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Abstract

Compressive sensing (CS) is a new approach to simultaneosig and compression of sparse and
compressible signals. A great many applications featu@gimor modulated signals that can be modeled
as a linear combination of a small number of sinusoids; sigitats are sparse in the frequency domain.
In practical applications, the standard frequency doméainad representation is the discrete Fourier
transform (DFT). Unfortunately, the DFT coefficients of aquency-sparse signal are themselves sparse
only in the contrived case where the sinusoid frequenciesndeger multiples of the DFT’s fundamental
frequency. As a result, practical DFT-based CS acquisitind recovery of smooth signals does not
perform nearly as well as one might expect. In this paper, eeeldp a newspectral compressive
sensing(SCS) theory for general frequency-sparse signals. Théngrgdients are an over-sampled DFT
frame, a signal model that inhibits closely spaced sinssadd classical sinusoid parameter estimation
algorithms from the field of spectrum estimation. Using gegram and eigen-analysis based spectrum
estimates (e.g., MUSIC), our new SCS algorithms signifigasutperform the current state-of-the-art CS

algorithms while providing provable bounds on the numbenefisurements required for stable recovery.

. INTRODUCTION

The emerging theory afompressive sensi@S) combines digital data acquisition with digital data
compression to enable a new generation of signal acquisitystems that operate at sub-Nyquist rates.
Rather than acquiringV samplesx = [x[1] x[2] ... x[N]]” of an analog signal at the Nyquist rate, a

CS system acquire8/ < N measurements via the linear dimensionality reducgos ®x, where ®

Date: February 4, 2010. Rice University Technical ReporEERL005. MFD is with the Program in Applied and Computatlona
Mathematics, Princeton University, Princeton, NJ, 08FR&B is with the Department of Electrical and Computer Engiiey,
Rice University, Houston, TX 77005. Email: mduarte@prioceedu, richb@rice.edu. MFD and RGB were supported bytgran
NSF CCF-0431150 and CCF-0728867, DARPA/ONR N66001-08852 ONR N00014-07-1-0936 and N00014-08-1-1112,
AFOSR FA9550-07-1-0301, ARO MURIs W911NF-07-1-0185 and1W9F-09-1-0383, and the Texas Instruments Leadership
Program. MFD was also supported by NSF Supplemental FurdM§-0439872 to UCLA-IPAM, P.I. R. Caflisch.



is an M x N measurement matrix. When the signahas asparserepresentationx = ¥4 in terms of
an N x N orthonormal basis matriX', meaning that onlyx’ < N out of N signal coefficients) are
nonzero, then the number of measurements required to etimtre retains all of the information ix
is just M = O(K log(N/K)) [1-3]. Moreover, a sparse signalcan be recovered from its compressive
measurementg via a convex optimization or iterative greedy algorithmnBam matrices play a central
role as universal measurements, since they are suitablgignals sparse in any fixed basis with high
probability. The theory also extends to noisy signals ad asto so-calledompressiblesignals that are
not exactly sparse but can be closely approximated as spesé&signals have coefficietshat, when
sorted, decay according to a power ld@fi]| < Ci~'/? for somep < 1; the smaller the decay exponent
p, the faster the decay and the better the recovery perforenamccan expect from CS.

A great many applications feature smooth or modulated #&gteat can be modeled as a linear

combination of K sinusoids [4-7]:
K
x[n] =Y ape I, 1)
k=1

wherewy, € [0,2n] are the sinusoid frequencies. When the sinusoids are oftsfxtent, such signals

have aK-sparse representation in terms of the discrete-time Eotransform (DTFT}, since

K
X(w) = apd(w—wy), )
k=1

whered is the Dirac delta function. We will refer to such signalsfegjuency-sparse

Practical applications feature signals of finite length In this case, the frequency domain tool of
choice for analysis and CS recovery has been the discretéeFdtansform (DFTY. The DFT X[l] of
N consecutive samples from the smooth signal model (1) canbtened from the DTFT (2) by first

convolving with a sinc function and then sampling:

K
X[ =) a sinc(W) , (3)

where singw) := 22) andy, = Nex,

w 2w

Unfortunately, the DFT coefficients in (3) do not share thensasparsity property as the DTFT

coefficients in (2), except in the (contrived) case when thasoid frequencies in (1) aiategral, that is,

'Recall that the DTFT of a signak is defined asX(w) = 3°° _ x[n]e ’“" with inverse transformatiorx[n] =
% [ X (w)ed“mdw.
%Recall that the DFT of a lengtht signal x is defined asX[l]] = SN

N x[n]e 2 /N 1 < | < N, with inverse
transformationx[n] = & SV, X[l]e’>™"/N, 1 <n < N.
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Fig. 1. Compressive sensing (CS) sparse signal recovery frbm 300 noiseless random measurements of a signal
of lengthN = 1024 composed of{ = 20 complex-valued sinusoids with arbitrary real-valued trexqcies. We
compare the frequency spectra obtained from oversampléatjpgrams of (a) the original signal and its recovery
using (b) standard CS using the orthonormal DFT basis (SNRB5dB), (¢) standard CS usingl® x zero-padded,
redundant DFT frame (SNR=4.45dB), and (d) spectral CS using Algorithm 2 (SNR = 34.78 dB).

when each and evety is equal to an integer. On closer inspection, we see thatmgtave most smooth
signalsnot sparsén the DFT domain, but, owing to the slow asymptotic decayhef sinc function, they
are just barely compressibjavith a decay exponent gf = 1. As a result, practical CS acquisition and
recovery of smooth signals does not perform nearly as wediresmight expect (see Fig. 1(b) and the
discussion in [7], for example).

