
Spectral Compressive Sensing
Marco F. Duarte,Member, IEEE,and Richard G. Baraniuk,Fellow, IEEE

Abstract

Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and

compressible signals. A great many applications feature smooth or modulated signals that can be modeled

as a linear combination of a small number of sinusoids; such signals are sparse in the frequency domain.

In practical applications, the standard frequency domain signal representation is the discrete Fourier

transform (DFT). Unfortunately, the DFT coefficients of a frequency-sparse signal are themselves sparse

only in the contrived case where the sinusoid frequencies are integer multiples of the DFT’s fundamental

frequency. As a result, practical DFT-based CS acquisitionand recovery of smooth signals does not

perform nearly as well as one might expect. In this paper, we develop a newspectral compressive

sensing(SCS) theory for general frequency-sparse signals. The keyingredients are an over-sampled DFT

frame, a signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter estimation

algorithms from the field of spectrum estimation. Using peridogram and eigen-analysis based spectrum

estimates (e.g., MUSIC), our new SCS algorithms significantly outperform the current state-of-the-art CS

algorithms while providing provable bounds on the number ofmeasurements required for stable recovery.

I. INTRODUCTION

The emerging theory ofcompressive sensing(CS) combines digital data acquisition with digital data

compression to enable a new generation of signal acquisition systems that operate at sub-Nyquist rates.

Rather than acquiringN samplesx = [x[1] x[2] . . . x[N ]]T of an analog signal at the Nyquist rate, a

CS system acquiresM < N measurements via the linear dimensionality reductiony = Φx, whereΦ
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is anM × N measurement matrix. When the signalx has asparserepresentationx = Ψθ in terms of

anN × N orthonormal basis matrixΨ, meaning that onlyK ≪ N out of N signal coefficientsθ are

nonzero, then the number of measurements required to ensurethaty retains all of the information inx

is justM = O(K log(N/K)) [1–3]. Moreover, a sparse signalx can be recovered from its compressive

measurementsy via a convex optimization or iterative greedy algorithm. Random matrices play a central

rôle as universal measurements, since they are suitable for signals sparse in any fixed basis with high

probability. The theory also extends to noisy signals as well as to so-calledcompressiblesignals that are

not exactly sparse but can be closely approximated as such. Sparse signals have coefficientsθ that, when

sorted, decay according to a power law:|θ[i]| < Ci−1/p for somep ≤ 1; the smaller the decay exponent

p, the faster the decay and the better the recovery performance we can expect from CS.

A great many applications feature smooth or modulated signals that can be modeled as a linear

combination ofK sinusoids [4–7]:

x[n] =

K∑

k=1

ak e
−jωkn, (1)

whereωk ∈ [0, 2π] are the sinusoid frequencies. When the sinusoids are of infinite extent, such signals

have aK-sparse representation in terms of the discrete-time Fourier transform (DTFT),1 since

X(ω) =

K∑

k=1

ak δ(ω − ωk), (2)

whereδ is the Dirac delta function. We will refer to such signals asfrequency-sparse.

Practical applications feature signals of finite lengthN . In this case, the frequency domain tool of

choice for analysis and CS recovery has been the discrete Fourier transform (DFT).2 The DFTX[l] of

N consecutive samples from the smooth signal model (1) can be obtained from the DTFT (2) by first

convolving with a sinc function and then sampling:

X[l] =

K∑

k=1

ak sinc

(
2π(l − lk)

N

)
, (3)

where sinc(ω) := sin(πω)
πω , andlk = Nωk

2π .

Unfortunately, the DFT coefficients in (3) do not share the same sparsity property as the DTFT

coefficients in (2), except in the (contrived) case when the sinusoid frequencies in (1) areintegral, that is,

1Recall that the DTFT of a signalx is defined asX(ω) =
∑

∞

n=−∞
x[n]e−jωn with inverse transformationx[n] =

1

2π

∫ π

−π
X(ω)ejωn

dω.

2Recall that the DFT of a length-N signal x is defined asX[l] =
∑N

n=1
x[n]e−j2πln/N , 1 ≤ l ≤ N , with inverse

transformationx[n] = 1

N

∑N
l=1

X[l]ej2πln/N , 1 ≤ n ≤ N .
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Fig. 1. Compressive sensing (CS) sparse signal recovery fromM = 300 noiseless random measurements of a signal

of lengthN = 1024 composed ofK = 20 complex-valued sinusoids with arbitrary real-valued frequencies. We

compare the frequency spectra obtained from oversampled periodograms of (a) the original signal and its recovery

using (b) standard CS using the orthonormal DFT basis (SNR =5.35dB), (c) standard CS using a10× zero-padded,

redundant DFT frame (SNR =−4.45dB), and (d) spectral CS using Algorithm 2 (SNR = 34.78 dB).

when each and everylk is equal to an integer. On closer inspection, we see that not only are most smooth

signalsnot sparsein the DFT domain, but, owing to the slow asymptotic decay of the sinc function, they

are just barely compressible, with a decay exponent ofp = 1. As a result, practical CS acquisition and

recovery of smooth signals does not perform nearly as well asone might expect (see Fig. 1(b) and the

discussion in [7], for example).

The goal of this paper is to develop new CS recovery algorithms for practical smooth signals (with

non-integral frequencies). The naı̈ve first step is to change the signal representation to a zero-padded

DFT, which provides samples from the signal’s DTFT at a higher rate than the standard DFT. This

is equivalent to replacing the DFT basis with a redundant frame [8] of sinusoids that we will call

a DFT frame. Unfortunately, there exists a tradeoff in the use of these redundant frames for sparse

approximation and CS recovery: if we increase the amount of zero-padding / size of the frame, then

signals with non-integral frequency components become more compressible, which increases recovery

performance. However, simultaneously, the frame becomes increasinglycoherent[9, 10], which decreases

recovery performance (see Fig. 1(c), for example). In orderto optimize this tradeoff, we will leverage

the last few decades of progress on sinusoid parameter estimation from the field of spectrum estimation

[11–13] plus recent progress on model-based CS [14] and marry these techniques with a class of greedy
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CS recovery algorithms. We will refer to our general approach asspectral compressive sensing(SCS).

