMF is defined as

Ps(w) ,
1

ζs
exp(−sΨHq (w)), (12)

where s > 0 is inversely related to the temperature in simulated annealing and ζs is a normalization constant.

MCMC samples from the Boltzmann PMF (12) using a Gibbs sampler: in each iteration, a single element wn

is generated while the rest of w, w\n , {wi : n 6= i}, remains unchanged. We denote by wn−1
1 βwNn+1 the

concatenation of the initial portion of the output vector wn−1
1 , the symbol β ∈ RF , and the latter portion of the

output wNn+1. The Gibbs sampler updates wn by resampling from the PMF:

Ps(wn = a|w\n) =
exp

(
−sΨHq (wn−1

1 awNn+1)
)∑

b∈RF exp
(
−sΨHq (wn−1

1 bwNn+1)
)

=
1∑

b∈RF exp (−s [N∆Hq(w, n, b, a) + c4∆d(w, n, b, a)])
, (13)

where

∆Hq(w, n, b, a) , Hq(w
n−1
1 bwNn+1)−Hq(w

n−1
1 awNn+1)

is the change in empirical entropy Hq(w) (10) when wn = a is replaced by b, and

∆d(w, n, b, a) , ‖y − Φ(wn−1
1 bwNn+1)‖2 − ‖y − Φ(wn−1

1 awNn+1)‖2 (14)
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Algorithm 1 Basic MCMC for universal CS – Fixed alphabet
1: Inputs: Initial estimate w, reproduction alphabet RF , noise variance σ2

Z , number of super–iterations r,

temperature constant c > 1, and context depth q

2: Compute nq(w,α)[β], ∀ α ∈ (RF )q , β ∈ RF
3: for t = 1 to r do // super-iteration

4: s← ln(t)/(cN∆q) // s = st, cf. (16)

5: Draw permutation {1, . . . , N} at random

6: for t′ = 1 to N do // iteration

7: Let n be component t′ in permutation

8: for all β in RF do // possible new wn

9: Compute ∆Hq(w, n, β, wn)

10: Compute ∆d(w, n, β, wn)

11: Compute Ps(wn = β|w\n)

12: Generate wn using Ps(·|w\n) // Gibbs

13: Update nq(w,α)[β], ∀ α ∈ (RF )q , β ∈ RF

14: Output: Return approximation w of xUMAP

is the change in ‖y−Φw‖2 when wn = a is replaced by b. The maximum change in the energy within an iteration

of Algorithm 1 is then bounded by

∆q = max
1≤n≤N

max
w∈(RF )N

max
a,b∈RF

|N∆Hq(w, n, b, a) + c4∆d(w, n, b, a)|. (15)

Note that x is assumed bounded (cf. Condition 1) so that (14–15) are bounded as well.

In MCMC, the space w ∈ (RF )N is analogous to a statistical mechanical system, and at low temperatures the

system tends toward low energies. Therefore, during the execution of the algorithm, we set a sequence of decreasing

temperatures that takes into account the maximum change given in (15):

st , ln(t+ r0)/(cN∆q) for some c > 1, (16)

where r0 is a temperature offset. At low temperatures, i.e., large st, a small difference in energy ΨHq (w) drives

a big difference in probability, cf. (12). Therefore, we begin at a high temperature where the Gibbs sampler can

freely move around (RF )N . As the temperature is reduced, the PMF becomes more sensitive to changes in energy

(12), and the trend toward w with lower energy grows stronger. In each iteration, the Gibbs sampler modifies wn

in a random manner that resembles heat bath concepts in statistical mechanics. Although MCMC could sink into

a local minimum, Geman and Geman [39] proved that if we decrease the temperature according to (16), then the

randomness of Gibbs sampling will eventually drive MCMC out of the local minimum toward the globally optimal

xUMAP . In order to help B-MCMC approach the global minimum with reasonable runtime, we will refine B-MCMC

in Section V.
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The following theorem is proven in Appendix A, following the framework espoused by Jalali and Weissman [46,

47].

Theorem 1: Let X be a stationary ergodic source that obeys Condition 1. Then the outcome wr of Algorithm 1

in the limit of an infinite number of super-iterations r obeys lim
r→∞

ΨHq (wr) = min
w̃∈(RF )N

ΨHq (w̃) = ΨHq
(
x
Hq
MAP

)
.

Theorem 1 shows that Algorithm 1 matches the best-possible performance of the universal MAP estimator as

measured by the objective function ΨHq , which should yield an MSE that is twice the MMSE (cf. Conjecture 1).

To gain some insight about the convergence process of MCMC, we focus on a fixed arbitrary sub-optimal sequence

w ∈ (RF )N . Suppose that at super-iteration t the energy for the algorithm’s output ΨHq (w) has converged to

the steady state (see Appendix A for details on convergence). We can then focus on the probability ratio ρt =

Pst(w)/Pst(x
Hq
MAP ); ρt < 1 because xHqMAP is the global minimum and has the largest Boltzmann probability over

all w ∈ (RF )N , whereas w is sub-optimal. We then consider the same sequence w at super-iteration t2; the inverse

temperature is 2st and the corresponding ratio at super-iteration t2 is (cf. (12))

P2st(w)

P2st(x
Hq
MAP )

=
exp(−2stΨ

Hq (w))

exp(−2stΨHq (x
Hq
MAP ))

=

(
Pst(w)

Pst(x
Hq
MAP )

)2

.

That is, between super-iterations t and t2 the probability ratio ρt is also squared, and the Gibbs sampler is less

likely to generate samples that differ from x
Hq
MAP . We infer from this argument that the probability concentration

of our algorithm around the globally optimal xHqMAP is linear in the number of super-iterations.

C. Computational challenges

Studying the pseudocode of Algorithm 1, we recognize that Lines 9–11 must be implemented efficiently, as they

run rN |RF | times. Lines 9 and 10 are especially challenging.

For Line 9, a naive update of Hq(w) has complexity O(|RF |q+1), cf. (10). To address this problem, Jalali and

Weissman [46, 47] recompute the empirical conditional entropy in O(q|RF |) time only for the O(q) contexts whose

corresponding counts are modified [46, 47]. The same approach can be used in Line 13, again reducing computation

from O(|RF |q+1) to O(q|RF |). Some straightforward algebra allows us to convert Line 10 to a form that requires

aggregate runtime of O(Nr(M + |RF |)). Combined with the computation for Line 9, and since M � q|RF |2

(because |RF | = γ2, γ = dln(N)e, q = o(log(N)), and M = O(N)) in practice, the entire runtime of our algorithm

is O(rMN).