The goal of this paper is to develop new CS recovery algostlion practical smooth signals (with
non-integral frequencies). The naive first step is to chaihg signal representation to a zero-padded
DFT, which provides samples from the signal’s DTFT at a higlae than the standard DFT. This
is equivalent to replacing the DFT basis with a redundann&d8] of sinusoids that we will call
a DFT frame Unfortunately, there exists a tradeoff in the use of thesumdant frames for sparse
approximation and CS recovery: if we increase the amounteod-padding / size of the frame, then
signals with non-integral frequency components becomeensompressible, which increases recovery
performance. However, simultaneously, the frame beconweasinglycoheren{9, 10], which decreases
recovery performance (see Fig. 1(c), for example). In otdeoptimize this tradeoff, we will leverage
the last few decades of progress on sinusoid parameteratgtinfrom the field of spectrum estimation

[11-13] plus recent progress on model-based CS [14] andyrntfzese techniques with a class of greedy



CS recovery algorithms. We will refer to our general apphoasspectral compressive sensi(gCsS).

The primary novelty of SCS is the concept of taming the camsgeof the redundant DFT frame
using an inhibition model that ensures the sinusoid freqiesnu;, of (1) are not too closely spaced.
We will provide an analytical characterization of the numbé& measurementd/ required for stable
SCS signal recovery under this model and will study the perémce of the framework under parameter
variations. As we see from Fig. 1, the performance improvenoé SCS over standard DFT-based CS
can be substantial.

While this paper focuses on frequency-sparse signals, @& @ncept generalizes to other settings
featuring signals that are sparse in a parameterized reduirfdame. Examples include the frames
underlying localization problems [15-18], radar imagid§$21], and manifold-based signal models [22].

This paper is organized as follows. Section Il provides thaalibackground on CS and model-based
CS, while Section Ill summarizes existing schemes for lipectrum estimation. Section IV develops
our proposed SCS recovery algorithms, and Section V presaumnt experimental results. Section VI
summarizes related work in this area, and Section VII cleg#s conclusions and suggestions for future

work.

[l. BACKGROUND
A. Sparse approximation

A signalx € RY is K-sparse(K < N) in a basis or frame U if there exists a vectoé with
6]lo = K such thatx = 6. Here]|| - ||, denotes the, pseudo-norm, which simply counts the number
of nonzero entries in the vector. Signal compression oftdies on the existence of a known basis or
frame ¥ such that for the signal of interestthere exists d(-sparse approximatiosy in ¥ that yields
small approximation errofjx — xx||2. When ¥ is a basis, the optimak’-sparse approximation ot
in W is trivially found through hard thresholding: we presenrdyothe entries ofy with the K largest
magnitudes and set all other entries to zero. While threlsmglis suboptimal whew is a frame, there
exist a bevy ofsparse approximation algorithmthat aim to find a good sparse approximation to the
signal of interest. Such algorithms include basis pur2@8],| CoSaMP [24], matching pursuit [9], and

iterative thresholding [25-28]. The approximation pemance of the latter two algorithms is directly

3Recall that a frame is a matri¥ € RP*Y, D < N, such that for all vectors € R”, A||x||2 < [|[¥7x|2 < B|x|]> with

0 < A < B < oo. A frame is a generalization of the concept of a basis to sepossibly linearly dependent vectors [8].



tied to thecoherenceof the frameW, defined as

(W) = arg min (0, 15)]

where; denotes tha® column of Y. For example, orthogonal matching pursuit (OMP) succéigsfu

obtains aK-sparse signal representatiornuif?) < m [9,10].

B. Compressive sensing

Compressive Sensing (CS) is an efficient acquisition fraonkvior signals that are sparse or com-
pressible in a basis or frame. Rather than uniformly sampling the signalwe measure inner products
of the signal against a set of measurement vedtors. . ., ¢/ }; whenM < N, we effectively compress
the signal. By collecting the measurement vectors as rowa ofieasurement matri® ¢ RM*N
this procedure can be written as = ®&x = ®¥, with the vectory € RM containing the CS
measurements. We then aim to recover the signflom the fewest possible measuremeptsSince
®¥ is a dimensionality reduction, it has a null space, and saitefy many vectors<’ yield the same
recorded measuremenys Fortunately, standard sparse approximation algorithars e employed to
recover the signal representatiérby finding a sparse approximation gfusing the framél’ = &W.

The Restricted Isometry Property (RIP) has been proposeaktsure the fithess of a matfix for
CS [1].

Definition 1: The K-restricted isometry constatior the matrix T, denoted by, is the smallest

nonnegative number such that, for ale RY with ||0]|o = K,

(1= ar)10113 < [IPO1I3 < (1 + k) 10113 (4)

A matrix has the RIP ibx > 0. Since calculatingx for a given matrix requires a combinatorial amount
of computation, random matrices have been advocated. Fam@e, a matrix of sizeM x N with
independent and identically distributed (i.i.d.) Gaussatries with variance /M will have the RIP with
very high probability if K < M/log(N/M). The same is true of matrices following Rademacher)(

or more general subgaussian distributions. Revisitingpoewvious example, OMP can recoveKasparse

representatio from its measurementg = Y46 if the restricted isometry constafif ;1 < ﬁ [29].

C. Frequency-sparse signals
Recall from the introduction that frequency-sparse sigmdlthe form (1) have a sparse DTFT (2).