The primary novelty of SCS is the concept of taming the coherence of the redundant DFT frame

using an inhibition model that ensures the sinusoid frequencies ωk of (1) are not too closely spaced.

We will provide an analytical characterization of the number of measurementsM required for stable

SCS signal recovery under this model and will study the performance of the framework under parameter

variations. As we see from Fig. 1, the performance improvement of SCS over standard DFT-based CS

can be substantial.

While this paper focuses on frequency-sparse signals, the SCS concept generalizes to other settings

featuring signals that are sparse in a parameterized redundant frame. Examples include the frames

underlying localization problems [15–18], radar imaging [19–21], and manifold-based signal models [22].

This paper is organized as follows. Section II provides the usual background on CS and model-based

CS, while Section III summarizes existing schemes for line spectrum estimation. Section IV develops

our proposed SCS recovery algorithms, and Section V presents our experimental results. Section VI

summarizes related work in this area, and Section VII closeswith conclusions and suggestions for future

work.

II. BACKGROUND

A. Sparse approximation

A signal x ∈ R
N is K-sparse(K ≪ N ) in a basis or frame3 Ψ if there exists a vectorθ with

‖θ‖0 = K such thatx = Ψθ. Here‖ · ‖0 denotes theℓ0 pseudo-norm, which simply counts the number

of nonzero entries in the vector. Signal compression often relies on the existence of a known basis or

frameΨ such that for the signal of interestx there exists aK-sparse approximationxK in Ψ that yields

small approximation error‖x − xK‖2. WhenΨ is a basis, the optimalK-sparse approximation ofx

in Ψ is trivially found through hard thresholding: we preserve only the entries ofθ with theK largest

magnitudes and set all other entries to zero. While thresholding is suboptimal whenΨ is a frame, there

exist a bevy ofsparse approximation algorithmsthat aim to find a good sparse approximation to the

signal of interest. Such algorithms include basis pursuit [23], CoSaMP [24], matching pursuit [9], and

iterative thresholding [25–28]. The approximation performance of the latter two algorithms is directly

3Recall that a frame is a matrixΨ ∈ R
D×N , D < N , such that for all vectorsx ∈ R

D, A‖x‖2 ≤ ‖ΨT
x‖2 ≤ B‖x‖2 with

0 < A ≤ B < ∞. A frame is a generalization of the concept of a basis to sets of possibly linearly dependent vectors [8].
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tied to thecoherenceof the frameΨ, defined as

µ(Ψ) = arg min
1≤i,j≤N

|〈ψi, ψj〉| ,

whereψi denotes theith column ofΥ. For example, orthogonal matching pursuit (OMP) successfully

obtains aK-sparse signal representation ifµ(Ψ) ≤ 1
16(K−1) [9, 10].

B. Compressive sensing

Compressive Sensing (CS) is an efficient acquisition framework for signals that are sparse or com-

pressible in a basis or frameΨ. Rather than uniformly sampling the signalx, we measure inner products

of the signal against a set of measurement vectors{φ1, . . . , φM}; whenM < N , we effectively compress

the signal. By collecting the measurement vectors as rows ofa measurement matrixΦ ∈ R
M×N ,

this procedure can be written asy = Φx = ΦΨθ, with the vectory ∈ R
M containing the CS

measurements. We then aim to recover the signalx from the fewest possible measurementsy. Since

ΦΨ is a dimensionality reduction, it has a null space, and so infinitely many vectorsx′ yield the same

recorded measurementsy. Fortunately, standard sparse approximation algorithms can be employed to

recover the signal representationθ by finding a sparse approximation ofy using the frameΥ = ΦΨ.

The Restricted Isometry Property (RIP) has been proposed tomeasure the fitness of a matrixΥ for

CS [1].

Definition 1: TheK-restricted isometry constantfor the matrixΥ, denoted byδK , is the smallest

nonnegative number such that, for allθ ∈ R
N with ‖θ‖0 = K,

(1− δK)‖θ‖22 ≤ ‖Υθ‖22 ≤ (1 + δK)‖θ‖22. (4)

A matrix has the RIP ifδK > 0. Since calculatingδK for a given matrix requires a combinatorial amount

of computation, random matrices have been advocated. For example, a matrix of sizeM × N with

independent and identically distributed (i.i.d.) Gaussian entries with variance1/M will have the RIP with

very high probability ifK ≤M/ log(N/M). The same is true of matrices following Rademacher (±1)

or more general subgaussian distributions. Revisiting ourprevious example, OMP can recover aK-sparse

representationθ from its measurementsy = Υθ if the restricted isometry constantδK+1 <
1

3
√
K

[29].

C. Frequency-sparse signals

Recall from the introduction that frequency-sparse signals of the form (1) have a sparse DTFT (2).

However, to exploit sparsity in CS, we require a discrete signal representation; thus, the DFT has been
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Fig. 2. Performance ofK-term sparse approximation algorithms on signals of lengthN = 1024 containing 20

complex sinusoids of arbitrary integral and non-integral frequencies. We plot the approximation error as a function

of the approximation sparsityK. (a) Orthonormal DFT basis approximation performance is perfect for signals

with exclusively integral frequencies and atrocious for signals with non-integral frequencies. (b) Three potential

approximation strategies for sinusoids with non-intgeralfrequencies. Standard sparse approximation using the DFT

frameΨ(c), c = 10, performs even worse than using the orthonormal DFT basis. Structured sparse approximations

based on periodogram and Root MUSIC spectrum estimates perform much better.

the tool of choice for frequency-sparse signals. Additionally, the fast Fourier transform (FFT) provides

a very efficient algorithm to calculate the DFT coefficients of a signal. The DFT of an length-N signal

x can be obtained as its representation in the orthonormalDFT basisF, which has entriesF[p, q] =

e−j2πpq/N/
√
N , 1 ≤ p, q ≤ N .