The practical value of Algorithm 1 may be reduced due to its high computational cost, dictated by the number of

super-iterations r required for convergence to xHqMAP and the large size of the reproduction alphabet. Nonetheless,

Algorithm 1 provides a starting point toward further performance gains of more practical algorithms for computing

x
Hq
MAP , which are presented in Section V. Furthermore, our experiments in Section VI will show that the performance

of the algorithm of Section V is comparable to and in many cases better than existing algorithms.
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V. ADAPTIVE REPRODUCTION ALPHABET

While Algorithm 1 is a first step toward universal signal estimation in CS, N must be large enough to ensure that

RF quantizes a broad enough range of values of R finely enough to represent the estimate xHqMAP well. For large N ,

the estimation performance using the reproduction alphabet (6) could suffer from high computational complexity.

On the other hand, for small N the number of reproduction levels employed is insufficient to obtain acceptable

performance. Nevertheless, using an excessive number of levels will slow down the convergence. Therefore, in this

section, we explore techniques that tailor the reproduction alphabet adaptively to the signal being observed.

A. Adaptivity in reproduction levels

To estimate better with finite N , we utilize reproduction levels that are adaptive instead of the fixed levels in RF .

To do so, instead of w ∈ (RF )N , we optimize over a sequence u ∈ ZN , where |Z| < |RF | and | · | denotes the

size. The new reproduction alphabet Z does not directly correspond to real numbers. Instead, there is an adaptive

mapping A : Z → R, and the reproduction levels are A(Z). Therefore, we call Z the adaptive reproduction

alphabet. Since the mapping A is one-to-one, we also refer to Z as reproduction levels. Considering the energy

function (11), we now compute the empirical symbol counts nq(u, α)[β], order q conditional empirical probabilities

Pq(u, α)[β], and order q conditional empirical entropy Hq(u) using u ∈ ZN , α ∈ Zq , and β ∈ Z , cf. (8), (9),

and (10). Similarly, we use ‖y−ΦA(u)‖2 instead of ‖y−Φw‖2, where A(u) is the straightforward vector extension

of A. These modifications yield an adaptive energy function ΨHq
a (u) , NHq(u) + c4‖y − ΦA(u)‖2.

We choose Aopt to optimize for minimum squared error,

Aopt , arg min
A
‖y − ΦA(u)‖2 = arg min

A

[
M∑
m=1

(ym − [ΦA(u)]m)2

]
,

where [ΦA(u)]m denotes the mth entry of the vector ΦA(u). The optimal mapping depends entirely on y, Φ, and

u. From a coding perspective, describing Aopt(u) requires Hq(u) bits for u and |Z|b log log(N) bits for Aopt to

match the resolution of the non-adaptive RF , with b > 1 an arbitrary constant [45]. The resulting coding length

defines our universal prior.

Optimization of reproduction levels: We now describe the optimization procedure for Aopt, which must be

computationally efficient. Write

Υ(A) , ‖y − ΦA(u)‖2 =

M∑
m=1

(
ym −

N∑
n=1

ΦmnA(un)

)2

,

where Φmn is the entry of Φ at row m and column n. For Υ(A) to be minimum, we need zero-valued derivatives

dΥ(A)

dA(β)
= −2

M∑
m=1

(
ym −

N∑
n=1

ΦmnA(un)

)(
N∑
n=1

Φmn1{un=β}

)
= 0, ∀ β ∈ Z, (17)

where 1{A} is the indicator function for event A. Define the location sets Lβ , {n : 1 ≤ n ≤ N, un = β} for each

β ∈ Z , and rewrite the derivatives of Υ(A),

dΥ(A)

dA(β)
= −2

M∑
m=1

(
ym −

∑
λ∈Z

∑
n∈Lλ

ΦmnA(λ)

)∑
n∈Lβ

Φmn

 . (18)
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Let the per-character sum column values be

µmβ ,
∑
n∈Lβ

Φmn, (19)

for each m ∈ {1, . . . ,M} and β ∈ Z . We desire the derivatives to be zero, cf. (18):

0 =

M∑
m=1

(
ym −

∑
λ∈Z

A(λ)µmλ

)
µmβ .

Thus, the system of equations must be satisfied,
M∑
m=1

ymµmβ =

M∑
m=1

(∑
λ∈Z

A(λ)µmλ

)
µmβ (20)

for each β ∈ Z . Consider now the right hand side,
M∑
m=1

(∑
λ∈Z

A(λ)µmλ

)
µmβ =

∑
λ∈Z

A(λ)

M∑
m=1

µmλµmβ ,

for each β ∈ Z . The system of equations can be described in matrix form

Ω︷ ︸︸ ︷
∑M
m=1 µmβ1µmβ1 . . .

∑M
m=1 µmβ|Z|µmβ1

...
. . .

...∑M
m=1 µmβ1

µmβ|Z| . . .
∑M
m=1 µmβ|Z|µmβ|Z|



A(Z)︷ ︸︸ ︷
A(β1)

...

A(β|Z|)

 =

Θ︷ ︸︸ ︷
∑M
m=1 ymµmβ1

...∑M
m=1 ymµmβ|Z|

 . (21)

Note that by writing µ as a matrix with entries indexed by row m and column β given by (19), we can write Ω

as a Gram matrix, Ω = µTµ, and we also have Θ = µT y, cf. (20). The optimal A can be computed as a |Z| × 1

vector Aopt = Ω−1Θ = (µTµ)−1µT y if Ω ∈ R|Z|×|Z| is invertible. We note in passing that numerical stability can

be improved by regularizing Ω. Note also that

‖y − ΦA(u)‖2 =

M∑
m=1

ym −∑
β∈Z

µmβAopt(β)

2

, (22)

which can be computed in O(M |Z|) time instead of O(MN).

Computational complexity: Pseudocode for level-adaptive MCMC (L-MCMC) appears in Algorithm 2, which

resembles Algorithm 1. The initial mapping A is inherited from a quantization of the initial point x∗, r0 = 0 (r0

takes different values in Section V-B), and other minor differences between B-MCMC and L-MCMC appear in

lines marked by asterisks.

We discuss computational requirements for each line of the pseudocode that is run within the inner loop.

• Line 10 can be computed in O(q|Z|) time (see discussion of Line 9 of B-MCMC in Section IV-C).

• Line 11 updates µmβ for m = 1, ...,M in O(M) time.

