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Abstract

The compressed sensing (CS) framework has been proposed for efficient acquisition of sparse
and compressible signals through incoherent measurements. In our recent work, we introduced
a new concept of joint sparsity of a signal ensemble. For several specific joint sparsity models,
we demonstrated distributed CS schemes. This paper considers joint sparsity via graphical
models that link the sparse underlying coefficient vector, signal entries, and measurements. Our
converse and achievable bounds establish that the number of measurements required in the
noiseless measurement setting is closely related to the dimensionality of the sparse coefficient
vector. Single signal and joint (single-encoder) CS are special cases of joint sparsity, and their
performance limits fit into our graphical model framework for distributed (multi-encoder) CS.

1 Introduction

A framework for single-signal sensing and compression has recently emerged under the rubric of
Compressed Sensing (CS). CS builds on the work of Candès, Romberg, and Tao [1] and Donoho [2],
and relies on tractable signal recovery procedures that provide exact recovery of a signal of length
N and sparsity K as long as cK projections are used to recover the signal (typically c ≈ 3 or
4). While powerful, the CS theory is mainly designed to exploit intra-signal structures at a single
sensor. Certain schemes have been proposed to apply CS in a multi-sensor setting [3, 4], but they
ignore intra-signal correlations.

In our recent work [5], we introduced a theory for distributed compressed sensing (DCS) that
enables new distributed coding algorithms to exploit both intra- and inter-signal correlation struc-
tures. In a typical DCS scenario, multiple sensors measure signals that are each individually sparse
in some basis and also correlated among sensors. Each sensor independently encodes its signal by
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projecting it onto another, incoherent basis (such as a random one) and then transmits just a few
of the resulting coefficients to a single collection point. Under the right conditions, a decoder at
the collection point can recover each of the signals precisely.

The DCS theory relies on the joint sparsity of a signal ensemble. Unlike the single-signal
definition of sparsity, however, there are numerous plausible ways in which joint sparsity could be
defined. In this paper, we provide a general framework for joint sparsity using graphical models.
Using this framework, we derive upper and lower bounds for the number of noiseless measurements
required for recovery. Our results are also applicable to cases where the signal ensembles are
measured jointly, as well as to the single signal case.

2 Compressed Sensing Background

Consider a length-N , real-valued signal x ∈ R
N and a sparsifying basis Ψ, which provides a K-

sparse representation θ = ΨT x of x. Using ‖·‖p to denote the ℓp norm,1 we have ‖θ‖0 = K. Various
expansions, including Fourier and wavelets, are widely used for representation and compression of
natural signals, and other data.

In CS we do not measure or encode the sparse vector θ directly. Rather, we take M < N
projections of the signal onto a second set of random functions. Using matrix notation, we measure
y = Φx, where y ∈ R

M column vector and the measurement matrix Φ ∈ R
M×N with i.i.d. Gaussian

entries. Since M < N , recovery of the signal x from the measurements y is ill-posed in general.
However, the assumption of signal sparsity makes recovery possible and computationally tractable.

The sparse set of significant coefficients θ can be recovered by searching for the signal with
ℓ0-sparsest coefficients θ̂ that agrees with y:

θ̂ = arg min ‖θ‖0 s.t. y = ΦΨθ. (1)

In principle, remarkably few incoherent measurements are required to perfectly recover a K-sparse
signal using (1). Although it is necessary to take more than K measurements to avoid ambiguity,
K + 1 measurements will suffice [5]. Thus, one measurement separates the achievable region,
where perfect recovery is possible with probability one, from the converse region, where recovery
is impossible. Unfortunately, (1) is prohibitively complex. In fact, it is NP-complete. Recovery
methods such as ℓ1 minimization provide computationally tractable signal recovery at the expense
of a moderate increase in the number of measurements M [1, 2].

3 Joint Sparsity Models

In this section, we generalize the notion of a signal being sparse in some basis to joint sparsity within
a signal ensemble. We begin with basic notation. Let Λ := {1, 2, . . . , J} be the set of signal indices.
Denote the signals in the ensemble by xj ∈ R

N , where j ∈ Λ. We use xj(n) to denote sample n
in signal j, and assume for the sake of illustration that these signals are sparse in the canonical
basis, i.e., Ψ = I. The entries of the signal can take arbitrary real values, and the framework is
extendable to arbitrary Ψ.