The DFT basis preserves the sparsity of the DTFT for frequency-sparse signals only when the

signal components haveintegral frequenciesof the form 2πn/N , wheren is an integer. Otherwise,

the situation is decidedly more complicated due to the spectral leakage induced by windowing (sinc

convolution). To illustrate the difficulty, Fig. 2(a) plotsthe sparse approximation error of signals of

lengthN = 1024 containing 20 complex sinusoids of both integral and non-integral frequencies using

the DFT basis. As expected, sparse approximation using a DFTbasis fails miserably for signals with

non-integral frequencies.

The naı̈ve way to combat spectral leakage is to employ a redundant frame that we term aDFT

frame. The DFT frame representation provides a finer sampling of the DTFT coefficients for the signal

x observed. We letc ∈ N denote the frequency oversampling factor for the DFT frame,and define the
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frequency sampling interval∆ := 2π/cN ∈ (0, 2π/N ]. We also let

e(ω) :=
1√
N

[1 ejω/N ej2ω/N . . . ejω(N−1)/N ]T

denote a normalized vector containing regular samples of a complex sinusoid with angular frequencyω ∈
[0, 2π). The DFT frame with oversampling factorc is then defined asΨ(c) := [e(0) e(∆) e(2∆) . . . e(2π−
∆)]T , and the corresponding signal representationθ = Ψ(c)Tx provides us withcN equispaced samples

of the signal’s DTFT. Note thatΨ(1) = F, the usual orthonormal DFT basis.

We can use the DFT frameΨ(c) to obtain sparse approximations for frequency-sparse signals with

components at arbitrary frequencies; as the frequency oversampling factorc increases, theK-sparse

approximation provided byΨ(c) becomes increasingly accurate. The proof of the following lemma is

given in the Appendix.

Lemma 1:Let x =
∑K

k=1 ake(ωk) be aK-frequency-sparse signal, and letxK = Ψ(c)θK be its

bestK-sparse approximation in the frameΨ(c), with ‖θK‖0 = K. Then the corresponding bestK-term

approximation error forx obeys

‖x− xK‖2 ≤ ‖a‖1
√

1− sinc2
1

2c
, (5)

wherea = [a1 . . . aK ]T .

Unfortunately, standard algorithms that aim to find the sparse approximation ofx in the frameΨ(c) do

not perform well whenc increases due to the high coherence between the frame vectors, particularly for

large values ofc:

µ(Ψ(c)) =
cN sin(π/cN)

π
→ 1 asc→∞.

Due to this tradeoff, the maximum frequency oversampling factor that still allows for sparse representation

of K-sparse signals is

c ≤ 1

N asinc
(

1
16(K−1)

) ,

whereasinc(·) denotes the inverse of the sinc function within the interval[0, 1]. In words, the sparsity

K of the signal limits the maximum size of the redundant DFT frame that we can employ, and vice-

versa. Fig. 2(b) demonstrates the performance of standard sparse approximation of the same signal with

arbitrary frequencies as in Fig. 2(a), but using the redundant frameΨ(c) instead, withc = 10. Due to

the high coherence of the frameΨ(c), the algorithm cannot obtain an accurate sparse approximation of

the signal.
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D. Model-based compressive sensing

While many natural and manmade signals and images can be described to first-order as sparse or

compressible, the support of their large coefficients oftenhas an underlying second-order inter-dependency

structure. This structure can often be captured by aunion-of-subspacesmodel that enables an algorithmic

model-based CSframework to exploit signal structure during recovery [14,30]. We provide a brief review

of model-based CS below; in Section IV, we will use this framework to overcome the issues of sparse

approximation and CS using coherent frames.

The setΣK of all length-N , K-sparse signals is the union of the
(N
K

)
, K-dimensional subspaces

aligned with the coordinate axes inRN . A structured sparsity modelendows theK-sparse signalx with

additional structure that allows only certainK-dimensional subspaces fromΣK and disallows others.

The signal modelMK is defined by the set ofmK allowed supports{Ω1, . . . ,ΩmK
}. Signals fromMK

are calledK-structured sparse. Signals that are well-approximated asK-structured sparse are called

structured compressible.

If we know that the signalx being acquired isK-structured sparse or structured compressible, then

we can relax the RIP constraint on the CS measurement matrixΥ to require isometry only for those

signals inMK and still achieve stable recovery from the compressive measurementsy = Υθ. Themodel-

basedRIP requires that (4) holdsonly for signals with sparse representationsθ ∈ MK [30, 31]; we denote

this new property asMK -RIP to specify the dependence on the chosen signal model andchange the

model-based RIP constant fromδK to δMK
for clarity. This a priori knowledge reduces the number of

random measurements required for model-based RIP with highprobability toM = O(logmK) [30]. For

some models, the reduction fromM = O(K log(N/K)) can be significant [14].

TheMK -RIP property is sufficient for robust recovery of structured sparse signals using algorithms

such as model-based CoSaMP and IHT [14]. These model-based CS recovery algorithms replace the

standard optimalK-sparse approximation performed by thresholding with astructured sparse approxi-

mationalgorithmM(x,K) that returns the bestK-term approximation of the signalx belonging in the

signal modelMK .

To summarize, the combination of a structured signal model and a structured sparse approximation

algorithm enables us to design a model-based recovery algorithm that achieves a substantial reduction in

the number of measurements required for stable recovery.
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III. PARAMETER ESTIMATION FOR FREQUENCY-SPARSE SIGNALS

The goal of CS is to identify the values and locations of the nonzero / large coefficients of a

sparse / compressible signal from a small set of linear measurements. For frequency-sparse signals,

such an identification can be interpreted as a parameter estimation problem, since each coefficient index

corresponds to a sinusoid of a certain frequency. Thus, in this case, CS aims to estimate the frequencies

and amplitudes of the largest sinusoids present in the signal. In practice, most CS recovery algorithms

iterate through a sequence of increasing-quality estimates of the signal coefficients by differentiating the

signal’s actual nonzero coefficients from spurious estimates; such spurious coefficients are often modeled

as recovery noise.