• Line 12 updates Ω. Because we only need to update O(1) columns and O(1) rows, each such column and

row contains O(|Z|) entries, and each entry is a sum over O(M) terms, we need O(M |Z|) time.

• Line 13 requires inverting Ω in O(|Z|3) time.

• Line 14 requires O(M |Z|) time, cf. (22).
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Algorithm 2 Level-adaptive MCMC
1: *Inputs: Initial mapping A, sequence u, adaptive alphabet Z , noise variance σ2

Z , number of super-iterations r,

temperature constant c > 1, context depth q, and temperature offset r0

2: Compute nq(u, α)[β], ∀ α ∈ Zq , β ∈ Z

3: *Initialize Ω

4: for t = 1 to r do // super-iteration

5: s← ln(t+ r0)/(cN∆q) // s = st, cf. (16)

6: Draw permutation {1, . . . , N} at random

7: for t′ = 1 to N do // iteration

8: Let n be component t′ in permutation

9: for all β in Z do // possible new un

10: Compute ∆Hq(u, n, β, un)

11: *Compute µmβ ,∀ m ∈ {1, . . . ,M}

12: *Update Ω // O(1) rows and columns

13: *Compute Aopt // invert Ω

14: Compute ‖y − ΦA(un−1
1 βuNn+1)‖2

15: Compute Ps(un = β|u\n)

16: *ũn ← un // save previous value

17: Generate un using Ps(·|u\n) // Gibbs

18: Update nq(·)[·] at O(q) relevant locations

19: *Update µmβ , ∀ m, β ∈ {un, ũn}

20: *Update Ω // O(1) rows and columns

21: *Outputs: Return approximation A(u) of xUMAP , Z , and temperature offset r0 + r

• Line 15 requires O(|Z|) time.

In practice we typically have M � |Z|2, and so the aggregate complexity is O(rMN |Z|), which is greater than

the computational complexity of Algorithm 1 by a factor of O(|Z|).

B. Adaptivity in reproduction alphabet size

While Algorithm 2 adaptively maps u to RN , the signal estimation quality heavily depends on |Z|. Denote the

true alphabet of the signal by X , x ∈ XN ; if the signal is continuous-valued, then |X | is infinite. Ideally we want

to employ as many levels as the runtime allows for continuous-valued signals, whereas for discrete-valued signals

we want |Z| = |X |. Inspired by this observation, we propose to begin with some initial |Z|, and then adaptively

adjust |Z| hoping to match |X |. Hence, we propose the size- and level-adaptive MCMC algorithm (Algorithm 3),

which invokes L-MCMC (Algorithm 2) several times.
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Fig. 2. Flowchart of Algorithm 3 (size- and level-adaptive MCMC). L(r) denotes running L-MCMC for r super-iterations. The
parameters r1,r2,r3,r4a, and r4b are the number of super-iterations used in Stages 1 through 4, respectively. Criteria D1−D3 are
described in the text.

Three basic procedures: In order to describe the size- and level-adaptive MCMC (SLA-MCMC) algorithm in

detail, we introduce three alphabet adaptation procedures as follows.

• MERGE: First, find the closest adjacent levels β1, β2 ∈ Z . Create a new level β3 and add it to Z . Let

A(β3) = (A(β1) +A(β2))/2. Replace ui by β3 whenever ui ∈ {β1, β2}. Next, remove β1 and β2 from Z .

• ADD-out: Define the range RA = [minA(Z), maxA(Z)], and IRA = maxA(Z)−minA(Z). Add a lower

level β3 and/or upper level β4 to Z with A(β3) = minA(Z)− IRA

|Z| − 1
,A(β4) = maxA(Z) +

IRA

|Z| − 1
. Note

that |{ui : ui = β3 or β4, i = 1, ..., N}| = 0, i.e., the new levels are empty.

• ADD-in: First, find the most distant adjacent levels, β1 and β2. Then, add a level β3 to Z with A(β3) =

(A(β1)+A(β2))/2. For i ∈ {1, ..., |Z|} s.t. ui = β1, replace ui by β3 with probability Ps(ui = β2)/(Ps(ui =

β1) + Ps(ui = β2)), where Ps is given in (12); for i ∈ {1, ..., |Z|} s.t. ui = β2, replace ui by β3 with

probability Ps(ui = β1)/(Ps(ui = β1) + Ps(ui = β2)). Note that |{ui : ui = β3, i = 1, ..., N}| is typically

non-zero, i.e., β3 tends not to be empty.

We call the process of running one of these procedures followed by running L-MCMC a round.

Size- and level-adaptive MCMC: SLA-MCMC is conceptually illustrated in the flowchart in Fig. 2. It has four

stages, and in each stage we will run L-MCMC for several super-iterations; we denote the execution of L-MCMC

for r super-iterations by L(r). The parameters r1, r2, r3, r4a, and r4b are the number of super-iterations used in

Stages 1 through 4, respectively. The choice of these parameters reflects a trade-off between runtime and estimation

quality.

In Stage 1, SLA-MCMC uses a fixed-size adaptive reproduction alphabet Z to tentatively estimate the signal. The

initial point of Stage 1 is obtained in the same way as L-MCMC. After Stage 1, the initial point and temperature

offset for each instance of L-MCMC correspond to the respective outputs of the previous instance of L-MCMC. If the

source is discrete-valued and |Z| > |X | in Stage 1, then multiple levels in the output Z of Stage 1 may correspond

to a single level in X . To alleviate this problem, in Stage 2 we merge levels closer than T = IRA/ (K1 × (|Z| − 1)),

where K1 is a parameter.

However, |Z| might still be larger than needed; hence in Stage 3 we tentatively merge the closest adjacent levels.

The criterion D1 evaluates whether the current objective function is lower (better) than in the previous round; we

do not leave Stage 3 until D1 is violated. Note that if |X | > |Z| (this always holds for continuous-valued signals),

then ideally SLA-MCMC should not merge any levels in Stage 3, because the objective function would increase if

we merge any levels.

Define the outlier set S = {xi : xi /∈ RA, i = 1, ..., N}. Under Condition 1, S might be small or even empty.

When S is small, L-MCMC might not assign levels to represent the entries of S. To make SLA-MCMC more robust
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to outliers, in Stage 4a we add empty levels outside the range RA and then allow L-MCMC to change entries of

u to the new levels during Gibbs sampling; we call this populating the new levels. If a newly added outside level

is not populated, then we remove it from Z . Seeing that the optimal mapping Aopt in L-MCMC tends not to map

symbols to levels with low population, we consider a criterion D2 where we will will add an outside upper (lower)

level if the population of the current upper (lower) level is smaller than N/(K2|Z|), where K2 is a parameter.