We denote by Φj the measurement matrix for signal j; Φj is Mj×N and, in general, entries of Φj

are different for each j. Thus, yj = Φjxj consists of Mj < N random measurements of xj . We em-
phasize random Gaussian matrices Φj in the following, but other measurement matrices are possible.

1The ℓ0 “norm” ‖θ‖0 counts the number of nonzero entries in θ.
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To compactly represent the signal and measurement ensembles, we define X = [xT
1 . . . xT

J ]T ∈ R
JN

and Y = [yT
1 . . . yT

J ]T ∈ R

P

Mj . Finally, we also define Φ = diag(Φ1, . . . ,ΦJ), where diag denotes
a matrix diagonal concatenation, to get Y = ΦX.

3.1 Algebraic framework

Our framework enables analysis of a given ensemble x1, x2, . . . , xJ in a “jointly sparse” sense, as well
as a metric for the complexities of different signal ensembles. It is based on a factored representation
of the signal ensemble, and decouples location and value information. We begin by illustrating the
single signal case.

Single signal case: Consider a sparse x ∈ R
N with K < N nonzero entries. Alternatively, we

can write x = Pθ, where θ ∈ R
K contains the nonzero values of x, and P is an identity submatrix,

i.e., P contains K columns of the N ×N identity matrix I. To model the set of all possible sparse
signals, let P be the set of all identity submatrices of all possible sizes N ×K ′, with 1 ≤ K ′ ≤ N .
We refer to P as a sparsity model. Given a signal x, one may consider all possible factorizations
x = Pθ, with P ∈ P. Among them, the smallest dimensionality for θ indicates the sparsity of x
under the model P.

Multiple signal case: For multiple signals, consider factorizations of the form X = PΘ where
X ∈ R

JN as above, P ∈ R
JN×D, and Θ ∈ R

D. We refer to P and Θ as the location matrix and
value vector, respectively. A joint sparsity model (JSM) is defined in terms of a set P of admissible
location matrices P with varying numbers of columns. Unlike the single signal case, there are
multiple choices for what matrices P belong to a joint sparsity model P.

Minimal sparsity: For a given ensemble X, let PF (X) denote the set of feasible location
matrices P ∈ P for which a factorization X = PΘ exists. Among the feasible location matrices, we
let PM (X) ⊆ PF (X) denote the matrices P having the minimal number of columns. The number of
columns D for each P ∈ PM (X) is called the joint sparsity level of X under the model P. Generally
speaking, the minimal location matrices PM (X) permit the most efficient factorizations of the signal
ensemble; we show in Section 4 that these matrices dictate the number of measurements.

We restrict our attention in this paper to scenarios where each signal xj is generated as a
combination of two components: (i) a common component zC , which is present in all signals, and
(ii) an innovation component zj , which is unique to each signal. These combine additively, giving
xj = zC + zj , j ∈ Λ. However, individual components might be zero-valued in specific scenarios.

3.2 Example Joint Sparsity Model: JSM-1

In the sparse common and innovations (JSM-1) model [5], the common component zC and each
innovation component zj are sparse with respective sparsities KC and Kj . Within our algebraic
framework, the class of JSM-1 signals correspond to the set of all matrices

P =




PC P1 . . . 0
...

...
. . .

...
PC 0 . . . PJ


 ,

where PC and {Pj}j∈Λ are arbitrary identity submatrices of sizes N×KC and N×Kj , respectively,
and 0 denotes a zero matrix of appropriate size. Given X = PΘ, we can partition the value vector
Θ = [θT

C θT
1 θT

2 . . . θT
J ]T , where θC ∈ R

KC and each θj ∈ R
Kj . When generating a signal according
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to this model, we have zC = PCθC , zj = Pjθj, j ∈ Λ. If P ∈ PM (X), then the joint sparsity is
D = KC +

∑
j∈Λ Kj .

Sparsity reduction: If a signal ensemble X = PΘ, Θ ∈ R
D, were to be generated by a

selection of PC and {Pj}j∈Λ, where all J + 1 identity submatrices share a common column vector,
then P /∈ PM (X). By removing the instance of this column in PC , one obtains Q ∈ P such that
there exists Θ′ ∈ R

D−1 with X = QΘ′. We term this phenomenon sparsity reduction, since it
reduces the effective joint sparsity of a signal ensemble.