However, to exploit sparsity in CS, we require a discret@aigepresentation; thus, the DFT has been
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Fig. 2. Performance of< -term sparse approximation algorithms on signals of lergth= 1024 containing 20
complex sinusoids of arbitrary integral and non-integradjifiencies. We plot the approximation error as a function
of the approximation sparsit|k. (a) Orthonormal DFT basis approximation performance igegé for signals
with exclusively integral frequencies and atrocious fansils with non-integral frequencies. (b) Three potential
approximation strategies for sinusoids with non-intgémeduencies. Standard sparse approximation using the DFT
frame¥(c), ¢ = 10, performs even worse than using the orthonormal DFT basisctBred sparse approximations

based on periodogram and Root MUSIC spectrum estimatesrpenfiuch better.

the tool of choice for frequency-sparse signals. Additiignghe fast Fourier transform (FFT) provides
a very efficient algorithm to calculate the DFT coefficientsacsignal. The DFT of an length* signal

x can be obtained as its representation in the orthonoBRal basisF, which has entrieF[p, q] =
e=72ma/N /\/N, 1 < p,q < N.

The DFT basis preserves the sparsity of the DTFT for frequaparse signals only when the
signal components haviategral frequencieof the form 27n/N, wheren is an integer. Otherwise,
the situation is decidedly more complicated due to the spket#akage induced by windowing (sinc
convolution). To illustrate the difficulty, Fig. 2(a) plothie sparse approximation error of signals of
length N = 1024 containing 20 complex sinusoids of both integral and ndagral frequencies using
the DFT basis. As expected, sparse approximation using a SIS fails miserably for signals with
non-integral frequencies.

The naive way to combat spectral leakage is to employ a dahinframe that we term BFT
frame The DFT frame representation provides a finer sampling @ DRFT coefficients for the signal

x observed. We let € N denote the frequency oversampling factor for the DFT fraame] define the



frequency sampling intervah := 27 /cN € (0,27 /N]. We also let

o(w) = —[1 (I9IN i2/N | ie(N-1)/N|T

denote a normalized vector containing regular samples ofgptex sinusoid with angular frequengye
[0,27). The DFT frame with oversampling factois then defined a¥ (c) := [e(0) e(A) e(2A) ... e(27—
A)]T, and the corresponding signal representafiea ¥ (c)”x provides us withc N equispaced samples
of the signal’s DTFT. Note tha¥ (1) = F, the usual orthonormal DFT basis.

We can use the DFT framé&(c) to obtain sparse approximations for frequency-sparseatsgmith
components at arbitrary frequencies; as the frequencysawgling factorc increases, thek-sparse
approximation provided by’ (c) becomes increasingly accurate. The proof of the followimgrha is
given in the Appendix.

Lemma 1l:Let x = fo:lake(wk) be a K-frequency-sparse signal, and tefr = ¥(c)fx be its

bestK-sparse approximation in the franigc), with ||k ||o = K. Then the corresponding bekt-term

/ . 1
HX — XK”2 < HaHl 1-— Slncz%, (5)

Unfortunately, standard algorithms that aim to find the spapproximation ok in the frame¥(c) do

approximation error fox obeys

wherea = [a; ... ak]”.

not perform well wherr increases due to the high coherence between the frame septoticularly for

large values of:
¢N sin(m/cN)

s

— 1 asc — oo.

p(¥(c)) =

Due to this tradeoff, the maximum frequency oversamplimgoiathat still allows for sparse representation

of K-sparse signals is
1

c< )
N asinc (ﬁ)
whereasinc(-) denotes the inverse of the sinc function within the intef@al]. In words, the sparsity
K of the signal limits the maximum size of the redundant DFTmfeathat we can employ, and vice-
versa. Fig. 2(b) demonstrates the performance of stangamdes approximation of the same signal with
arbitrary frequencies as in Fig. 2(a), but using the redohétame ¥(c) instead, withc = 10. Due to
the high coherence of the framig(c), the algorithm cannot obtain an accurate sparse appraeimat

the signal.



D. Model-based compressive sensing

While many natural and manmade signals and images can beldsbto first-order as sparse or
compressible, the support of their large coefficients dftasan underlying second-order inter-dependency
structure. This structure can often be captured bian-of-subspaceasodel that enables an algorithmic
model-based C8amework to exploit signal structure during recovery [3d]. We provide a brief review
of model-based CS below; in Section IV, we will use this framek to overcome the issues of sparse
approximation and CS using coherent frames.

The setX i of all length4V, K-sparse signals is the union of tlﬁg) K-dimensional subspaces
aligned with the coordinate axes R'Y. A structured sparsity mod@ndows the-sparse signat with
additional structure that allows only certaii-dimensional subspaces frol and disallows others.
The signal modeM  is defined by the set ofix allowed support§Q, ..., Q. }. Signals fromM g
are calledK-structured sparse. Signals that are well-approximateds agructured sparse are called
structured compressible.

If we know that the sighak being acquired ig<-structured sparse or structured compressible, then
we can relax the RIP constraint on the CS measurement nifittix require isometry only for those
signals inM g and still achieve stable recovery from the compressive nreagzentsyy = 6. Themodel-
basedRIP requires that (4) holdsnly for signals with sparse representations M g [30, 31]; we denote
this new property asV -RIP to specify the dependence on the chosen signal modetlzanage the
model-based RIP constant frofi to d4, for clarity. Thisa priori knowledge reduces the number of
random measurements required for model-based RIP withgrigibability to M = O(log mx) [30]. For
some models, the reduction froM = O(K log(/N/K)) can be significant [14].

The M i-RIP property is sufficient for robust recovery of structhsparse signals using algorithms
such as model-based CoSaMP and IHT [14]. These model-baSedk¢&very algorithms replace the
standard optimal -sparse approximation performed by thresholding witstractured sparse approxi-
mation algorithmM(x, K') that returns the begt’-term approximation of the signal belonging in the
signal modelM k.

To summarize, the combination of a structured signal moddla structured sparse approximation
algorithm enables us to design a model-based recoveryithigothat achieves a substantial reduction in

the number of measurements required for stable recovery.