That is, the criterion D2 is violated if both populations of the current upper and lower levels are sufficient (at least

N/(K2|Z|)); in this case we do not need to add outside levels because Aopt will map some of the current levels to

represent the entries in S. The criterion D3 is violated if all levels added outside are not populated by the end of

the round. SLA-MCMC keeps adding levels outside RA until it is wide enough to cover most of the entries of x.

Next, SLA-MCMC considers adding levels inside RA (Stage 4b). If the signal is discrete-valued, this stage should

stop when |Z| = |X |. Else, for continuous-valued signals SLA-MCMC can add levels until the runtime expires.

In practice, SLA-MCMC runs L-MCMC at most a constant number of times, and the computational complexity

is in the same order of L-MCMC, i.e., O(rMN |Z|). On the other hand, SLA-MCMC allows varying |Z|, which

often improves the estimation quality.

C. Mixing

Donoho proved for the scalar channel setting that xKS is sampled from the posterior PX|Y (x|y) [29]. Seeing that

the Gibbs sampler used by MCMC (cf. Section IV-B) generates random samples, and the outputs of our algorithm

will be different if its random number generator is initialized with different random seeds, we speculate that running

SLA-MCMC several times will also yield independent samples from the posterior, where we note that the runtime

grows linearly in the number of times that we run SLA-MCMC. By mixing (averaging over) several outputs of

SLA-MCMC, we obtain x̂avg, which may have lower squared error with respect to the true x than the average

squared error obtained by a single SLA-MCMC output. Numerical results suggest that mixing indeed reduces the

MSE (cf. Fig. 7); this observation suggests that mixing the outputs of multiple algorithms, including running a

random reconstruction algorithm several times, may reduce the squared error.

VI. NUMERICAL RESULTS

In this section, we demonstrate that SLA-MCMC is comparable and in many cases better than existing algorithms

in reconstruction quality, and that SLA-MCMC is applicable when M > N . Additionally, some numerical evidence

is provided to justify Conjecture 1 in Section III-C. Then, the advantage of SLA-MCMC in estimating low-

complexity signals is demonstrated. Finally, we compare B-MCMC, L-MCMC, and SLA-MCMC performance.

We implemented SLA-MCMC in Matlab6 and tested it using several stationary ergodic sources. Except when

noted, for each source, signals x of length N = 10000 were generated. Each such x was multiplied by a Gaussian

random matrix Φ with normalized columns and corrupted by i.i.d. Gaussian measurement noise z. Except when

noted, the number of measurements M varied between 2000 and 7000. The noise variance σ2
Z was selected to ensure

6A toolbox that runs the simulations in this paper is available at http://people.engr.ncsu.edu/dzbaron/software/UCS BaronDuarte/
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Fig. 3. SLA-MCMC, EGAM, and CoSaMP estimation results for a source with i.i.d. Bernoulli entries with non-zero probability
of 3% as a function of the number of Gaussian random measurements M for different SNR values (N = 10000).

that the signal-to-noise ratio (SNR) was 5 or 10 dB; SNR was defined as SNR = 10 log10

[
(NE[x2])/(Mσ2

Z)
]
.

We set the context depth q = 2, the number of super-iterations in different stages of SLA-MCMC r1 = 50 and

r2 = r3 = r4a = r4b = 10, the maximum total number of super-iterations to be 240, the initial number of levels

|Z| = 7, and the tuning parameter from Section V-B K1,K2 = 10. SLA-MCMC was not given the true alphabet X

for any of the sources presented in this paper; our expectation is that it should adaptively adjust |Z| to match |X |.

The final estimate x̂avg of each signal was obtained by averaging over the outputs x̂ of 5 runs of SLA-MCMC,

where in each run we initialized the random number generator with another random seed, cf. Section V-C. These

choices of parameters seemed to provide a reasonable compromise between runtime and estimation quality.

We chose our performance metric as the mean signal-to-distortion ratio (MSDR) defined as

MSDR = 10 log10

(
E[x2]/MSE

)
.

For each M and SNR, the MSE was obtained after averaging over the squared errors of x̂avg for 50 draws of

x, Φ, and z. We compared the performance of SLA-MCMC to that of (i) compressive sensing matching pursuit

(CoSaMP) [40], a greedy method; (ii) gradient projection for sparse reconstruction (GPSR) [7], an optimization-

based method; and (iii) message passing approaches (for each source, we chose best-matched algorithms between

EM-GM-AMP-MOS (EGAM for short) [13] and turboGAMP (tG for short) [14]). Typical runtimes are 1 hour

(for continuous-valued signals) and 15 minutes (discrete-valued) per random seed for SLA-MCMC, 30 minutes for

EGAM [13] and tG [14], and 10 minutes for CoSaMP [40] and GPSR [7].

Among these baseline algorithms designed for i.i.d. signals, GPSR [7] and EGAM [13] only need y and Φ, and

CoSaMP [40] also needs the number of non-zeros in x. Only tG [14] is designed for non-i.i.d. signals; however,

it must be aware of the probabilistic model of the source. Finally, GPSR [7] performance was similar to that of

CoSaMP [40] for all sources considered in this section, and thus is not plotted.
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Fig. 4. SLA-MCMC, tG, and CoSaMP estimation results for a dense two-state Markov source with non-zero entries drawn from
a Rademacher (±1) distribution as a function of the number of Gaussian random measurements M for different SNR values
(N = 5000).

A. Performance on discrete-valued sources

Bernoulli source: We first present results for an i.i.d. Bernoulli source. The Bernoulli source followed the

distribution fX(x) = 0.03δ(x− 1) + 0.97δ(x), where δ(·) is the Dirac delta function. Note that SLA-MCMC did

not know X = {0, 1} and had to estimate it on the fly. We chose EGAM [13] for message passing algorithms

because it fits the signal with Gaussian mixtures (GM), which can accurately characterize signals from an i.i.d.

Bernoulli source. The resulting MSDRs for SLA-MCMC, EGAM [13], and CoSaMP [40] are plotted in Fig. 3.