4 Bound on Measurement Rates

We seek conditions on the number of measurements from each sensor that guarantee perfect recovery
of X given Y . Within our algebraic framework, recovering X involves determining a value vector Θ
and location matrix P such that X = PΘ. Two challenges are present. First, a given measurement
depends only on some of the components of Θ, and the measurement budget should be adjusted
between the sensors in order to gather sufficient information on all components of Θ. Second, the
decoder must identify a feasible location matrix P ∈ PF (X) from the set P and the measurements
Y . In this section, we develop tools to address these challenges and characterize the number of
measurements needed by them.

4.1 Graphical model framework

We introduce a graphical representation that captures the dependencies between the measurements
in Y and the value vector Θ, represented by Φ and P . Consider a feasible decomposition of X
into P ∈ PF (X) and the corresponding Θ. We define the following sets of vertices, illustrated in
Figure 1(a): (i) the set of value vertices VV has elements with indices d ∈ {1, . . . ,D} representing
entries of the value vector θ(d); (ii) the set of signal vertices VS has elements with indices (j, n) rep-
resenting the signal entries xj(n), with j ∈ Λ and n ∈ {1, . . . , N}; and (iii) the set of measurement
vertices VM has elements with indices (j,m) representing the measurements yj(m), with j ∈ Λ and
m ∈ {1, . . . ,Mj}. The cardinalities of these sets are |VV | = D, |VS | = JN and |VM | =

∑
j∈Λ Mj .

Let P be partitioned into location submatrices P j , j ∈ Λ, so that xj = P jΘ; here P j is
the restriction of P to the rows that generate the signal xj. We then define the bipartite graph
G = (VS , VV , E), determined by P , where there exists an edge connecting (j, n) and d if and only
if P j(n, d) 6= 0.

A similar bipartite graph G′ = (VM , VS , E′), illustrated in Figure 1(a), connects between the
measurement vertices {(j,m)} and the signal vertices {(j, n)}; there exists an edge in G′ connecting
(j, n) ∈ VS and (j,m) ∈ VM if Φj(m,n) 6= 0. When the measurements matrices Φj are dense, which
occurs with probability one for i.i.d. Gaussian random matrices, the vertices corresponding to entries
of a given signal xj in VS are all connected to all vertices corresponding to the measurements yj in
VV . Figure 1 shows an example for dense measurement matrices: each measurement vertex (j, ·) is
connected to each signal vertex (j, ·).

The graphs G and G′ can be merged into Ĝ = (VM , VV , Ê) that relates entries of the value
vector to measurements. Figure 1(b) shows the example composition of the previous two bipartite
graphs. Ĝ is used to recover Θ from the measurement ensemble Y when P is known.
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Figure 1: Bipartite graphs for distributed compressed sensing. (a) G = (VS , VV , E) connects the entries of
each signal with the value vector coefficients they depend on; G′ = (VM , VS , E′) connects the measurements
at each sensor with observed signal entries. The matrix Φ is a dense Gaussian random matrix, as shown in
the graph. (b) Ĝ = (VM , VV , Ê) is the composition of G and G′, and relates between value vector coefficients
and measurements. (c) Sets of exclusive indices for our example.

4.2 Quantifying dependencies and redundancies

We now define the subset of the value vector entries that is measured exclusively by a subset Γ of the
sensors in the ensemble; the cardinality of this set will help determine the number of measurements
the sensors in Γ should perform. We denote by E(V ) the neighbors of a set of vertices V through
the edge set E.

Definition 1 Let G = (VS , VV , E) be the bipartite graph determined by P , let Γ ⊆ Λ, and let
VS(Γ) be the set of vertices VS(Γ) = {(j, n) ∈ VS : j ∈ Γ, n ∈ {1, . . . , N}}. We define the set
of exclusive indices for Γ given P , denoted I(Γ, P ), as the largest subset of {1, . . . ,D} such that
E(I(Γ, P )) ⊆ VS(Γ).

I(Γ, P ) is significant in our distributed measurement setting, because it contains the coefficients of
θ that only affect the signals in the set Γ and, therefore, can only be measured by those sensors.
Figure 1(c) shows an example setting of two signals of length N = 3 generated by a matrix P from
the JSM-1 model, with the sets I({1}, P ) and I({2}, P ) defined as the vertices in VV that connect
exclusively with VS({1}) and VS({2}), respectively.