[1l. PARAMETER ESTIMATION FOR FREQUENCY-SPARSE SIGNALS

The goal of CS is to identify the values and locations of th@zewo / large coefficients of a
sparse / compressible signal from a small set of linear mieasents. For frequency-sparse signals,
such an identification can be interpreted as a parametenagin problem, since each coefficient index
corresponds to a sinusoid of a certain frequency. Thus,isncise, CS aims to estimate the frequencies
and amplitudes of the largest sinusoids present in the lsign@ractice, most CS recovery algorithms
iterate through a sequence of increasing-quality estsnaftehe signal coefficients by differentiating the
signal’s actual nonzero coefficients from spurious estsiasuch spurious coefficients are often modeled
as recovery noise.

Thus, we now briefly review the extensive prior work in parganestimation for frequency-sparse
signals embedded in noise [11,12]. We start with the simjplas®id signal model, expressed as=
Ae(w) +n, wheren ~ N(0,021) denotes a white noise vector with i.i.d. entries. The moadeameters

are A andw, the complex amplitude and frequency of the sinusoid, retsdy.

A. Periodogram-based methods

The maximum likelihood estimator (MLE) of the amplitudeé when the frequencw is known
is given by the DTFT ofx, the zero-padded, infinite length version of the sigralat frequencyw:
A= +X(w) = (e(w),x). [11,12] Furthermore, since only a single sinusoid is prestme MLE
for the frequencyw is given by the frequency of the largest-magnitude DTFT fideht of X: @ =
arg max,, | X (w)| = arg max,, |(e(w),x)| [11,12]. This approach is often described as plegiodogram
methodfor parameter estimation [12]. This simple estimator canekinded to the multiple sinusoid
setting by performing combinatorial hypothesis testing]]1

For frequency-sparse signals with components at integegluEncies, the signal’s representation in
the DFT basis provides the information needed by the MLEs@&ta this case, the parameter estimation
problem is equivalent to sparse approximation in the DFTsb3his equivalence can also be extended to
frequency-sparse signals whose component frequencidadcueled in an oversampled DTFT sampling

grid by using a DFT frame instead.

B. Window-based methods

From the spectral analysis point of view, we can argue thatcttherence of the DFT fram&(c)

is simply another manifestation of the spectral leakagélpro. The classical way to combat spectral
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leakage is to apply a tapered window function to the signfdrieecomputing the DFT [12, 13]. However,
windowing can also hamper the spectral analysis resoluti@king it more difficult to identify frequency-
sparse signal components with similar frequencies.

An improved approach to spectral estimation proposed bynBuom [32] forms a weighted average of
windowed DFTs using a set of windows known as prolate sptateiave functions (PSWF). The PSWF
windows are orthogonal and optimally concentrated in fezmy; hence, they optimize the resolution of
the frequency analysis [32]. Thomson’s method aims for arixd in the tradeoff between low spectral
leakage and high spectral analysis resolution. The esimmatf Section IlI-A can be adapted to employ

the Thomson frequency analysis estimate instead of theaksgDTFT.

C. Eigenanalysis-based methods

A modern alternative to classical periodogram-based sp@ctstimates are line spectrum estimation
algorithms based on eigenanalysis of the signal’s coioglahatrix [12]. Such algorithms provide im-
proved resolution of the parameters of a frequency-spagsalsby estimating the principal components
of the signal’s autocorrelation matrix in order to find therdoant signal modes in the frequency domain.
Example algorithms include Pisarenko’s method, multipdmal classification (MUSIC), and estimation
of signal parameters via rotationally invariant techng(lESPRIT). A line spectrum estimation algorithm
L(x, K) returns a set of dominark” frequencies for the input signal, with K being a controllable
parameter.

As a concrete example, we describe the MUSIC algorithm, lwigstimates the parameters of a
frequency-sparse signal embedded in noise. We revisit theehof Section lll:x = s + n, wheres is
now of the form (1) anch ~ N(0,52I) denotes a noise vector. MUSIC operates on the autocooelati
matrix Ry of x of size P x P; we obtain its eigendecomposition into the eigenvalugs. ., A\p, sorted
by decreasing magnitude, and the corresponding eigemgacta . . , vp. The algorithm relies on a score

function

1
s = e ©

and returns the locations of th€ largest score function peaks as the frequencies preseheisignal.

A modification known as Root MUSIC formulates a polynomiaattidepends on the noise subspace
eigenvectors; the polynomial’s zeros help determine tleatlons of the peaks of (6).
We can interpret the line spectrum estimation prodesas a K-sparse approximation algorithm

T'(x, K) in the frequency domain: first, we obtain ti#e frequencies(@, }X_, = L(x, K); second, we

10



estimate the values of the corresponding DTFT coefficiamtshfe signal as shown in Section IlI-A. We
note that most line spectrum estimation algorithms prowdeadeoff between estimation accuracy and
computational complexity in the selection of the windowesirsed to estimate the autocorrelation matrix

Rxx.

IV. SPECTRAL COMPRESSIVESENSING

We are now in a position to develop new SCS recovery algostiimat are especially tailored to
frequency-sparse signals of arbitrary frequencies. We develop two sets of algorithms based on the

periodogram and line spectrum estimation algorithms fraentisn 111.

A. SCS via periodogram

To alleviate the performance-sapping coherence of thendght DFT frame, we marry it with the
model-based CS framework of Section II-D that forces thaaigpproximation to contain linear combina-
tions of only incoherent frame elements. We assume injtthlht the components of the frequency-sparse
signalx have frequencies in the oversampled grid of the fraite); we will then extend our analysis
to signals with components at arbitrary frequencies at titeaf the subsection.