We can see that when SNR = 5 dB, EGAM [13] approaches the MMSE [50] performance for low to medium

M ; although SLA-MCMC is often worse than EGAM [13], it is within 3 dB of the MMSE performance. This

observation that SLA-MCMC approaches the MMSE for SNR = 5 dB partially substantiates Conjecture 1 in

Section III-C. When SNR = 10 dB, SLA-MCMC is comparable to EGAM [13] when M ≥ 3000. CoSaMP [40]

has worse MSDR.

Dense Markov-Rademacher source: Considering that most algorithms are designed for i.i.d. sources, we now

illustrate the performance of SLA-MCMC on non-i.i.d. sources by simulating a dense Markov-Rademacher (MRad

for short) source. The non-zero entries of the dense MRad signal were generated by a two-state Markov state machine

(non-zero and zero states). The transition from zero to non-zero state for adjacent entries had probability P01 = 3
70 ,

while the transition from non-zero to zero state for adjacent entries had probability P10 = 0.10; these parameters

yielded 30% non-zero entries on average. The non-zeros were drawn from a Rademacher distribution, which took

values ±1 with equal probability. With such denser signals, we may need to take more measurements and/or require

higher SNRs to achieve similar performance to previous examples. Seeing that the runtime of CoSaMP [40] is cubic

in M and the number of non-zeros in the signal, we only generated dense MRad signals with length N = 5000

to save runtime. The number of measurements varied from 3000 to 8000, with SNR = 10 and 15 dB. Although

tG [14] does not provide an option that accurately characterize the MRad source, we still chose to compare against its
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Fig. 5. SLA-MCMC, EGAM, and CoSaMP estimation results for an i.i.d. sparse Laplace source as a function of the number of
Gaussian random measurements M for different SNR values (N = 10000).

performance because it is applicable to non-i.i.d. signals. The MSDRs for SLA-MCMC, tG [14], and CoSaMP [40]

are plotted in Fig. 4. We can see that CoSaMP [40] has poor performance because it does not consider the source

memory;7 although tG [14] is designed for non-i.i.d. sources, it is nonetheless outperformed by SLA-MCMC. This

example shows that SLA-MCMC reconstructs non-i.i.d. signals well and is applicable to general linear inverse

problems.

B. Performance on continuous sources

We now discuss the performance of SLA-MCMC in estimating continuous sources.

Sparse Laplace (i.i.d.) source: For unbounded continuous-valued signals, which do not adhere to Condition 1,

we simulated an i.i.d. sparse Laplace source following the distribution fX(x) = 0.03L(0, 1) + 0.97δ(x), where

L(0, 1) denotes a Laplacian distribution with mean zero and variance one. We chose EGAM [13] for message

passing algorithms because it fits the signal with GM, which can accurately characterize signals from an i.i.d. sparse

Laplace source. The MSDRs for SLA-MCMC, EGAM [13], and CoSaMP [40] are plotted in Fig. 5. We can see that

EGAM [13] approaches the MMSE [50] performance in all settings; SLA-MCMC outperforms CoSaMP [40], while

it is approximately 2 dB worse than the MMSE. Recall from Conjecture 1 that we expect to achieve twice the MMSE,

which is approximately 3 dB below the signal-to-distortion ratio of MMSE, and thus SLA-MCMC performance is

reasonable. This example of SLA-MCMC performance approaching the MMSE further substantiates Conjecture 1.

Markov-Uniform source: For bounded continuous-valued signals, which adhere to Condition 1, we simulated

a Markov-Uniform (MUnif for short) source, whose non-zero entries were generated by a two-state Markov state

machine (non-zero and zero states) with P01 = 3
970 and P10 = 0.10; these parameters yielded 3% non-zeros entries

on average. The non-zero entries were drawn from a uniform distribution between 0 and 1. We chose tG with

Markov support and GM model options [14] for message passing algorithms. We plot the resulting MSDRs for

7We believe that the unexpected dip in each of the curves for CoSaMP [40] was due to its least-squares estimation step.
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Fig. 6. SLA-MCMC, tG, and CoSaMP estimation results for a two-state Markov source with non-zero entries drawn from a uniform
distribution U [0, 1] as a function of the number of Gaussian random measurements M for different SNR values (N = 10000).

SLA-MCMC, tG [14], and CoSaMP [40] in Fig. 6. We can see that the CoSaMP [40] lags behind in MSDR. The

SLA-MCMC curve is close to that of tG [14] when SNR = 10 dB, and it is slightly better than tG [14] when

SNR = 5 dB.

When the signal model is known, the message passing approaches EGAM [13] and tG [14] achieve quite low

MSE’s, because they can get close to the Bayesian MMSE. Sometimes the model is only known imprecisely, and

SLA-MCMC can improve over message passing; for example, it is better than tG [14] in estimating MUnif signals

(Fig. 6), because tG [14] approximates the uniformly distributed non-zeros by GM.

C. Comparison between discrete and continuous sources

When the source is continuous (Figs. 5 and 6), SLA-MCMC might be worse than the existing message passing

approaches (EGAM [13] and tG [14]). One reason for the under-performance of SLA-MCMC is the 3 dB gap

of Conjecture 1. The second reason is that SLA-MCMC can only assign finitely many levels to approximate

continuous-valued signals, leading to under-representation of the signal. However, when it comes to discrete-valued

signals that have finite size alphabets (Figs. 3 and 4), SLA-MCMC is comparable to and in many cases better than

existing algorithms.

D. Performance on low-complexity signals

SLA-MCMC promotes low complexity due to the complexity-penalized term in the objective function (11). Hence,

it tends to perform well for signals with low complexity such as the signals in Figs. 3 and 4 (note that the Bernoulli

signal is sparse while the MRad signal is denser). In this subsection, we simulated a non-sparse low-complexity

signal. We show that complexity-penalized approaches such as SLA-MCMC might estimate low-complexity signals

well.

Four-state Markov source: To evaluate the performance of SLA-MCMC for discrete-valued non-i.i.d. and non-

sparse signals, we examined a four-state Markov source (Markov4 for short), which has been discussed in Section I
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Fig. 7. SLA-MCMC with different number of random seeds and L-MCMC estimation results for the Markov-Uniform source
described in Fig. 6 as a function of the number of Gaussian random measurements M for different SNR values (N = 10000).

and Fig. 1. We tried conventional sparsifying transforms, but none of them yielded coefficients that were reasonably

sparse. As pointed out in Section I, there exists a special transform that yields a sparse representation of the Markov4

signals, but using specialized transforms requires prior knowledge of the source. Despite knowing the sparsifying

matrix, all our baseline algorithms performed poorly (yielding MSDRs below 5 dB). Thus, we did not include the

results for these baseline algorithms in Fig. 1. On the other hand, Markov4 signals have low complexity in the time

domain, and hence, SLA-MCMC successfully reconstructed Markov4 signals with reasonable quality even when

M was relatively small. This Markov4 source highlights the special advantage of our approach in reconstructing

low-complexity signals.