Overlaps: When overlaps between common and innovation components are present in a signal,
we cannot recover the overlapped portions of both components from the measurements of this signal
alone; we need to recover the common component’s coefficients using measurements of other signals
that do not feature the same overlap. Furthermore, these coefficients of the value vector are not
included in I(Γ, P ). We thus quantify the size of the overlap for all subsets of signals Γ ⊂ Λ under
a feasible representation given by P and Θ.

Definition 2 The overlap size for the set of signals Γ ⊂ Λ, denoted KC,Γ, is the number of indices
in which there is overlap between the common and the innovation component supports at the signals
j /∈ Γ; more formally,

KC,Γ(P ) = |{n ∈ {1, . . . , N} : zC(n) 6= 0, ∀j /∈ Γ, zj(n) 6= 0}|.
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For the entire set of signals, the overlap size KC,Λ = 0.

For Γ 6= Λ, KC,Γ(P ) provides a penalty term due to the need for recovery of common component
coefficients that are overlapped by innovations in all other signals j /∈ Γ. The definition of KC,Λ

accounts for the fact that all the coefficients of Θ are included in I(Λ, P ).

4.3 Main Result

Converse and achievable bounds on the number of measurements necessary for recovery are given
below.

Theorem 1 (Achievable, known P ) Assume that a signal ensemble X is obtained from a com-
mon/innovation component JSM P. Let {Mj}j∈Λ be a measurement tuple. Suppose there exists a
full rank location matrix P ∈ PF (X) such that

∑

j∈Γ

Mj ≥ |I(Γ, P )| + KC,Γ(P ) (2)

for all Γ ⊆ Λ. If the Φj are random matrices having Mj rows of i.i.d. Gaussian entries for each

j ∈ Λ, and if Y = ΦX, then with probability one over Φ, there is a unique solution Θ̂ to the system
of equations Y = ΦP Θ̂, and hence the signal ensemble X can be uniquely reconstructed as X = P Θ̂.

Theorem 2 (Achievable, unknown P ) Assume that a signal ensemble X is obtained from a com-
mon/innovation component JSM P, and let Φj be random matrices having Mj rows of i.i.d. Gaus-
sian entries for each j ∈ Λ. If there exists a location matrix P ∗ ∈ PF (X) such that

∑

j∈Γ

Mj ≥ |I(Γ, P ∗)|+ KC,Γ(P ∗) + |Γ| (3)

for all Γ ⊆ Λ, then X can be uniquely recovered from Y with probability one over Φ.

Theorem 3 (Converse) Assume that a signal ensemble X is obtained from a common/innovation
component JSM P. Let {Mj}j∈Λ be a measurement tuple. Suppose there exists a full rank location
matrix P ∈ PF (X) such that ∑

j∈Γ

Mj < |I(Γ, P )| + KC,Γ(P ) (4)

for some Γ ⊆ Λ. Let Φj be any set of measurement matrices having Mj rows for each j ∈ Λ, and

let Y = ΦX. Then there exists a solution Θ̂ such that Y = ΦP Θ̂ but X̂ := P Θ̂ 6= X.

These theorems are proved in Appendices A, C, and D, respectively. The number of measurements
needed for recovery depends on the number of value vector coefficients that are observed only by
the sensors in Γ. The identication of a feasible location matrix P causes the 2 measurement-per-
sensor gap between the converse and achievable bounds (3-4). The algorithm used in Theorem 2
essentially performs an ℓ0 minimization to acquire Θ, where the correct P is identified using an
additional cross-validation step.
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Discussion: The theorems can also be applied to the single sensor and joint measurement
settings. In the single signal setting, we will have x = Pθ with θ ∈ R

K , and Λ = {1}; the theorem
provides the requirement M ≥ K + 1, which matches the existing requirements for reconstruction.

The joint measurement setting is equivalent to the single signal setting with a dense measure-
ment matrix, as all measurements are dependent on all signal entries. In this case, however, the
distribution of the measurements among the available sensors is irrelevant. Therefore, we only
obtain a condition on the total number of measurements obtained by the group of sensors as∑

j∈{1,...,N} Mj ≥ D + 1.