1) Structured signal modelWe begin by defining a structured signal model for frequesggrse
signals requiring that the components of the signal arehammnt with each other. Our structured signal
model is defined as

Tk en = {f: ae(d;A) s. t.d; €{0,...,cN — 1}, [(e(d;A),e(d;A))| < p, 1 <i,j < K} , (1)

i=1
wheren € [0, 1] is the maximal coherence allowed aid= 27 /cN as before. The union of subspaces
contained in7x ., corresponds to linear combinations &f incoherent elements from the DFT frame
U(c), andTk ., € Xk. The coherence restriction in (7) imposes a lower limit te flequency spacing
between any two sinusoids present in a recoverable sighathvechoes the frequency resolution issue of
spectrum estimators from Section Ill. Note that we requie gignal modelx ¢, to obeyu < m
— matching the requirements of sparse approximation dlgus mentioned in Section 1I-A — even
though the actual coherence of the dictiondrr) can be significantly larger [10].

2) Structured sparse approximation algorithrirollowing the incoherent component model above,
we modify a standard sparse approximation algorithm todagelecting highly coherent pairs of elements
of the DFT frameV (c). Our structured sparse approximation algorithm is an adi@pt of the refractory

model-based algorithm of [33] and can be implemented as teigen program.

11



The algorithmT(6, K, c, 1) takes as inputs the coefficient vectbe= ¥(c)'x € RV, the approxi-
mation sparsity’’, and the maximum coherence allowggdand finds the best approximation ferunder
the modelTx ... The integer program implementation employs a constraattimD,, € R<¥ >N which

has binary entries that indicate whether each pair of elésrfeom the DFT framel(¢) are coherent:
- Lt [(e(id), e(GAN| = p,
D}/«[Zaj] = . i .
0 if [{e(iA),e(jA))] < .
The implementation also employs the cost veeipe RV defined asy(i) = 0(i)2, i =0,...,eN — 1.

We proceed by solving the integer program

SK,c = arg fnn% cgs such thatD ;s < 1,s"1 < K, (8)
se{0,1}eN

where 1 denotes a vector of ones of appropriate length, and thenhsetvector entry-wise product
T(0,K,c, ) =0 - sk, as the structured sparse approximation output.

When the matrixD,, is totally unimodular, the integer program (8) has the sawlatisn as its
noninteger relaxation, which is a linear program [34] wha®senplexity is cubic on the number of
variables,0(c*N?3). One example of totally unimodular matrices ameerval matrices which are binary
matrices in which the ones appear consecutively in each\Wiwle the matrixD,, we use in our case
is not an interval matrix — as each row &f,, contains several intervals — it is possible to relax the
integer program by using a modified matil,. To obtain this new matrix, we decompose each mw
of D, into a set of rowss, 1, s, 2,... that contain only one interval each and for whigh s, ; = sy.
The number of rows oD, is then at mostjr—]x.

To reduce the computational complexity of this new struedugsparse approximation algorithm, we
propose a heuristic that relies drequency inhibition To obtain the model-based sparse approximation
in the DFT framef = ¥(c)Tx, we search for the coefficiert(d) with the largest magnitude. Once a
coefficient is selected, the algorithm inhibits all coeffitis for coherent sinusoids (i.e., indicé#sfor
which |(e(dA),e(d’A))| > u) by setting those coefficients to zero. This will include ediefficients
for frequencies withink = 27 asinc(1/p)/N radians/sample of the one selected. We then repeat the
process by searching for the next largest coefficient in rtag@ until K coefficients are selected or all
coefficients are zero. This heuristic has complexity: X' N log(c/N)) and offers very good performance
for sparse approximation of arbitrary frequency-spargaals, as shown in Fig. 2(b). Our experimental

results in Section V employ this heuristic structured spagproximation algorithm.
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Algorithm 1 Spectral Iterative Hard Thresholding (SIHT) via periodagr
Inputs: CS Matrix®, DFT frameW¥ := ¥(c), measurementsg,

structured sparse approximation algoritfi, K, ¢, ).
Outputs: K-sparse approximatioa, signal estimate.
initialize: 6y = 0, r = y,i=0
while halting criterion falsedo
t41+1
b« B;_1 + T(VT®Tr, N, c, 1) {form signal estimate
0; T(¥TWDb, K, c, 1) {prune signal estimate according to structured sparsityefhod
ry— dUh; {update measurement residpal
end while

returnd « @ %« Ul

3) Recovery algorithm:The model-based IHT algorithm of [14] is particularly amkleato mod-
ification to incorporate our heuristic frequency-sparspragimation algorithm. Due to the redundancy
of the frame¥(c), we perform some minor surgery on the algorithm: we replaeenbatrix® by the
matrix product®W¥ and multiply the signal estimafe by the Gramian matrix of the frame each time so
that coherent frame elements featuring coefficients of sipygosigns can cancel each other. The modified
algorithm, which we dulspectral iterative hard thresholdin@SIHT), is unfurled in Algorithm 1.

SIHT inherits a strong performance guarantee from stantiifd If the matrix ® has7:k . ,-RIP
with 67, . <2 —1, then we have

HX - \IIT(\I’T}(’ K, N)”Z
K1/2

where T(¥”x, K, ¢, 1) denotes the structured sparse approximation of the ingaabkk. We note that

+ Che; 9)

[x —X|[2 < Co

for signals that are frequency-sparse and composed of @nenhsinusoids with frequencies of the form
IA, we have¥T(U'x, K, ¢, u) = x, meaning that recovery from noiseless measurements ig.exac

4) Required number of CS measuremenite: calculate the number of random CS measurements
needed for signal recovery using Algorithm 1, we count thenber of subspacesg, that compose the
signal modelTx . ,. We can obtain a loose measurement bound by counting theemwhhi -dimensional

subspaces generated by subsets of the fréfag where no two vectors in a subspace have frequencies
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closer thans. From [33], we know the number of subspaces to be

. <cN — (K — 1)(casine(1/p) — 1))