E. Comparison of B-MCMC, L-MCMC, and SLA-MCMC

We compare the performance of B-MCMC, L-MCMC, and SLA-MCMC with different numbers of seeds (cf.

Section V-C) by examining the MUnif source (cf. Section VI-B). We ran B-MCMC with the fixed uniform alphabet

RF in (6) with |RF | = 10 levels. L-MCMC was initialized in the same way as Stage 1 of SLA-MCMC. B-MCMC

and L-MCMC ran for 100 super-iterations before outputting the estimates; this number of super-iterations was

sufficient because it was greater than r1 = 50 in Stage 1 of SLA-MCMC. The results are plotted in Fig. 7. B-MCMC

did not perform well given the RF in (6) and is not plotted. We can see that SLA-MCMC outperforms L-MCMC.

Averaging over more seeds provides an increase of 1 dB in MSDR.8 Finally, we tried a “good” reproduction alphabet

in B-MCMC, R̃F =
1

|RF | − 1/2
{0, ..., |RF | − 1}, and the results were close to those of SLA-MCMC. Indeed,

B-MCMC is quite sensitive to the reproduction alphabet, and Stages 2–4 of SLA-MCMC find a good set of levels.

Example output levels A(Z) of SLA-MCMC were: {−0.001, 0.993} for Bernoulli signals, {−0.998, 0.004, 1.004}

for dense MRad signals, 21 levels spread in the range [−3.283, 4.733] for i.i.d. sparse Laplace signals, 22 levels

spread in the range [−0.000, 0.955] for MUnif signals, and {−1.010, 0.996} for Markov4 signals; we can see that

8For other sources, we observed an increase in MSDR of up to 2 dB.
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SLA-MCMC adaptively adjusted |Z| to match |X | so that these levels represented each signal well. Also, we can

see from Figs. 3–5 that SLA-MCMC did not perform well in the low measurements and high SNR setting, which

was due to mismatch between |Z| and |X |.

VII. CONCLUSIONS

This paper provides universal algorithms for signal estimation from linear measurements. Here, universality

denotes the property that the algorithm need not be informed of the probability distribution for the recorded

signal prior to acquisition; rather, the algorithm simultaneously builds estimates both of the observed signal and its

distribution. Inspired by the Kolmogorov sampler [29] and motivated by the need for a computationally tractable

framework, our contribution focuses on stationary ergodic signal sources and relies on a MAP estimation algorithm.

The algorithm is then implemented via a MCMC formulation that is proven to be convergent in the limit of

infinite computation. We reduce the computation and improve the estimation quality of the proposed algorithm by

adapting the reproduction alphabet to match the complexity of the input signal. Our experiments have shown that

the performance of the proposed algorithm is comparable to and in many cases better than existing algorithms,

particularly for low-complexity sources that do not exhibit standard sparsity or compressibility.

As we were finishing this paper, Jalali and Poor [51] have independently shown that our formulation (11) also

provides an implementable version of Rényi entropy minimization. Their theoretical findings further motivate our

proposed universal MCMC formulation.

APPENDIX A. PROOF OF THEOREM 1

Our proof mimics a very similar proof presented in [46, 47] for lossy source coding; we include all details

for completeness. The proof technique relies on mathematical properties of non-homogeneous (e.g., time-varying)

Markov Chains (MCs) [52]. Through the proof, S , (RF )N denotes the state space of the MC of codewords

generated by Algorithm 1, with size |S| = |RF |N . We define a stochastic transition matrix P(t) from S to itself

given by the Boltzmann distribution for super-iteration t in Algorithm 1. Similarly, π(t) defines the stable-state

distribution on S for P(t), satisfying π(t)P(t) = π(t).

Definition 1: [52] Dobrushin’s ergodic coefficient of a MC transition matrix P is denoted by ξ(P ) and defined

as ξ(P ) , max
1≤i,j≤N

1

2
‖pi − pj‖1, where pi denotes row i of P .

From the definition, 0 ≤ ξ(P ) ≤ 1. Moreover, the ergodic coefficient can be rewritten as

ξ(P ) = 1− min
1≤i,j≤N

N∑
k=1

min(pik, pjk), (23)

where pij denotes the entry of P at row i and column j.

We group the product of transition matrices across super-iterations as P(t1→t2) =
∏t2
t=t1

P(t). There are two

common characterizations for the stable-state behavior of a non-homogeneous MC.

Definition 2: [52] A non-homogeneous MC is called weakly ergodic if for any distributions η and ν over the

state space S, and any t1 ∈ N, lim supt2→∞‖ηP(t1→t2) − νP(t1→t2)‖1 = 0, where ‖ · ‖1 denotes the `1 norm.

Similarly, a non-homogeneous MC is called strongly ergodic if there exists a distribution π over the state space
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S such that for any distribution η over S, and any t1 ∈ N, lim supt2→∞‖ηP(t1→t2) − π‖1 = 0. We will use the

following two theorems from [52] in our proof.

Theorem 2: [52] A MC is weakly ergodic if and only if there exists a sequence of integers 0 ≤ t1 ≤ t2 ≤ . . .

such that
∞∑
i=1

(
1− ξ

(
P(ti→ti+1)

))
=∞.

Theorem 3: [52] Let a MC be weakly ergodic. Assume that there exists a sequence of probability distributions

{π(t)}∞i=1 on the state space S such that π(t)P(t) = π(t). Then the MC is strongly ergodic if
∞∑
t=1

‖π(t)−π(t+1)‖1 <

∞.

The rest of proof is structured as follows. First, we show that the sequence of stable-state distributions for the

MC used by Algorithm 1 converges to a uniform distribution over the set of sequences that minimize the energy

function as the iteration count t increases. Then, we show using Theorems 2 and 3 that the non-homogeneous

MC used in Algorithm 1 is strongly ergodic, which by the definition of strong ergodicity implies that Algorithm 1

always converges to the stable distribution found above. This implies that the outcome of Algorithm 1 converges

to a minimum-energy solution as t→∞, completing the proof of Theorem 1.

We therefore begin by finding the stable-state distribution for the non-homogeneous MC used by Algorithm 1.