A Proof of Theorem 1

Because P ∈ PF (X), there exists Θ ∈ R
Ξ such that X = PΘ. Because Y = ΦX, then Θ is a

solution to Y = ΦPΘ. We will argue that, with probability one over Φ,

Υ := ΦP

has rank Ξ, and thus Θ is the unique solution to the equation Y = ΦPΘ = ΥΘ.
We recall that, under our common/innovation model, P has the form

P =




PC P1 0 . . . 0

PC 0 P2 . . . 0
...

...
...

. . .
...

PC 0 0 . . . PJ


 ,

where PC is an N × KC submatrix of the N × N identity, and each Pj , j ∈ Λ, is an N × Kj

submatrix of the N ×N identity. We let

Ξ := KC +
∑

j∈Λ

Kj = KC +
∑

j∈Λ

|I({j}, P )| (5)

denote the number of columns in P .
To prove that Υ has rank Ξ, we will require the following lemma, which we prove in Appendix B.

Lemma 1 If (2) holds, then there exists a mapping M : {1, 2, . . . ,KC} → Λ, assigning each
element of the common component to one of the sensors, such that for each Γ ⊆ Λ,

∑

j∈Γ

Mj ≥ |I(Γ, P )| +

KC∑

k=1

1M(k)∈Γ (6)

and such that for each k ∈ {1, 2, . . . ,KC}, the kth column of PC does not also appear as a column
of PM(k).

Intuitively, the existence of such a mapping suggests that (i) each sensor has taken enough
measurements to cover its own innovation (requiring |I({j}, P )| measurements) and perhaps some
of the common component, (ii) for any Γ ⊆ Λ, the sensors in Γ have collectively taken enough
extra measurements to cover the requisite KC,Γ(P ) elements of the common component, and (iii)
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the extra measurements are taken at sensors where the common and innovation components do not
overlap. Formally, we will use the existence of such a mapping to prove that Υ has rank Ξ.

We proceed by noting that Υ has the form

Υ =




Φ1PC Φ1P1 0 . . . 0

Φ2PC 0 Φ2P2 . . . 0
...

...
...

. . .
...

ΦJPC 0 0 . . . ΦJPJ


 ,

where each ΦjPC (respectively, ΦjPj) is an Mj × KC (respectively, Mj × Kj) submatrix of Φj

obtained by selecting columns from Φj according to the nonzero entries of PC (respectively, Pj).
In total, Υ has Ξ columns (5). To argue that Υ has rank Ξ, we will consider a sequence of three
matrices Υ0, Υ1, and Υ2 constructed from small modifications to Υ.

We begin by letting Υ0 denote the “partially zeroed” matrix obtained from Υ using the following
construction. We first let Υ0 = Υ and then make the following adjustments:

1. Let k = 1.

2. For each j such that Pj has a column that matches column k of PC (note that by Lemma 1
this cannot happen ifM(k) = j), let k′ represent the column index of the full matrix P where
this column of Pj occurs. Subtract column k′ of Υ0 from column k of Υ0. This forces to zero
all entries of Υ0 formerly corresponding to column k of the block ΦjPC .

3. If k < KC , add one to k and go to step 2.

The matrix Υ0 is identical to Υ everywhere except on the first KC columns, where any portion of
a column overlapping with a column of ΦjPj to its right has been set to zero. Thus, Υ0 satisfies
the following two properties, which will be inherited by matrices Υ1 and Υ2 that we subsequently
define:

P1. Each entry of Υ0 is either zero or a Gaussian random variable.

P2. All Gaussian random variables in Υ0 are i.i.d.

Finally, because Υ0 was constructed only by subtracting columns of Υ from one another,

rank(Υ0) = rank(Υ). (7)

We now let Υ1 be the matrix obtained from Υ0 using the following construction. For each
j ∈ Λ, we select |I({j}, P )| +

∑KC

k=1 1M(k)=j arbitrary rows from the portion of Υ0 corresponding
to sensor j. Using (5), the resulting matrix Υ1 has

∑

j∈Λ

(
|I({j}, P )| +

KC∑

k=1

1M(k)=j

)
=



∑

j∈Λ

|I({j}, P )|


 + KC = Ξ

rows. Also, because Υ1 was obtained by selecting a subset of rows from Υ0, it has Ξ columns (5)
and satisfies

rank(Υ1) ≤ rank(Υ0). (8)

We now let Υ2 be the Ξ× Ξ matrix obtained by permuting columns of Υ1 using the following
construction:
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1. Let Υ2 = [ ], and let j = 1.