Thus, we now briefly review the extensive prior work in parameter estimation for frequency-sparse

signals embedded in noise [11, 12]. We start with the simple sinusoid signal model, expressed asx =

Ae(ω)+n, wheren ∼ N (0, σ2I) denotes a white noise vector with i.i.d. entries. The model parameters

areA andω, the complex amplitude and frequency of the sinusoid, respectively.

A. Periodogram-based methods

The maximum likelihood estimator (MLE) of the amplitudeA when the frequencyω is known

is given by the DTFT ofx, the zero-padded, infinite length version of the signalx, at frequencyω:

Â = 1
NX(ω) = 〈e(ω),x〉. [11, 12] Furthermore, since only a single sinusoid is present, the MLE

for the frequencyω is given by the frequency of the largest-magnitude DTFT coefficient of x: ω̂ =

argmaxω |X(ω)| = argmaxω |〈e(ω),x〉| [11, 12]. This approach is often described as theperiodogram

methodfor parameter estimation [12]. This simple estimator can beextended to the multiple sinusoid

setting by performing combinatorial hypothesis testing [12].

For frequency-sparse signals with components at integral frequencies, the signal’s representation in

the DFT basis provides the information needed by the MLEs above; in this case, the parameter estimation

problem is equivalent to sparse approximation in the DFT basis. This equivalence can also be extended to

frequency-sparse signals whose component frequencies areincluded in an oversampled DTFT sampling

grid by using a DFT frame instead.

B. Window-based methods

From the spectral analysis point of view, we can argue that the coherence of the DFT frameΨ(c)

is simply another manifestation of the spectral leakage problem. The classical way to combat spectral
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leakage is to apply a tapered window function to the signal before computing the DFT [12, 13]. However,

windowing can also hamper the spectral analysis resolution, making it more difficult to identify frequency-

sparse signal components with similar frequencies.

An improved approach to spectral estimation proposed by Thomson [32] forms a weighted average of

windowed DFTs using a set of windows known as prolate spheroidal wave functions (PSWF). The PSWF

windows are orthogonal and optimally concentrated in frequency; hence, they optimize the resolution of

the frequency analysis [32]. Thomson’s method aims for a balance in the tradeoff between low spectral

leakage and high spectral analysis resolution. The estimators of Section III-A can be adapted to employ

the Thomson frequency analysis estimate instead of the signal’s DTFT.

C. Eigenanalysis-based methods

A modern alternative to classical periodogram-based spectrum estimates are line spectrum estimation

algorithms based on eigenanalysis of the signal’s correlation matrix [12]. Such algorithms provide im-

proved resolution of the parameters of a frequency-sparse signal by estimating the principal components

of the signal’s autocorrelation matrix in order to find the dominant signal modes in the frequency domain.

Example algorithms include Pisarenko’s method, multiple signal classification (MUSIC), and estimation

of signal parameters via rotationally invariant techniques (ESPRIT). A line spectrum estimation algorithm

L(x,K) returns a set of dominantK frequencies for the input signalx, with K being a controllable

parameter.

As a concrete example, we describe the MUSIC algorithm, which estimates the parameters of a

frequency-sparse signal embedded in noise. We revisit the model of Section III:x = s+ n, wheres is

now of the form (1) andn ∼ N (0, σ2nI) denotes a noise vector. MUSIC operates on the autocorrelation

matrixRxx of x of sizeP ×P ; we obtain its eigendecomposition into the eigenvaluesλ1, . . . , λP , sorted

by decreasing magnitude, and the corresponding eigenvectorsv1, . . . ,vP . The algorithm relies on a score

function

PMUSIC(ω) =
1

∑P
p=K+1 |e(ω)Tvp|2

(6)

and returns the locations of theK largest score function peaks as the frequencies present in the signal.

A modification known as Root MUSIC formulates a polynomial that depends on the noise subspace

eigenvectors; the polynomial’s zeros help determine the locations of the peaks of (6).

We can interpret the line spectrum estimation processL as aK-sparse approximation algorithm

T
′(x,K) in the frequency domain: first, we obtain theK frequencies{ω̂k}Kk=1 = L(x,K); second, we
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estimate the values of the corresponding DTFT coefficients for the signal as shown in Section III-A. We

note that most line spectrum estimation algorithms providea tradeoff between estimation accuracy and

computational complexity in the selection of the window size used to estimate the autocorrelation matrix

Rxx.

IV. SPECTRAL COMPRESSIVESENSING

We are now in a position to develop new SCS recovery algorithms that are especially tailored to

frequency-sparse signals of arbitrary frequencies. We will develop two sets of algorithms based on the

periodogram and line spectrum estimation algorithms from Section III.

A. SCS via periodogram

To alleviate the performance-sapping coherence of the redundant DFT frame, we marry it with the

model-based CS framework of Section II-D that forces the signal approximation to contain linear combina-

tions of only incoherent frame elements. We assume initially that the components of the frequency-sparse

signalx have frequencies in the oversampled grid of the frameΨ(c); we will then extend our analysis

to signals with components at arbitrary frequencies at the end of the subsection.

1) Structured signal model:We begin by defining a structured signal model for frequency-sparse

signals requiring that the components of the signal are incoherent with each other. Our structured signal

model is defined as

TK,c,µ =

{
K∑

i=1

aie(di∆) s. t. di ∈ {0, . . . , cN − 1} , |〈e(di∆), e(dj∆)〉| ≤ µ, 1 ≤ i, j ≤ K
}
, (7)

whereµ ∈ [0, 1] is the maximal coherence allowed and∆ = 2π/cN as before. The union of subspaces

contained inTK,c,µ corresponds to linear combinations ofK incoherent elements from the DFT frame

Ψ(c), andTK,c,µ ⊆ ΣK . The coherence restriction in (7) imposes a lower limit to the frequency spacing

between any two sinusoids present in a recoverable signal, which echoes the frequency resolution issue of

spectrum estimators from Section III. Note that we require the signal modelTK,c,µ to obeyµ ≤ 1
16(K−1)

— matching the requirements of sparse approximation algorithms mentioned in Section II-A — even

though the actual coherence of the dictionaryΨ(c) can be significantly larger [10].