K ?
this provides us with the following loose measurement bdond random matrix to have tHg g . ,-RIP:
M=0 <K log <C(N - K;‘?mc(l/’“‘))» . (10)

The measurement bound (10) differs from that of CS with ththamrormal DFT basis only in the
numerator inside the logarithm. While there is a reductibrup to cK in the numerator due to the
asinc(1/p) term, this reduction is significantly smaller than the pgnaf (¢ — 1) N due to frequency
oversampling. If we ignore the small reduction, then the benof measurements needed corresponds
to that required for &k -sparsecN-dimensional signal; in other words, SIHT enjoys the besedita
sparsifying coherent frame without the penalty on the nunobeneasurements required for stable signal
recovery. We will demonstrate below in Section V that, ingbice, SCS offers significant reductions in
the number of measurements needed for accurate recovergqfeincy-sparse signals when compared
against standard CS using both the orthonormal DFT basiD&Tdframes.

5) Frequency interpolationWe now address the case whergA is non-integer, that is, where the
frequency-sparse signal has components outside of thedneips sampled by the DFT frame. We will
modify the structured sparse approximation algorithm tdude frequency and magnitude estimation
steps. In this case, the approximation algorithm will finé fihequency in the grid that is closest to
each component’s frequency. In other words, the standaudtsted sparse approximation of (8) of
the signal estimate enables us to identify the grid freggsnclosest to the frequencies of the signal
components. It is then possible to estimate the componequéncies by performing a least squares
fit: for each index selected by the structured sparse appation, we fit the frame coefficients for a
set of neighboring indices to a functional form for the sgéh@aped frequency response of a windowed
sinusoid. For example, a quadratic fit works well for frequiea within the main lobe of the translated
sinc functionsinc(w — @) [32]. To improve the performance of the estimators for tregfrency and
amplitude of the sinusoids, we can use the multiple-windpacsrum estimator of [32], which offers

improved resolution on the frequency estimates and lowas bn the amplitude estimates.

B. SCS via line spectrum estimation

While the combination of a redundant frame and the coherartibiting structured sparsity model

yields an improvement in the performance of SIHT, the ataristill suffers from a limitation in the
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Algorithm 2 SIHT via Line Spectrum Estimation
Inputs: CS Matrix®, measurementg, structured sparse approximation algorithiff-, K).

Outputs: K -sparse approximatioftoy, ax }=_,, signal estimate.

initialize: xp =0, r=y,7=0

while halting criterion falsedo
11+ 1
{@k, ap} B, + T'(X;—1 + @7 (y — ®%;_1), K) {obtain parameter estimaies
R « S are(@y,) {form signal estimate

end while

retuns <« %, {©r, ax 1,

resolution of neighboring frequencies that it can distisguThis limitation is inherited from the frequency
and coefficient estimation methods used by SIHT, which asethan the periodogram.

Fortunately, we can leverage the line spectrum estimatiethoals described in Section I1I-C; recall
that these methods return a set of domin@rftequencies for the input signal, witki being a controllable
parameter. Since these methods do not rely on redundanédrame do not need to leverage the features
of SIHT that control the effect of coherence. We simply emgpibe structured sparse approximation
algorithmT’(x, K') from Section IlI-C in IHT, resulting in Algorithm 2. While atytical results for this
new algorithm have proven difficult to establish, we showerkpentally below that its performance

matches or exceeds that of SIHT via periodogram while etthigpia much simpler implementation.

V. EXPERIMENTAL RESULTS

In this section, we report experimental results for the qrenbince of the two SIHT recovery
algorithms as compared to standard CS recovery using thedlgdrithm. We probe the robustness
of the algorithms to varying amounts of measurement noisevarying frequency oversampling factors
c. We also test the algorithms on a real-world communicatisigeal. A Matlab toolbox containing
implementations of the SCS recovery algorithms, togethién scripts that generate all figures in this
paper, is available at http://dsp.rice.edu/scs.

Our first experiment compares the performance of standafdusing the orthonormal DFT basis
against that of the SIHT algorithms (Algorithms 1 and 2 froectton 1V). Our experiments use signals

of length NV = 1024 samples containing’ = 20 complex-valued sinusoids. For varyidd, we executed
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100 independent trials using random measurement matbiaessize M x N with i.i.d. Gaussian entries
and signalx = Zle e(wy), where each pair of frequencies, w;, 1 <i,j < K, i # j are spaced by
at least107 /1024 radians/sample. For each CS matrix / sparse signal pair w&nothe measurements
y = ®x and calculate estimates of the sig&alsing IHT with the orthonormal DFT basis, SIHT via
periodogram with frequency oversampling factor= 10 and maximum allowed coherenge = 0.1
(Algorithm 1), and SIHT via Root MUSIC (Algorithm 2). We usevéndow sizeWW = N/10 in Root
MUSIC to estimate the autocorrelation matig... We study the performance of these three algorithms
in three different regimesi)(the averagecase, in which the frequencies are selected randomly toimach
precision; {i) the bestcase, in which the frequencies are randomly selected antenlito the closest
integral frequency, resulting in zero spectral leakaget @in) the worst case, in which each frequency
is half-way in between two consecutive integral frequesiciesulting in maximal spectral leakage. The
results are summarized in Fig. 3 and show first that the aeepagformance of standard IHT is very
close to its worst-case performance, and second that bbth &gorithms perform significantly better on
the same signals. We also note that the SIHT algorithms walk iw the average case even though the
resulting signals do not match exactly match the spardeFm-frame assumption. Thus, the proposed
algorithms are robust to mistmatch in the values for thedeagies in the signal model (1). We use this
experimental setup in the rest of this section, but we i@stiirselves to the average case regime.