2. For each k such that M(k) = j, let Υ1(k) denote the kth column of Υ1, and concatenate
Υ1(k) to Υ2, i.e., let Υ2 ← [Υ2 Υ1(k)]. There are

∑KC

k=1 1M(k)=j such columns.

3. Let Υ′
1 denote the columns of Υ1 corresponding to the entries of ΦjPj (the innovation com-

ponents of sensor j), and concatenate Υ′
1 to Υ2, i.e., let Υ2 ← [Υ2 Υ′

1]. There are |I({j}, P )|
such columns.

4. If j < J , let j ← j + 1 and go to Step 2.

Because Υ1 and Υ2 share the same columns up to reordering, it follows that

rank(Υ2) = rank(Υ1). (9)

Based on its dependence on Υ0, and following from Lemma 1, the square matrix Υ2 meets properties
P1 and P2 defined above in addition to a third property:

P3. All diagonal entries of Υ2 are Gaussian random variables.

This follows because for each j, |I({j}, P )|+
∑KC

k=1 1M(k)=j rows of Υ1 are assigned in its construc-

tion, while |I({j}, P )| +
∑KC

k=1 1M(k)=j columns of Υ2 are assigned in its construction. Thus, each
diagonal element of Υ2 will either be an entry of some ΦjPj , which remains Gaussian throughout
our constructions, or it will be an entry of some kth column of some ΦjPC for whichM(k) = j. In
the latter case, we know by Lemma 1 and the construction of Υ0 that this entry remains Gaussian
throughout our constructions.

Having identified these three properties satisfied by Υ2, we will prove by induction that, with
probability one over Φ, such a matrix has full rank.

Lemma 2 Let Υ(d−1) be a (d− 1)× (d− 1) matrix having full rank. Construct a d× d matrix Υ(d)

as follows:

Υ(d) :=

[
Υ(d−1) v1

vt
2 ω

]

where v1, v2 ∈ R
d−1 are vectors with each entry being either zero or a Gaussian random variable,

ω is a Gaussian random variable, and all random variables are i.i.d. and independent of Υ(d−1).
Then with probability one, Υ(d) has full rank.

Applying Lemma 2 inductively Ξ times, the success probability remains one. It follows that
with probability one over Φ, rank(Υ2) = Ξ. Combining this last result with (7-9), we obtain
rank(Υ) = Ξ with probability one over Φ. It remains to prove Lemma 2.
Proof of Lemma 2: When d = 1, Υ(d) = [ω], which has full rank if and only if ω 6= 0, which
occurs with probability one.

When d > 1, using expansion by minors, the determinant of Υ(d) satisfies

det(Υ(d)) = ω · det(Υ(d−1)) + C,

where C = C(Υ(d−1), v1, v2) is independent of ω. The matrix Υ(d) has full rank if and only if
det(Υ(d)) 6= 0, which is satisfied if and only if

ω 6=
−C

det(Υ(d−1))
.
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By assumption, det(Υ(d−1)) 6= 0 and ω is a Gaussian random variable that is independent of C and
det(Υ(d−1)). Thus, ω 6= −C

det(Υ(d−1))
with probability one. �

B Proof of Lemma 1

To prove this lemma, we apply tools from graph theory. We begin by specifying a bipartite graph
G̃ = (VV , VM , Ẽ) that depends on the structure of the location matrix P ∈ PF (X). The graph G̃
has two sets of vertices VV and VM and a collection of edges Ẽ joining elements of VV to VM . The
set VV has vertices with indices k ∈ {1, 2, . . . ,Ξ}, which are known as value vertices and represent
entries of the value vector Θ (equivalently, columns of the matrix P ). The set VM has vertices with
indices (j,m), with j ∈ Λ and m ∈ {1, 2, . . . ,Mj}, which are known as measurement vertices and
represent entries yj(m) of the measurement vectors (equivalently, rows of the matrix Φ). The edges

Ẽ are specified as follows:

• For every k ∈ {1, 2, . . . ,KC} ⊆ VV and j ∈ Λ such that column k of PC does not also appear
as a column of Pj , we have an edge connecting k to each vertex (j,m) ∈ VM for 1 ≤ m ≤Mj .