2) Structured sparse approximation algorithm:Following the incoherent component model above,

we modify a standard sparse approximation algorithm to avoid selecting highly coherent pairs of elements

of the DFT frameΨ(c). Our structured sparse approximation algorithm is an adaptation of the refractory

model-based algorithm of [33] and can be implemented as an integer program.
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The algorithmT(θ,K, c, µ) takes as inputs the coefficient vectorθ = Ψ(c)Tx ∈ R
cN , the approxi-

mation sparsityK, and the maximum coherence allowedµ, and finds the best approximation forx under

the modelTK,c,µ. The integer program implementation employs a constraint matrix Dµ ∈ R
cN×cN , which

has binary entries that indicate whether each pair of elements from the DFT frameΨ(c) are coherent:

Dµ[i, j] :=





1 if |〈e(i∆), e(j∆)〉| ≥ µ,
0 if |〈e(i∆), e(j∆)〉| < µ.

The implementation also employs the cost vectorcθ ∈ R
cN defined ascθ(i) = θ(i)2, i = 0, . . . , cN − 1.

We proceed by solving the integer program

sK,c,µ = arg min
s∈{0,1}cN

cTθ s such thatDµs ≤ 1, sT1 ≤ K, (8)

where 1 denotes a vector of ones of appropriate length, and then set the vector entry-wise product

T(θ,K, c, µ) = θ · sK,c,µ as the structured sparse approximation output.

When the matrixDµ is totally unimodular, the integer program (8) has the same solution as its

noninteger relaxation, which is a linear program [34] whosecomplexity is cubic on the number of

variables,O(c3N3). One example of totally unimodular matrices areinterval matrices, which are binary

matrices in which the ones appear consecutively in each row.While the matrixDµ we use in our case

is not an interval matrix — as each row ofDµ contains several intervals — it is possible to relax the

integer program by using a modified matrixDµ. To obtain this new matrix, we decompose each rowsn

of Dµ into a set of rowssn,1, sn,2, . . . that contain only one interval each and for which
∑

i sn,i = sn.

The number of rows ofDµ is then at mostcNπµ .

To reduce the computational complexity of this new structured sparse approximation algorithm, we

propose a heuristic that relies onfrequency inhibition. To obtain the model-based sparse approximation

in the DFT frameθ = Ψ(c)Tx, we search for the coefficientθ(d) with the largest magnitude. Once a

coefficient is selected, the algorithm inhibits all coefficients for coherent sinusoids (i.e., indicesd′ for

which |〈e(d∆), e(d′∆)〉| > µ) by setting those coefficients to zero. This will include allcoefficients

for frequencies withinκ = 2π asinc(1/µ)/N radians/sample of the one selected. We then repeat the

process by searching for the next largest coefficient in magnitude untilK coefficients are selected or all

coefficients are zero. This heuristic has complexityO(cKN log(cN)) and offers very good performance

for sparse approximation of arbitrary frequency-sparse signals, as shown in Fig. 2(b). Our experimental

results in Section V employ this heuristic structured sparse approximation algorithm.
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Algorithm 1 Spectral Iterative Hard Thresholding (SIHT) via periodogram
Inputs: CS MatrixΦ, DFT frameΨ := Ψ(c), measurementsy,

structured sparse approximation algorithmT(·,K, c, µ).
Outputs:K-sparse approximation̂θ, signal estimatêx.

initialize: θ̂0 = 0, r = y, i = 0

while halting criterion falsedo

i← i+ 1

b← θ̂i−1 + T(ΨTΦT r, N, c, µ) {form signal estimate}
θ̂i ← T(ΨTΨb,K, c, µ) {prune signal estimate according to structured sparsity model}
r← y − ΦΨθ̂i {update measurement residual}

end while

return θ̂ ← θ̂i, x̂← Ψθ̂

3) Recovery algorithm:The model-based IHT algorithm of [14] is particularly amenable to mod-

ification to incorporate our heuristic frequency-sparse approximation algorithm. Due to the redundancy

of the frameΨ(c), we perform some minor surgery on the algorithm: we replace the matrixΦ by the

matrix productΦΨ and multiply the signal estimateb by the Gramian matrix of the frame each time so

that coherent frame elements featuring coefficients of opposing signs can cancel each other. The modified

algorithm, which we dubspectral iterative hard thresholding(SIHT), is unfurled in Algorithm 1.

SIHT inherits a strong performance guarantee from standardIHT: If the matrix Φ hasT2K,c,µ-RIP

with δT2K,c,µ
<
√
2− 1, then we have

‖x− x̂‖2 ≤ C0
‖x−ΨT(ΨTx,K, µ)‖2

K1/2
+ C1ǫ; (9)

whereT(ΨTx,K, c, µ) denotes the structured sparse approximation of the input signal x. We note that

for signals that are frequency-sparse and composed of incoherent sinusoids with frequencies of the form

l∆, we haveΨT(ΨTx,K, c, µ) = x, meaning that recovery from noiseless measurements is exact.