At each super-iteration t, the distribution defined as

π(t)(w) ,
exp(−stΨHq (w))∑
z∈S exp(−stΨHq (z))

=
1∑

z∈S exp(−st(ΨHq (z)−ΨHq (w)))
(24)

satisfies π(t)P(t) = π(t), cf. (13). We can show that the distribution π(t) converges to a uniform distribution over

the set of sequences that minimize the energy function, i.e.,

lim
t→∞

π(t)(w) =

 0 w /∈ H,
1
|H| w ∈ H,

(25)

where H = {w ∈ S s.t. ΨHq (w) = minz∈S ΨHq (z)}. To show (25), we will show that π(t)(w) is increasing for

w ∈ H and eventually decreasing for w ∈ HC . Since for w ∈ H and w̃ ∈ S we have ΨHq (w̃)−ΨHq (w) ≥ 0, for

t1 < t2 we have ∑
w̃∈S

exp(−st1(ΨHq (w̃)−ΨHq (w))) ≥
∑
w̃∈S

exp(−st2(ΨHq (w̃)−ΨHq (w))),

which together with (24) implies π(t1)(w) ≤ π(t2)(w). On the other hand, if w ∈ HC , then we obtain

π(t)(w) =

[ ∑
w̃:ΨHq (w̃)≥ΨHq (w)

exp(−st(ΨHq (w̃)−ΨHq (w)))+

∑
w̃:ΨHq (w̃)<ΨHq (w)

exp(−st(ΨHq (w̃)−ΨHq (w)))

]−1

. (26)

For sufficiently large st, the denominator of (26) is dominated by the second term, which increases when st

increases, and therefore π(t)(w) decreases for w ∈ HC as t increases. Finally, since all sequences w ∈ H have the

same energy ΨHq (w), it follows that the distribution is uniform over the symbols in H.

Having shown convergence of the non-homogenous MC’s stable-state distributions, we now show that the non-

homogeneous MC is strongly ergodic. The transition matrix P(t) of the MC at iteration t depends on the temperature
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st in (16) used within Algorithm 1. We first show that the MC used in Algorithm 1 is weakly ergodic via Theorem 2;

the proof of the following Lemma is given in Appendix B.

Lemma 1: The ergodic coefficient of P(t) for any t ≥ 0 is upper bounded by ξ
(
P(t)

)
≤ 1 − exp(−stN∆q),

where ∆q is defined in (15).

We note in passing that Condition 1 ensures that ∆q is finite. Using Lemma 1 and (16), we can evaluate the sum

given in Theorem 2 as
∞∑
j=1

(
1− ξ

(
P(j)

))
≥
∞∑
j=1

exp(−sjN∆q) =

∞∑
j=1

1

j1/c
=∞,

and so the non-homogeneous MC defined by {P(t)}∞t=1 is weakly ergodic. Now we use Theorem 3 to show that

the MC is strongly ergodic by proving that
∞∑
t=1

‖π(t) − π(t+1)‖1 < ∞. Since we know from earlier in the proof

that π(t)(w) is increasing for w ∈ H and eventually decreasing for w ∈ HC , there exists a t0 ∈ N such that for

any t1 > t0, we have
t1∑
t=t0

‖π(t) − π(t+1)‖1 =
∑
w∈H

t1∑
t=t0

(
π(t+1)(w)− π(t)(w)

)
+
∑
w/∈H

t1∑
t=t0

(
π(t)(w)− π(t+1)(w)

)
=
∑
w∈H

(
π(t1+1)(w)− π(t0)(w)

)
+
∑
w/∈H

(
π(t0)(w)− π(t1+1)(w)

)
=‖π(t1+1) − π(t0)‖1 ≤ ‖π(t1+1)‖1 + ‖π(t0)‖1 = 2.

(27)

Since the right hand side does not depend on t1, we have that
∑∞
t=1 ‖π(t) − π(t+1)‖1 <∞. This implies that the

non-homogeneous MC used by Algorithm 1 is strongly ergodic, and thus completes the proof of Theorem 1.

APPENDIX B. PROOF OF LEMMA 1

Let w′, w′′ be two arbitrary sequences in S. The probability of transitioning from a given state to a neighboring

state in an iteration within iteration t′ of super-iteration t of Algorithm 1 is given by (13), and can be rewritten as

P(t,t′)(w1
t′−1awNt′+1|wt

′−1
1 bwNt′+1) = pst(wt′ = a|w\t

′
) =

exp
(
−stΨHq (wt

′−1
1 awNt′+1)

)
∑
b∈RF exp

(
−stΨHq (wt

′−1
1 bwNt′+1)

)
=

exp
(
−st

(
ΨHq (wt

′−1
1 awNt′+1)−Ψ

Hq
min,t′(w

t′−1
1 , wNt′+1)

))
∑
b∈RF exp

(
−st

(
ΨHq (wt

′−1
1 bwNt′+1)−Ψ

Hq
min,t′(w

t′−1
1 , wNt′+1)

)) ≥ exp(−st∆q)

|RF |
,

(28)

where Ψ
Hq
min,t′(w

t′−1
1 , wNt′+1) = minβ∈RF ΨHq (wt

′−1
1 βwNt′+1). Therefore, the smallest probability of transition from

w′ to w′′ within super-iteration t of Algorithm 1 is bounded by

min
w′,w′′∈RF

P(t)(w
′′|w′) ≥

N∏
t′=1

exp(−st∆q)

|RF |
=

exp(−stN∆q)

|RF |N
=

exp(−stN∆q)

|S|
.

Using the alternative definition of the ergodic coefficient (23),

ξ
(
P(t)

)
= 1− min

w′,w′′∈S

∑
w̃∈S

min(P(t)(w̃|w′), P(t)(w̃|w′′)) ≤ 1− |S|exp(−stN∆q)

|S|
= 1− exp(−stN∆q),

proving the lemma.
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[6] Y. Wu and S. Verdú, “Optimal phase transitions in compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6241 – 6263, Oct.

2012.

[7] M. Figueiredo, R. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other

inverse problems,” IEEE J. Sel. Top. Sign. Proces., vol. 1, pp. 586–597, Dec. 2007.

[8] D. L. Donoho, A. Maleki, and A. Montanari, “Message Passing Algorithms for Compressed Sensing: I. Motivation and Construction,” in

IEEE Inf. Theory Workshop, Jan. 2010.

[9] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), July 2011, pp. 2168–2172.

[10] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2346–2356, June 2008.