• For every k ∈ {KC +1,KC +2, . . . ,Ξ} ⊆ VV , we consider the sensor j associated with column
k of P , and we have an edge connecting k to each vertex (j,m) ∈ VM for 1 ≤ m ≤Mj .

This graph G̃ is a subgraph of the graph Ĝ shown in Figure 1(c), from which we remove the edges
going from common component vertices in VV to measurement vertices in VM that have incoming
edges from innovation component vertices in VV .

We seek a matching within this graph, i.e., a subgraph (VV , VM , Ē) with Ē ⊆ Ẽ that pairs each
element of VV with a unique element of VM . Such a matching will immediately give us the desired
mapping M as follows: for each k ∈ {1, 2, . . . ,KC} ⊆ VV , we let (j,m) ∈ VM denote the single
node matched to k by an edge in Ẽ, and we set M(k) = j.

To prove the existence of such a matching within the graph, we invoke a version of Hall’s
marriage theorem for bipartite graphs [6]. Hall’s theorem states that within a bipartite graph
(V1, V2, E), there exists a matching that assigns each element of V1 to a unique element of V2 if for
any collection of elements Π ⊆ V1, the set E(Π) of neighbors of Π in V2 has cardinality |E(Π)| ≥ |Π|.

In the context of our lemma, Hall’s condition requires that for any set of entries in the value
vector, Π ⊆ VV , the set Ẽ(Π) of neighbors of Π in VM has size |Ẽ(Π)| ≥ |Π|. We will prove that if
(2) is satisfied, then Hall’s condition is satisfied, and thus a matching must exist.

Let us consider an arbitrary set Π ⊆ VV . We let Ẽ(Π) denote the set of neighbors of Π in VM

joined by edges in Ẽ, and we let SΠ = {j ∈ Λ : (j,m) ∈ Ẽ(Π) for some m}. Thus, SΠ ⊆ Λ denotes
the set of signal indices whose measurement nodes have edges that connect to Π. It follows that
|Ẽ(Π)| =

∑
j∈SΠ

Mj . Thus, in order to satisfy Hall’s condition for Π, we require

∑

j∈SΠ

Mj ≥ |Π|. (10)

We would now like to show that |I(SΠ, P )| + KC,SΠ
(P ) ≥ |Π|, and thus if (2) is satisfied for all

Γ ⊆ Λ, then (10) is satisfied in particular for SΠ ⊆ Λ.
In general, the set Π may contain vertices for both common components and innovation com-

ponents. We write Π = ΠI ∪ΠC to denote the disjoint union of these two sets.
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By construction, |I(SΠ, P )| = |ΠI | because I(SΠ, P ) counts all innovations with neighbors in
SΠ, and because SΠ contains all neighbors for nodes in ΠI . We will also argue that KC,SΠ

(P ) ≥ |ΠC |
as follows. By definition, for a set Γ ⊆ Λ, KC,Γ(P ) counts the number of columns in PC that also
appear in Pj for all j /∈ Γ. By construction, for each k ∈ ΠC , node k has no connection to nodes
(j,m) for j /∈ SΠ; thus it must follow that the kth column of PC is present in Pj for all j /∈ SΠ, due
to the construction of the graph G. Consequently, KC,SΠ

(P ) ≥ |ΠC |.
Thus, |I(SΠ, P )| + KC,SΠ

(P ) ≥ |ΠI | + |ΠC | = |Π|, and so (2) implies (10) for any Π, and so
Hall’s condition is satisfied, and a matching exists. Because in such matching a set of vertices in
VM matches to a set in VV of lower or equal cardinality, we have in particular that (6) holds for
each Γ ⊆ Λ. �

C Proof of Theorem 2

Given the measurements Y and measurement matrix Φ, we show that it is possible to recover some
P ∈ PF (X) and a corresponding vector Θ such that X = PΘ using the following algorithm:

• Take the last measurement of each sensor for verification, and sum these J measurements to
obtain a single global test measurement ȳ. Similarly, add the corresponding rows of Φ into a
single row φ̄.