4) Required number of CS measurements:To calculate the number of random CS measurements

needed for signal recovery using Algorithm 1, we count the number of subspacestK that compose the

signal modelTK,c,µ. We can obtain a loose measurement bound by counting the number ofK-dimensional

subspaces generated by subsets of the frameΨ(c) where no two vectors in a subspace have frequencies
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closer thanκ. From [33], we know the number of subspaces to be

tK <

(
cN − (K − 1)(c asinc(1/µ) − 1)

K

)
;

this provides us with the following loose measurement boundfor a random matrix to have theT2K,c,µ-RIP:

M = O
(
K log

(
c(N −K asinc(1/µ))

K

))
. (10)

The measurement bound (10) differs from that of CS with the orthonormal DFT basis only in the

numerator inside the logarithm. While there is a reduction of up to cK in the numerator due to the

asinc(1/µ) term, this reduction is significantly smaller than the penalty of (c − 1)N due to frequency

oversampling. If we ignore the small reduction, then the number of measurements needed corresponds

to that required for aK-sparse,cN -dimensional signal; in other words, SIHT enjoys the benefits of a

sparsifying coherent frame without the penalty on the number of measurements required for stable signal

recovery. We will demonstrate below in Section V that, in practice, SCS offers significant reductions in

the number of measurements needed for accurate recovery of frequency-sparse signals when compared

against standard CS using both the orthonormal DFT basis andDFT frames.

5) Frequency interpolation:We now address the case whereω/∆ is non-integer, that is, where the

frequency-sparse signal has components outside of the frequencies sampled by the DFT frame. We will

modify the structured sparse approximation algorithm to include frequency and magnitude estimation

steps. In this case, the approximation algorithm will find the frequency in the grid that is closest to

each component’s frequency. In other words, the standard structured sparse approximation of (8) of

the signal estimate enables us to identify the grid frequencies closest to the frequencies of the signal

components. It is then possible to estimate the component frequencies by performing a least squares

fit: for each index selected by the structured sparse approximation, we fit the frame coefficients for a

set of neighboring indices to a functional form for the sinc-shaped frequency response of a windowed

sinusoid. For example, a quadratic fit works well for frequencies within the main lobe of the translated

sinc functionsinc(ω − ω) [32]. To improve the performance of the estimators for the frequency and

amplitude of the sinusoids, we can use the multiple-window spectrum estimator of [32], which offers

improved resolution on the frequency estimates and lower bias on the amplitude estimates.

B. SCS via line spectrum estimation

While the combination of a redundant frame and the coherence-inhibiting structured sparsity model

yields an improvement in the performance of SIHT, the algorithm still suffers from a limitation in the
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Algorithm 2 SIHT via Line Spectrum Estimation
Inputs: CS MatrixΦ, measurementsy, structured sparse approximation algorithmT′(·,K).

Outputs:K-sparse approximation{ω̂k, âk}Kk=1, signal estimatêx.

initialize: x̂0 = 0, r = y, i = 0

while halting criterion falsedo

i← i+ 1

{ω̂k, âk}Kk=1 ← T
′(x̂i−1 +ΦT (y − Φx̂i−1),K) {obtain parameter estimates}

x̂i ←
∑K

k=1 âke(ω̂k) {form signal estimate}
end while

return x̂← x̂i, {ω̂k, âk}Kk=1

resolution of neighboring frequencies that it can distinguish. This limitation is inherited from the frequency

and coefficient estimation methods used by SIHT, which are based on the periodogram.

Fortunately, we can leverage the line spectrum estimation methods described in Section III-C; recall

that these methods return a set of dominantK frequencies for the input signal, withK being a controllable

parameter. Since these methods do not rely on redundant frames, we do not need to leverage the features

of SIHT that control the effect of coherence. We simply employ the structured sparse approximation

algorithmT
′(x,K) from Section III-C in IHT, resulting in Algorithm 2. While analytical results for this

new algorithm have proven difficult to establish, we show experimentally below that its performance

matches or exceeds that of SIHT via periodogram while exhibiting a much simpler implementation.

V. EXPERIMENTAL RESULTS

In this section, we report experimental results for the performance of the two SIHT recovery

algorithms as compared to standard CS recovery using the IHTalgorithm. We probe the robustness

of the algorithms to varying amounts of measurement noise and varying frequency oversampling factors

c. We also test the algorithms on a real-world communicationssignal. A Matlab toolbox containing

implementations of the SCS recovery algorithms, together with scripts that generate all figures in this

paper, is available at http://dsp.rice.edu/scs.

Our first experiment compares the performance of standard IHT using the orthonormal DFT basis

against that of the SIHT algorithms (Algorithms 1 and 2 from Section IV). Our experiments use signals

of lengthN = 1024 samples containingK = 20 complex-valued sinusoids. For varyingM , we executed
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100 independent trials using random measurement matricesΦ of sizeM ×N with i.i.d. Gaussian entries

and signalsx =
∑K

k=1 e(ωk), where each pair of frequenciesωi, ωj, 1 ≤ i, j ≤ K, i 6= j are spaced by

at least10π/1024 radians/sample. For each CS matrix / sparse signal pair we obtain the measurements

y = Φx and calculate estimates of the signalx̂ using IHT with the orthonormal DFT basis, SIHT via

periodogram with frequency oversampling factorc = 10 and maximum allowed coherenceµ = 0.1

(Algorithm 1), and SIHT via Root MUSIC (Algorithm 2). We use awindow sizeW = N/10 in Root

MUSIC to estimate the autocorrelation matrixRxx. We study the performance of these three algorithms

in three different regimes: (i) theaveragecase, in which the frequencies are selected randomly to machine

precision; (ii ) the bestcase, in which the frequencies are randomly selected and rounded to the closest

integral frequency, resulting in zero spectral leakage; and (iii ) the worst case, in which each frequency

is half-way in between two consecutive integral frequencies, resulting in maximal spectral leakage. The

results are summarized in Fig. 3 and show first that the average performance of standard IHT is very

close to its worst-case performance, and second that both SIHT algorithms perform significantly better on

the same signals. We also note that the SIHT algorithms work well in the average case even though the

resulting signals do not match exactly match the sparse-in-DFT-frame assumption. Thus, the proposed

algorithms are robust to mistmatch in the values for the frequencies in the signal model (1). We use this

experimental setup in the rest of this section, but we restrict ourselves to the average case regime.