[11] M. W. Seeger and H. Nickisch, “Compressed sensing and Bayesian experimental design,” in Proc. Int. Conf. Machine Learning, Aug

2008, pp. 912–919.

[12] D. Baron, S. Sarvotham, and R. G. Baraniuk, “Bayesian compressive sensing via belief propagation,” IEEE Trans. Signal Process., vol.

58, pp. 269–280, Jan. 2010.

[13] J. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture approximate message passing,” IEEE Trans. Signal Process., vol.

61, no. 19, pp. 4658–4672, Oct. 2013.

[14] J. Ziniel, S. Rangan, and P. Schniter, “A generalized framework for learning and recovery of structured sparse signals,” in Proc. IEEE

Stat. Sig. Proc. Workshop (SSP), Aug. 2012, pp. 325–328.

[15] Y. Ma, J. Tan, N. Krishnan, and D. Baron, “Empirical Bayes and full Bayes for signal estimation,” arXiv:1405.2113v1, May 2014.

[16] M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE Trans. Image Process., vol. 12,

no. 8, pp. 906–916, Aug. 2003.

[17] D. Donoho, H. Kakavand, and J. Mammen, “The simplest solution to an underdetermined system of linear equations,” in Proc. Int. Symp.

Inf. Theory (ISIT), July 2006, pp. 1924–1928.

[18] J. Haupt and R. Nowak, “Signal reconstruction from noisy random projections,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 4036–4048,

Sept. 2006.

[19] J. D. Haupt and R. Nowak, “Adaptive sensing for sparse recovery,” in Compressed Sensing: Theory and Applications. Cambridge University

Press, 2012.

[20] I. Ramı́rez and G. Sapiro, “An MDL framework for sparse coding and dictionary learning,” IEEE Trans. Signal Proc., vol. 60, no. 6, pp.

2913–2927, June 2012.

[21] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York, NY, USA: Wiley-Interscience, 2006.

[22] M. Li and P. M. B. Vitanyi, An introduction to Kolmogorov complexity and its applications, Springer-Verlag, New York, 2008.



25

[23] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE

Trans. Signal Proc., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[24] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised dictionary learning,” in Workshop Neural Info. Proc. Sys. (NIPS),

Vancouver, Canada, Dec. 2008.

[25] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and L. Carin, “Nonparametric Bayesian dictionary learning

for analysis of noisy and incomplete images,” IEEE Trans. Image Process., vol. 21, no. 1, pp. 130–144, Jan. 2012.

[26] P. J. Garrigues and B. A. Olshausen, “Learning horizontal connections in a sparse coding model of natural images,” in Workshop Neural

Info. Proc. Sys. (NIPS), Dec. 2007, pp. 1–8.

[27] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,

May 1977.

[28] J. Rissanen, “A universal data compression system,” IEEE Trans. Inf. Theory, vol. 29, no. 5, pp. 656–664, Sept. 1983.

[29] D. L. Donoho, “The Kolmogorov sampler,” Department of Statistics Technical Report 2002-4, Stanford University, Stanford, CA, Jan.

2002.

[30] G. J. Chaitin, “On the length of programs for computing finite binary sequences,” J. ACM, vol. 13, no. 4, pp. 547–569, 1966.

[31] R. J. Solomonoff, “A formal theory of inductive inference. Part I,” Inf. and Control, vol. 7, no. 1, pp. 1–22, Mar. 1964.

[32] A. N. Kolmogorov, “Three approaches to the quantitative definition of information,” Problems Inf. Transmission, vol. 1, no. 1, pp. 1–7,

1965.

[33] S. Jalali and A. Maleki, “Minimum complexity pursuit,” in Proc. Allerton Conf. Commun., Control, Computing, Sept. 2011, pp. 1764–1770.

[34] S. Jalali, A. Maleki, and R. G. Baraniuk, “Minimum complexity pursuit for universal compressed sensing,” IEEE Trans. Inf. Theory, vol.

60, no. 4, pp. 2253–2268, Apr. 2014.

[35] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5, pp. 465–471, Sept. 1978.

[36] G. Schwarz, “Estimating the dimension of a model,” Ann. Stat., vol. 6, no. 2, pp. 461–464, 1978.

[37] C. S. Wallace and D. M. Boulton, “An information measure for classification,” Comput J, vol. 11, no. 2, pp. 185–194, 1968.

[38] A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in coding and modeling,” IEEE Trans. Inf. Theory, vol.

44, no. 6, pp. 2743–2760, Oct. 1998.

[39] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 6, pp. 721–741, Nov. 1984.

[40] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harm. Anal.,

vol. 26, no. 3, pp. 301–321, May 2009.

[41] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and redundant dictionaries,” Appl. Comput.

Harmon. Anal., vol. 31, no. 1, pp. 59–73, July 2011.

[42] S. Rangan, “Estimation with random linear mixing, belief propagation and compressed sensing,” ArXiv preprint arXiv:1001.2228, Jan.

2010.

[43] D. Guo and C. C. Wang, “Multiuser detection of sparsely spread CDMA,” IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 421–431, Apr.

2008.

[44] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, pp. 433–460, Oct. 1950.

[45] D. Baron and T. Weissman, “An MCMC approach to universal lossy compression of analog sources,” IEEE Trans. Sig. Process., vol. 60,

pp. 5230–5240, Oct. 2012.

[46] S. Jalali and T. Weissman, “Rate-distortion via Markov chain Monte Carlo,” in Proc. Int. Symp. Inf. Theory (ISIT), July 2008, pp. 852–856.

[47] S. Jalali and T. Weissman, “Block and sliding-block lossy compression via MCMC,” IEEE Trans. Comm., vol. 60, no. 8, pp. 2187–2198,

Aug. 2012.

[48] E. Yang, Z. Zhang, and T. Berger, “Fixed-slope universal lossy data compression,” IEEE Trans. Inf. Theory, vol. 43, no. 5, pp. 1465–1476,

Sept. 1997.

[49] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context tree weighting method: Basic properties,” IEEE Trans. Inf. Theory,

vol. 41, no. 3, pp. 653–664, May 1995.

[50] J. Zhu and D. Baron, “Performance regions in compressed sensing from noisy measurements,” in Proc. 2013 Conf. Inf. Sciences Systems,

Baltimore, MD, Mar. 2013, pp. 1–6.

[51] S. Jalali and H. V. Poor, “Universal compressed sensing of Markov sources,” Arxiv preprint arXiv:1406.7807, June 2014.
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