• Group all the remaining
∑

j∈Λ Mj − J measurements into a vector Ȳ and a matrix Φ̄.

• For each matrix P ∈ P

– choose a single solution ΘP to Ȳ = Φ̄PΘP independently of φ̄ – if no solution exists,
skip the next two steps;

– define XP = PΘP ;

– cross-validate: check if ȳ = φ̄XP ; if so, return the estimate (P,ΘP ); if not, continue with
the next matrix.

We begin by showing that, with probability one over Φ, the algorithm only terminates when it
gets a correct solution – in other words, that for each P ∈ P the cross-validation measurement ȳ
can determine whether XP = X. We note that all entries of the vector φ̄ are i.i.d. Gaussian, and
independent from Φ̄. Assume for the sake of contradiction that there exists a matrix P ∈ P such
that ȳ = φ̄XP , but XP = PΘP 6= X; this implies φ̄(X −XP ) = 0, which occurs with probability
zero over Φ. Thus, if XP 6= X, then φ̄XP 6= ȳ with probability one over Φ. Since we only need to
search over a finite number of matrices P ∈ P, cross validation will determine whether each matrix
P ∈ P gives the correct solution with probability one.

We now show that there is a matrix in P for which the algorithm will terminate with the correct
solution. We know that the matrix P ∗ ∈ PF (X) ⊆ P will be part of our search, and that the unique
solution ΘP ∗ to Ȳ = Φ̄P ∗ΘP ∗ yields X = P ∗ΘP ∗ when (3) holds for P ∗, as shown in Theorem 1.
Thus, the algorithm will find at least one matrix P and vector ΘP such that X = PΘP ; when such
matrix is found the cross-validation step will return this solution and end the algorithm. �

Remark. Consider the algorithm used in the proof: if the matrices in P are sorted by number
of columns, the algorithm is akin to ℓ0 minimization on Θ with an additional cross-validation step.
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D Proof of Theorem 3

We let Ξ denote the number of columns in P . Because P ∈ PF (X), there exists Θ ∈ R
Ξ such that

X = PΘ. Because Y = ΦX, then Θ is a solution to Y = ΦPΘ. We will argue for Υ := ΦP that
rank(Υ) < Ξ, and thus there exists Θ̂ 6= Θ such that Y = ΥΘ = ΥΘ̂. Moreover, since P has full
rank, it follows that X̂ := P Θ̂ 6= PΘ = X.

We let Υ0 be the “partially zeroed” matrix obtained from Υ using the identical procedure
detailed in Appendix A. Again, because Υ0 was constructed only by subtracting columns of Υ
from one another, it follows that rank(Υ0) = rank(Υ).

Suppose Γ ⊆ Λ is a set for which (4) holds. We let Υ1 be the submatrix of Υ0 obtained by
selecting the following columns:

• For any k ∈ {1, 2, . . . ,KC} such that column k of PC also appears as a column in all Pj for
j /∈ Γ, we include column k of Υ0 as a column in Υ1. There are KC,Γ(P ) such columns k.

• For any k ∈ {KC + 1,KC + 2, . . . ,Ξ} such that column k of P corresponds to an innovation
for some sensor j ∈ Γ, we include column k of Υ0 as a column in Υ1. There are |I(Γ, P )| such
columns k.

This submatrix has |I(Γ, P )| + KC,Γ(P ) columns. Because Υ0 has the same size as Υ, and in
particular has only Ξ columns, then in order to have that rank(Υ0) = Ξ, it is necessary that all
|I(Γ, P )| + KC,Γ(P ) columns of Υ1 be linearly independent.

Based on the method described for constructing Υ0, it follows that Υ1 is zero for all measurement
rows not corresponding to the set Γ. Therefore, let us consider the submatrix Υ2 of Υ1 obtained
by selecting only the measurement rows corresponding to the set Γ. Because of the zeros in Υ1, it
follows that rank(Υ1) = rank(Υ2). However, since Υ2 has only

∑
j∈Γ Mj rows, we invoke (4) and

have that rank(Υ1) = rank(Υ2) ≤
∑

j∈Γ Mj < |I(Γ, P )| + KC,Γ(P ). Thus, all |I(Γ, P )| + KC,Γ(P )
columns of Υ1 cannot be linearly independent, and so Υ does not have full rank. �
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