Our second experiment tests the robustness of the SIHT algorithms to additive noise in the measure-

ments. We set the experiment parameters toN = 1024, K = 20 andM = 300, and we add i.i.d. Gaussian

noise of varianceσ to each measurements. For each value ofσ, we perform 1000 independent noise trials;

in each trial, we generate the matricesΦ and signalsx randomly as in the previous experiment. Fig. 4

shows the average norm of the recovery error as a function of the noise varianceσ; the linear relationship

indicates stability to additive noise to the measurements,confirming the guarantee given in (9).

Our third experiment studies the impact of the frequency oversampling factorc on the performance of

the SIHT algorithms. We use the same matrix and signal setup as in the previous experiment: we execute

10000 independent trials for each value ofc. The results, shown in Fig. 5, indicate a linear dependence

between the granularity of the DFT frame∆ and the norm of the recovery error. This sheds light on the

tradeoff between the computational complexity and the performance of the recovery algorithm, as well as

between the oversampling factorM/K (dependent onlog c) and the recovery performance. These results

also experimentally confirm Lemma 1.

Our fourth experiment tests the capacity of standard CS and SCS recovery algorithms to resolve
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Fig. 3. Performance of CS signal recovery via IHT using the orthonormal DFT basis, SIHT via periodogram, and SIHT

via Root MUSIC. We use signals of lengthN = 1024 containingK = 20 complex-valued sinusoids. The dotted lines

indicate the performance of IHT via the orthonormal DFT basis for the best case (when the frequencies of the sinusoids

are integral) and the worst case (when each frequency is halfway in between two consecutive integral frequencies).

The performance of IHT for arbitrary frequencies is close toits worst-case performance, while both SIHT algorithms

perform significantly better for arbitrary frequencies. All quantities are averaged over 100 independent trials.
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Fig. 4. Performance of SIHT via periodogram and SIHT via Root MUSIC for SCS recovery from noisy measurements.

We use signals of lengthN = 1024 containingK = 20 complex-valued sinusoids and takeM = 300 measurements.

We add noise of varying variancesσ and calculate the average normalized error magnitude over 1000 independent

trials. The linear relationship between the noise varianceand the recovery error indicates the robustness of the recovery

algorithm to noise.

neighboring frequencies in frequency-sparse signals. Forthis experiment, the signal consists of 2 real-

valued sinusoids (i.e.,K = 4) of length N = 1024 with frequencies that are separated by a value

δω varying between0.1 − 5 cycles/sample (2π/100N − 10π/N rad/sample); we obtainM = 100

measurements of the signal. We measure the performance of standard IHT via DFT, SIHT via periodogram
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We use signals of lengthN = 1024 containingK = 20 complex-valued sinusoids and takeM = 300 measurements.

We average the recovery error over 10000 independent trials. There is a linear dependence between the granularity of

the DFT frame and the norm of the recovery error.
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Fig. 6. Performance of IHT and SIHT algorithms for frequency-sparse signals with components at closely spaced

frequencies. We use signals of lengthN = 1024 containing 2 real sinusoids (K = 4) with frequencies separated by

δω, and measure the signal recovery performance of IHT and SIHTvia periodogram and Root MUSIC fromM = 100

measurements as a function ofδω. The results verify the limitations of periodogram-based methods and the markedly

improved performance of line spectrum estimation methods used by the different versions of SIHT. Additionally, we

see that standard IHT outperforms the SIHT algorithms only when the signal of interest is not contained in the class

of frequency-sparse signals with incoherent components.

with frequency oversampling factorc = 10 and maximum allowed coherenceµ = 0.1, and SIHT via

Root MUSIC, all as a function of the frequency spacingδω. For this experiment, we modify the window

size parameter of the Root MUSIC algorithm toW = N/3 to improve its estimation accuracy at the cost

of higher computational complexity. For each value ofδω, we execute 100 independent trials as detailed

in previous experiments. The results, shown in Fig. 6, verify the limitation of periodogram-based methods

as well as the improved resolution performance afforded by line spectrum estimation methods like Root

MUSIC. Standard IHT only outperforms the SIHT algorithms when the signal does not belong in the

class of frequency-sparse signals with incoherent components (that is, very small frequency spacingδω).
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Fig. 7. Performance ofℓ1-norm minimization, IHT via orthonormal DFT, and SIHT via Root MUSIC algorithms

on a real-world AM communications signal of lengthN = 32768 for a varying number of measurementsM . SIHT

significantly outperforms its standard counterparts.

Our last experiment tests the performance of standard CS andSCS recovery algorithms on a real-

world signal. We use the amplitude modulated (AM) signal from [7, Figure 7], measured in a lab, and

simulate its acquisition using the random demodulator [7].The signal has lengthN = 32768 samples.

We recover the signal in half-overlapping blocks of lengthN ′ = 1024 using IHT and SIHT via Root

MUSIC and compare their recovery performance as a function of the number of measurementsM against

that of theℓ1-norm minimization algorithm used in [7]. We set the target signal sparsity toK = N/100

in the IHT and SIHT algorithms. The recovered AM signals are then demodulated, and the recovery

performance is measured in terms of the distortion against the message obtained by demodulating the

signal at Nyquist rate. We average the performance over 20 trials for the random demodulator chipping

sequence. The results in Fig. 7 shows that SIHT consistentlyoutperforms its standard CS counterparts.

To summarize, our experiments have shown that SCS achieves significantly improved signal recovery

performance for the overwhelming majority of frequency-sparse signals when compared with standard CS

recovery algorithms and sparsity bases. The two SCS recovery algorithms we introduced and tested inherit

some attractive properties from their standard counterparts, including robustness to model mismatch and

measurement noise.