Our second experiment tests the robustness of the SIHTidlgwEr to additive noise in the measure-
ments. We set the experiment parameterdte- 1024, K = 20 andM = 300, and we add i.i.d. Gaussian
noise of variance to each measurements. For each value,afie perform 1000 independent noise trials;
in each trial, we generate the matricesand signalsx randomly as in the previous experiment. Fig. 4
shows the average norm of the recovery error as a functiomeofivise variance; the linear relationship
indicates stability to additive noise to the measuremeartsfirming the guarantee given in (9).

Our third experiment studies the impact of the frequencysampling factor: on the performance of
the SIHT algorithms. We use the same matrix and signal setup the previous experiment: we execute
10000 independent trials for each valuecofThe results, shown in Fig. 5, indicate a linear dependence
between the granularity of the DFT framde and the norm of the recovery error. This sheds light on the
tradeoff between the computational complexity and thequarance of the recovery algorithm, as well as
between the oversampling factdf /K (dependent oiog ¢) and the recovery performance. These results
also experimentally confirm Lemma 1.

Our fourth experiment tests the capacity of standard CS &8 f&covery algorithms to resolve
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Fig. 3. Performance of CS signal recovery via IHT using the orthota@dDFT basis, SIHT via periodogram, and SIHT
via Root MUSIC. We use signals of lenghh = 1024 containingk’ = 20 complex-valued sinusoids. The dotted lines
indicate the performance of IHT via the orthonormal DFT b&si the best case (when the frequencies of the sinusoids
are integral) and the worst case (when each frequency isMaglfiin between two consecutive integral frequencies).
The performance of IHT for arbitrary frequencies is closégavorst-case performance, while both SIHT algorithms

perform significantly better for arbitrary frequenciesl ddantities are averaged over 100 independent trials.
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Fig. 4. Performance of SIHT via periodogram and SIHT via Root MUSICSCS recovery from noisy measurements.
We use signals of lengtN = 1024 containingK = 20 complex-valued sinusoids and také = 300 measurements.
We add noise of varying variancesand calculate the average normalized error magnitude d@0 ihdependent
trials. The linear relationship between the noise varianzkthe recovery error indicates the robustness of the eggov

algorithm to noise.

neighboring frequencies in frequency-sparse signals.tfisrexperiment, the signal consists of 2 real-
valued sinusoids (i.e.X = 4) of length N = 1024 with frequencies that are separated by a value
d. varying between0.1 — 5 cycles/sample 2r/100N — 107 /N rad/sample); we obtail/ = 100

measurements of the signal. We measure the performancanofest IHT via DFT, SIHT via periodogram
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Fig. 5. Performance of SIHT via periodogram for SCS recovery undeyiag grid spacing resolutios = 27 /cN.
We use signals of lengtN = 1024 containingK = 20 complex-valued sinusoids and také = 300 measurements.

We average the recovery error over 10000 independent tfiabse is a linear dependence between the granularity of

the DFT frame and the norm of the recovery error.
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Fig. 6. Performance of IHT and SIHT algorithms for frequency-spaignals with components at closely spaced
frequencies. We use signals of length= 1024 containing 2 real sinusoid${( = 4) with frequencies separated by
0., and measure the signal recovery performance of IHT and Sl&lperiodogram and Root MUSIC frod = 100
measurements as a functionigf. The results verify the limitations of periodogram-basezthods and the markedly
improved performance of line spectrum estimation methaesl iy the different versions of SIHT. Additionally, we
see that standard IHT outperforms the SIHT algorithms orfigmvthe signal of interest is not contained in the class

of frequency-sparse signals with incoherent components.

with frequency oversampling factar = 10 and maximum allowed coherenge= 0.1, and SIHT via
Root MUSIC, all as a function of the frequency spacig For this experiment, we modify the window
size parameter of the Root MUSIC algorithmiié = N/3 to improve its estimation accuracy at the cost
of higher computational complexity. For each valuejgf we execute 100 independent trials as detailed
in previous experiments. The results, shown in Fig. 6, ydhe limitation of periodogram-based methods
as well as the improved resolution performance affordediigy $pectrum estimation methods like Root
MUSIC. Standard IHT only outperforms the SIHT algorithmsenhthe signal does not belong in the

class of frequency-sparse signals with incoherent comper{éhat is, very small frequency spacifg).
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Fig. 7. Performance of,-norm minimization, IHT via orthonormal DFT, and SIHT via &MUSIC algorithms
on a real-world AM communications signal of length= 32768 for a varying number of measurements. SIHT

significantly outperforms its standard counterparts.

Our last experiment tests the performance of standard CSS@®Irecovery algorithms on a real-
world signal. We use the amplitude modulated (AM) signahfrf¥, Figure 7], measured in a lab, and
simulate its acquisition using the random demodulator THe signal has lengtiv = 32768 samples.
We recover the signal in half-overlapping blocks of length = 1024 using IHT and SIHT via Root
MUSIC and compare their recovery performance as a functiegheonumber of measurement$ against
that of the/;-norm minimization algorithm used in [7]. We set the targeghal sparsity toKX = N/100
in the IHT and SIHT algorithms. The recovered AM signals drent demodulated, and the recovery
performance is measured in terms of the distortion agalesintessage obtained by demodulating the
signal at Nyquist rate. We average the performance overi@8 fior the random demodulator chipping
sequence. The results in Fig. 7 shows that SIHT consistentiyerforms its standard CS counterparts.

To summarize, our experiments have shown that SCS achigyeicantly improved signal recovery
performance for the overwhelming majority of frequencgise signals when compared with standard CS
recovery algorithms and sparsity bases. The two SCS regalgurithms we introduced and tested inherit
some attractive properties from their standard counté&spencluding robustness to model mismatch and

measurement noise.