VI. RELATED WORK

The most relevant prior work in CS of frequency-sparse signals employs a block-sparsity model,

where the DFT coefficients are grouped into local bins [35]. Such a model is motivated by the locality

of the frequency spectra of real-world signals and is enforced via a two-stage recovery algorithm. The

first stage aims to find the locations of the bins containing the nonzero DFT coefficients of the signal

19



using standard CS; the second stage then recovers the content in those bins by obtaining enough regular

samples for each of the occupied bins. When the bins are correctly identified, the recovery of the signal

content succeeds independently of the frequencies of the components in (1).

A recent paper [36] independently studied the poor performance of recovery of frequency-sparse

signals when the DFT basis is used. The paper provides a generic framework for sparsity basis mismatch in

which an inaccurate sparsity basis is used for CS recovery, and determines a bound for the approximation

error as a function of the basis mismatch. The paper shows that in the noiseless setting, CS via the DFT

basis provides lower accuracy that linear prediction methods on subsampled sinusoids. However, such

linear prediction methods are very sensitive to noise, and thus are not suitable for use in the CS recovery

approach provided in Section IV.

There also exists a related body of related work on compressive acquisition of signals governed by a

small number of continuous-valued parameters. In finite rate of innovation (FROI) sampling [37], certain

classes of signals governed by a small number of parameters can be acquired by uniformly sampling

them using a specially designed kernel; the samples are thenprocessed to obtain an annihilating filter,

which in turn is used to estimate the values of the parameters. The application of FROI to frequency-

sparse signals results in the linear prediction method usedin [36], where the arguments of the complex

roots of an annihilating filter reveal the frequenciesωk of the signal components in (1). In fact, line

spectral estimation algorithms have been proposed to extend FROI to noisy sampling settings [38, 39],

albeit without performance guarantees.

Sparse approximation algorithms for frames characterizedby continuously varying parameters have

also been considered [40]. Here, one designs a frame composed of vectors corresponding to a sampling

of the parameter space; this sampled frame can be used with a modified greedy algorithm to obtain an

initial estimate of the parameter value, followed by a refinement via gradient descent. To date the analysis

of such approaches has been limited to the convergence rate of the sparse approximation error‖y−Φx̂‖2,
which is not exactly relevant to CS applications where we seek low error in the sparse representation

(i.e. ‖x− x̂‖2) instead of simple approximation fidelity.

VII. C ONCLUSIONS

In this paper we have developed a new framework for CS recovery of frequency-sparse signals, which

we have dubbed spectral compressive sensing (SCS). The framework uses a redundant frame of sinusoids

corresponding to an oversampled frequency grid together with a coherence-inhibiting structured signal
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model that prevents the usual loss of performance due to the frame coherence. We have provided both

performance guarantees for SCS signal recovery and a bound on the number of random measurements

needed to enable these guarantees. We have also presented adaptations of standard line spectrum estima-

tion methods to achieve recovery of combinations of sinusoids with arbitrarily close frequencies while

achieving low computational complexity. As Fig. 3 indicates, SCS recovery significantly outperform CS

recovery based on the orthonormal DFT basis (up to 25dB in thefigure).

Our SCS framework can be extended to other signal recovery settings where each component of the

signal’s sparse representation is governed by a small set ofparameters. While such classes of signals are

well suited for manifold models when only one component is present in the signal [22], they fall short

for linear combinations of a varying number of components. Following SCS, we can construct a frame

whose elements correspond to a uniformly obtained samplingof the parameter space. However, when

the manifold model is very smooth, the resulting frame will be highly coherent, limiting the performance

of sparse approximation algorithms. By posing coherence-inhibiting models such as that of (7), we can

enable accurate recovery of sparse signals under the redundant frame. Similarly to [40], we can evolve

from the parameter values corresponding to the chosen framevectors to more accurate estimates of these

parameters through the use of a least-squares fit of a functional form or through the use of gradient descent

when the manifold has a tractable analytical form. Immediate applications of this formulation include

sparsity-based localization [15–18], radar imaging [19–21], and sparse time-frequency representations [8].

Further work includes integrating our frequency inhibition approach into more powerful iterative [24]

andℓ1-norm minimization recovery algorithms as well as better characterizing the performance of the line

spectrum estimators used in the algorithms of Section IV. The performance of these algorithms (accuracy,

robustness, and resolution) might be different when they are applied to signal estimates obtained from

compressive measurements. We are also interested in extensions to other CS recovery algorithms to be

used in conjunction with parameterized frame models. SCS can also be applied to signal ensembles;

when a microphone or antenna array is used and the emitter is static, the dominant frequencies are the

same for each of the sensors, following the common sparse supports joint sparsity model [41]. For mobile

emitters, the changes in the frequency values can be modeledaccording to the Doppler effect, which

increases the number of parameters for the signal ensemble observed from two (for emitter position) to

four (for emitter position and velocity).
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APPENDIX

Proof of Lemma 1.We start with aK-term approximation in the frameΨ(c):

x′ =
K∑

k=1

a′ke(ω
′
k),

wherea′k = ak sinc(ωk−ω′

k)N
2π andω′

k = ∆round(ωk/∆). We then have

‖xk − xk‖2 ≤ ‖x− x′‖2 =
∥∥∥∥∥

K∑

k=1

ake(ωk)−
K∑

k=1

a′ke(ω
′
k)

∥∥∥∥∥
2

,

=

∥∥∥∥∥

K∑

k=1

(
ake(ωk)− ak sinc

(
(ωk − ω′

k)N

2π

)
e(ω′

k)

)∥∥∥∥∥
2

,

≤
K∑

k=1

|ak|
∥∥∥∥e(ωk)− sinc

(
(ωk − ω′

k)N

2π

)
e(ω′

k)

∥∥∥∥
2

=

K∑

k=1

|ak|
√

1− sinc2
(ωk − ω′

k)N

2π
,

≤
K∑

k=1

|ak|
√

1− sinc2
∆N

4π
=

√
1− sinc2

1

2c

K∑

k=1

|ak| =
√

1− sinc2
1

2c
‖a‖1,

proving the lemma. �
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