VI. RELATED WORK

The most relevant prior work in CS of frequency-sparse dgeanploys a block-sparsity model,
where the DFT coefficients are grouped into local bins [3hictBa model is motivated by the locality
of the frequency spectra of real-world signals and is efbreia a two-stage recovery algorithm. The

first stage aims to find the locations of the bins containirg fbnzero DFT coefficients of the signal
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using standard CS; the second stage then recovers the tonthose bins by obtaining enough regular
samples for each of the occupied bins. When the bins areathyridentified, the recovery of the signal
content succeeds independently of the frequencies of timpaoents in (1).

A recent paper [36] independently studied the poor perfocaaof recovery of frequency-sparse
signals when the DFT basis is used. The paper provides aigémaenework for sparsity basis mismatch in
which an inaccurate sparsity basis is used for CS recovedydatermines a bound for the approximation
error as a function of the basis mismatch. The paper showsrthhe noiseless setting, CS via the DFT
basis provides lower accuracy that linear prediction méthon subsampled sinusoids. However, such
linear prediction methods are very sensitive to noise, hod are not suitable for use in the CS recovery
approach provided in Section V.

There also exists a related body of related work on compressiquisition of signals governed by a
small number of continuous-valued parameters. In finite aiiinnovation (FROI) sampling [37], certain
classes of signals governed by a small number of parametderde acquired by uniformly sampling
them using a specially designed kernel; the samples arepitwaessed to obtain an annihilating filter,
which in turn is used to estimate the values of the parametdrs application of FROI to frequency-
sparse signals results in the linear prediction method irs¢86], where the arguments of the complex
roots of an annihilating filter reveal the frequencies of the signal components in (1). In fact, line
spectral estimation algorithms have been proposed to @&&0OI to noisy sampling settings [38, 39],
albeit without performance guarantees.

Sparse approximation algorithms for frames characteri@edontinuously varying parameters have
also been considered [40]. Here, one designs a frame comhpds@ctors corresponding to a sampling
of the parameter space; this sampled frame can be used withddied greedy algorithm to obtain an
initial estimate of the parameter value, followed by a rafieat via gradient descent. To date the analysis
of such approaches has been limited to the convergencefrtite sparse approximation errfyy — ®x||2,
which is not exactly relevant to CS applications where wekdew error in the sparse representation

(i.e. |[x — x||2) instead of simple approximation fidelity.

VIlI. CONCLUSIONS

In this paper we have developed a new framework for CS regafdrequency-sparse signals, which
we have dubbed spectral compressive sensing (SCS). Thevirank uses a redundant frame of sinusoids

corresponding to an oversampled frequency grid togethdr avicoherence-inhibiting structured signal
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model that prevents the usual loss of performance due torétmeef coherence. We have provided both
performance guarantees for SCS signal recovery and a baunideonumber of random measurements
needed to enable these guarantees. We have also preseapeatiads of standard line spectrum estima-
tion methods to achieve recovery of combinations of sirisaiith arbitrarily close frequencies while
achieving low computational complexity. As Fig. 3 indicst&CS recovery significantly outperform CS
recovery based on the orthonormal DFT basis (up to 25dB ifitjuee).

Our SCS framework can be extended to other signal recovétipgewhere each component of the
signal’s sparse representation is governed by a small geraimeters. While such classes of signals are
well suited for manifold models when only one component isspnt in the signal [22], they fall short
for linear combinations of a varying number of componentdldwing SCS, we can construct a frame
whose elements correspond to a uniformly obtained samplindpe parameter space. However, when
the manifold model is very smooth, the resulting frame wélHighly coherent, limiting the performance
of sparse approximation algorithms. By posing coherenbéiting models such as that of (7), we can
enable accurate recovery of sparse signals under the radufrdme. Similarly to [40], we can evolve
from the parameter values corresponding to the chosen fvacters to more accurate estimates of these
parameters through the use of a least-squares fit of a furatfiorm or through the use of gradient descent
when the manifold has a tractable analytical form. Immedipplications of this formulation include
sparsity-based localization [15-18], radar imaging [1-and sparse time-frequency representations [8].

Further work includes integrating our frequency inhibiti@pproach into more powerful iterative [24]
and/;-norm minimization recovery algorithms as well as bettarelterizing the performance of the line
spectrum estimators used in the algorithms of Section I\é gérformance of these algorithms (accuracy,
robustness, and resolution) might be different when theyagplied to signal estimates obtained from
compressive measurements. We are also interested in exterie other CS recovery algorithms to be
used in conjunction with parameterized frame models. SGBatso be applied to signal ensembles;
when a microphone or antenna array is used and the emitt¢gitis, she dominant frequencies are the
same for each of the sensors, following the common spargmsisfjoint sparsity model [41]. For mobile
emitters, the changes in the frequency values can be modeleatding to the Doppler effect, which
increases the number of parameters for the signal enserobérv@d from two (for emitter position) to

four (for emitter position and velocity).
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APPENDIX

Proof of Lemma 1We start with ak-term approximation in the fram&(c):
K
X =) aje(wy),
k=1

wherea), = ay, sinc% andw}, = Around(wy/A). We then have

K K
i —xklle < lx=Xla = || are(wr) = > are(wy)]||
k=1 k=1 2
K !
. — N
= 1N (ake(w) — aj, S|nc<7(wk <) ) e(@d;@)) ,
2w
k=1 2
K K
: (wr — w, )N . o (wp —wl, )N
< Z lak| ||e(wk) — smc(T’€ e(wy,) ) = Z lag[\/1— smc?T’“,
k=1 k=1
AN I & 1
< 1—sind— =4/1 —siné— =4/1—siné—
< Z|ak|\/ inc’—— \/ i 2Cz:|6l1c| \/ inc’>—lall1,
k=1 k=1
proving the lemma. O
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